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Concurrent separation logic is distinguished by transfer of state ownership upon parallel composition and

framing. The algebraic structure that underpins ownership transfer is that of partial commutative monoids

(PCMs). Extant research considers ownership transfer primarily from the logical perspective while compara-

tively less attention is drawn to the algebraic considerations. This paper provides an algebraic formalization

of ownership transfer in concurrent separation logic by means of structure-preserving partial functions (i.e.,

morphisms) between PCMs, and an associated notion of separating relations. Morphisms of structures are a

standard concept in algebra and category theory, but haven’t seen ubiquitous use in separation logic before.

Separating relations are binary relations that generalize disjointness and characterize the inputs on which

morphisms preserve structure. The two abstractions facilitate verification by enabling concise ways of writ-

ing specs, by providing abstract views of threads’ states that are preserved under ownership transfer, and by

enabling user-level construction of new PCMs out of existing ones.
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1 INTRODUCTION

The algebraic foundations of separation logic are rooted in the discovery that the structure of par-
tial commutative monoids (PCMs) underpins the semantics of the key inference rules of framing
and parallel composition [Calcagno et al. 2007; Dinsdale-Young et al. 2013; Pym et al. 2004]. The
PCMs do so by mathematically representing the essential notions of state ownership and owner-
ship transfer, while abstracting the details of the concrete memory models used by the programs.

In a nutshell, a PCM is a structure (𝐴, •,1) on a carrier set 𝐴, equipped with a (partial) binary
operation • (pronounced “join”), which is commutative, associative, and has 1 as the unit. The
elements of the carrier 𝐴 model the private state of individual threads, and • models how the
private states of two children threads combine into the state of their parent. The operation • is
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commutative and associative because the order of threads in a thread pool is irrelevant for the
computation. The operation • is partial to signify that some state combinations are impossible. For
example, if 𝑥 •𝑦 is undefined, then 𝑥 and 𝑦 can’t be the private states of two different concurrent
threads, simultaneously. The unit element represents the empty private state.

The canonical PCM in separation logic is that of heaps, which are finite maps from pointers
(positive natural numbers) to values. The • is the disjoint union of heaps. It is undefined if the
operand heaps have a pointer in common, thus modeling that the private heaps of two concurrent
threads can’t share pointers. The unit is the heap with no pointers allocated. When a parent forks
two children threads, then its private heap is divided disjointly among the children. Upon joining,
the private, disjoint heaps of the children are unioned to derive the heap of the parent.This transfer
of heap ownership between parent and children threads is the defining pattern of separation logic.

While PCMs were originally used to explain the semantics of separation logic, more recent sepa-
ration logics [Appel et al. 2014; Jensen and Birkedal 2012; Jung et al. 2015; Ley-Wild and Nanevski
2013; Nanevski et al. 2014] take a step further and employ PCMs in program specifications (hence-
forth: specs). In these logics the user may introduce various PCMs to model custom notions of
ghost state relevant to the verification problem. Examples include PCMs of permissions [Bornat
et al. 2005], and PCMs of histories [Sergey et al. 2015b] for representing temporal (i.e., execu-
tion order) properties in the style of linearizability and other consistency criteria [Delbianco et al.
2017; Nanevski et al. 2019; Sergey et al. 2016]. Having arbitrary PCMs also facilitates the verifica-
tion of graph algorithms [Sergey et al. 2015a], which has been notoriously difficult in heap-only
separation logics. These approaches therefore usefully combine the algebra of PCMs with logical
reasoning about state ownership and transfer.

In this paper, we take the PCM-based approach to specification significantly further by intro-
ducing a theory of structure-preserving functions (morphisms), and structure-preserving relations
(separating relations) on PCMs. Morphisms are partial, as they preserve the PCM structure only
on some inputs. Separating relations are binary relations that describe the inputs on which a mor-
phism is structure-preserving, and abstractly generalize heap disjointness.

The above development has two relevant consequences for separation logic. First, it immediately
provides powerful user-level support for constructing new PCMs out of existing ones. To see why
such construction is desirable, consider that to specify both spatial and temporal properties of
programs, the user may want to combine the PCMs of heaps and histories into their Cartesian
product, itself also a PCM. But a standard use of morphisms in abstract algebra and category theory
is precisely in the definition of algebraic constructions, where morphisms relate a construction to
its components, e.g., how a Cartesian product is associated with projection and pairing morphisms.
We illustrate this aspect of our contribution by introducing the algebraic construction of a sub-PCM,
and showing how it applies to verification in separation logic.

Second, the two concepts (morphisms and separating relations) provide ways to abstract from
the concrete thread states; morphisms can functionally compute novel abstractions from a state,
whereas separating relations relate the states of a thread and its concurrent environment. Being
structure-preserving means that both respect the ownership transfer of separation logic, as we
shall see. Together, the two concepts thus present: a novel foundation for separation logic that
facilitates systematic introduction of algebraic concepts into specs; and a way to mathematically
model the essentials of a verification problem while abstracting from details of program state.

1.1 Morphisms as Ownership-Preserving Abstractions

Glossing over the partiality of PCMs, to which we return in Section 1.2, the standard algebraic
definition says that a morphism from themonoid (𝐴, •𝐴,1𝐴) to themonoid (𝐵, •𝐵,1𝐵) is a function
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𝜙 : 𝐴→ 𝐵 that preserves the monoidal structure:

𝜙 (1𝐴) = 1𝐵 (1)

𝜙 (𝑥 •𝐴 𝑦) = 𝜙 (𝑥) •𝐵 𝜙 (𝑦) (2)

We previously described • as a way to combine private states of two children threads into the state
of the parent. The above equations then characterize 𝜙 as computing a view—an abstraction—of a
thread’s private state, while preserving the thread-private nature of the view.

To illustrate, consider how PCMs may model a mutually exclusive lock that threads race to
acquire. We first require the PCM𝑂 that formalizes lock ownership.𝑂 has the carrier {own, own},
where own (resp. own) signifies that the thread owns (resp. doesn’t own) the lock. The • computes
the lock ownership of the parent thread from those of the children by the following table, where
own • own is undefined as two threads can’t own the lock simultaneously, and own is the unit.

𝑥 𝑦 𝑥 •𝑦

own own undefined

own own own

own own own

own own own

The table says that the lock is transferred from child to parent upon joining, analogously to how
the heap of a child is transferred to the parent, as discussed before. If neither child owns the lock,
then the parent doesn’t own the lock either.

A concrete implementation of the lock will typically require threads to internally store much
more private lock-related state than merely an element of 𝑂 . The extra state may be used for
synchronization purposes, or it may be ghost state required to formulate the logical invariants of
the locking algorithm, as often necessary for verification. Let this private state be modeled by a
PCM 𝑋 . The concrete definition of 𝑋 may differ between lock implementations and proofs, but
each should exhibit a function 𝛼 : 𝑋 → 𝑂 that computes the lock ownership status 𝛼 𝑥 of a thread
from the thread’s private state 𝑥 ∈ 𝑋 .

Moreover, 𝛼 must be structure-preserving, and in particular must satisfy equation (2). To see
what goes wrong if 𝛼 doesn’t, suppose there’re states 𝑥 and 𝑦 such that, e.g., 𝛼 𝑥 = 𝛼 𝑦 = own, but
𝛼 (𝑥 •𝑦) = own, to consider but one bad combination of values for 𝛼 (the other bad combinations
are similarly absurd). Then we have two children threads that don’t own the lock, but their parent
is granted the lock upon joining, out of thin air. Such 𝛼 violates the transfer of lock ownership
between children and parent threads, and thus doesn’t model locking.

1.2 Partiality and Separating Relations as Abstraction of Disjointness

Taking into account that •𝐴 may be undefined on some inputs, it’s clear that equation (2) can’t hold
as stated, but must be prefixed by some condition on 𝑥 and 𝑦. At the very least, such condition
should entail that 𝑥 •𝐴 𝑦 is defined, so that 𝜙 has an input value to which to apply, and on which
𝜙 itself is defined. More generally, we associate 𝜙 with a binary relation ⊥𝜙 that captures when 𝜙

distributes over •, via the updated axiom

if 𝑥 ⊥𝜙 𝑦 then 𝑥 •𝐴 𝑦 and 𝜙 (𝑥 •𝐴 𝑦) are defined and 𝜙 (𝑥 •𝐴 𝑦) = 𝜙 (𝑥) •𝐵 𝜙 (𝑦) (3)

The relation⊥𝜙 will be a separating relation, thus satisfying a number of properties that we outline
in Section 3.2. One of the properties that 𝑥 ⊥𝜙 𝑦 entails is that 𝑥 •𝐴 𝑦 is defined, or, equivalently,
that 𝑥 and𝑦 are separate (denoted 𝑥 ⊥ 𝑦). Clearly, this notion generalizes disjointness of heaps and
applies it to arbitrary PCMs. Then a separating relation ⊥𝜙 represents a morphism-specific notion
of separateness that strengthens the one inherited from the underlying PCM.
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Because separateness determines when states of two threads combine into a parent state, sepa-
rating relations essentially provide a custom notion of when two PCM elements can be considered
as states of concurrent threads, and thus also when a PCM element can be transferred from one
thread to another. A related important use of separating relations is in the construction of sub-
PCMs of the PCM 𝐴, whereby •𝐴 is restricted to the inputs admitted by the separating relation.
These uses are illustrated in Sections 2.7 and 3.2.

We also show in Section 3.2 that morphisms and separating relations are closed under basic
algebraic constructions. For example, morphism kernels and equalizers are separating relations;
restricting a morphism by a separating relation produces a new morphism, etc. Thus, separating
relations are a natural algebraic structure to describe the inputs on which a partial PCMmorphism
is structure-preserving (and defined).

1.3 Morphisms and Separating Relations in the Abstract

We further consider howmorphisms and separating relations interact to support framing (or more
generally, parallel composition) in the abstract. In other words, if we have a spec involving mor-
phisms and separating relations whose exact definitions we want to hide, what properties must
be exposed to make it possible to frame the spec? In Section 4, we argue that what must be ex-
posed is that the morphisms and the separating relations respectively satisfy the novel property
of invertibility, in addition to being structure-preserving functions and relations. Framing in the
abstract has been considered in related work on concurrent abstract predicates (CAP) [Dinsdale-
Young et al. 2010]. The novelty of our approach is the use of morphisms (i.e., functions) rather
than predicates (i.e., relations). When possible, functions are preferred to relations, as results of
functions needn’t be named; hence one can avoid existential quantification (e.g., consider function
vs. relation composition). Section 5 discusses the relationship to concurrent abstract predicates.

1.4 Use of Morphisms in Specs

We show that morphisms allow the user to compute, directly in specs, PCM values out of the state,
without requiring almost any other logical connectives familiar from separation logic.Thus, for the
most part, our specs won’t use separating conjunction1 or separating implication, or the numerous
recent additions to separation logic of assertions in the form of modalities and custom notions of
implication [Bizjak et al. 2019; Dinsdale-Young et al. 2010; Jung et al. 2018, 2015] and quantifica-
tion [da Rocha Pinto et al. 2014]. Instead, we rely only on standard constructs from higher-order
logic to make and combine statements about morphism values and separating relations. However,
ours is still a separation logic as we’re concerned with PCMs and ownership transfer.

As morphisms are just a special class of functions, they are particularly well-suited to a for-
malization as a shallow embedding in a system based on type theory such as Coq. We have thus
mechanized all the results from the paper by building on the recent formulation of separation logic
in Coq by Nanevski et al. [2019]. Morphisms and separating relations integrate very naturally into
this ambient theory, and don’t require any particular automation by tactics in order to be used
effectively. The resulting mechanization is available as a separate artefact [Farka et al. 2020a].

2 PCM ABSTRACTIONS BY EXAMPLE

2.1 Ticket Lock

To illustrate the issue at hand consider a simple synchronization primitive, a ticket lock [Lamport
1974; Mellor-Crummey and Scott 1991]. Ticket lock consists of two shared pointers, the ticket
dispenser tdr , and the display dsp. The thread that wishes to acquire the lock first increments tdr

1Though we’ll define a similar notion for use in proof outlines.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 5. Publication date: January 2021.



On Algebraic Abstractions for Concurrent Separation Logics 5:5

by the inc and fetch primitive.2 The thread then loops until the pointer dsp matches the value
read from tdr . The thread unlocks by incrementing the value of dsp.

lock =̂ 𝑥 ← inc and fetch(tdr);

do 𝑦 ← !dsp until 𝑥 = 𝑦

unlock =̂ inc and fetch(dsp)

Intuitively, the ticket lock’s workflow resembles the ticket queue management system that guides
customers to a counter in a bakery [Lamport 1974]. Incrementing tdr corresponds to taking a new
ticket from the ticket dispenser, thus fixing a customer’s position in the queue. Looping corre-
sponds to awaiting the ticket’s turn. Incrementing dsp signals, on the display, the next customer’s
turn. The initial value of tdr is 0; thus, the first ticket drawn is 1. The initial value of dsp is 1; thus,
the first thread that draws 1 can immediately be served. The sequel continues this analogy.

Specs. The specs of the two ticket lock programs should say that lock acquires exclusive ownership
of the ticket lock, and unlock releases it. We denote that by the following type ascriptions.3

lock : {𝜆𝑠. 𝛼s 𝑠 = own}{𝜆𝑠. 𝛼s 𝑠 = own}@TL (4)

unlock : {𝜆𝑠. 𝛼s 𝑠 = own}{𝜆𝑠. 𝛼s 𝑠 = own}@TL (5)

Unlikemost separation logics, wemake the binding of the state 𝑠 in the assertions explicit bymeans
of 𝜆, as customary in higher-order logic. In the above specs, 𝛼 is a morphism from the underlying
PCM of the state 𝑠 , whose exact definition we want to keep abstract, to the PCM𝑂 from Section 1.1.
Several questions arise. Although a client can reason with the specs, they appear too abstract: how
can the specs be established in the first place? After all, on inspection of the implementations of
lock and unlock above, it isn’t obvious how morphism 𝛼 is even involved. It turns out that we
will require concrete specs of the implementations and then hide implementation-level details to
define 𝛼 and obtain the abstract specs (4) and (5). But then how do morphisms and separating
relations interact with the concrete specs? How do they work with framing of the concrete specs?
How do they work under abstraction? The sequel answers these questions after first introducing
the basics of our type-theoretic approach.

2.2 Hoare Types, States and Specifications

Hoare Types. A Hoare type [Nanevski et al. 2019, 2006] is a dependently typed state and concur-
rency (and divergence) monad, indexed with a spec in the style of separation logic. Concretely, in
the judgment 𝑒 : {𝑃}{𝑄}@V, 𝑃 and 𝑄 , both predicates over state 𝑠 , are respectively the pre- and
postcondition of a program 𝑒 , in the sense of partial correctness. V is a resource, i.e., a state tran-
sition system describing the atomic state changes that 𝑒 is permitted. Two programs can be safely
composed, sequentially or in parallel, only if they are typed by the same resource. The resource
thus serves as a bound on the interference that concurrent threads can perform on each other’s
executions, enabling a form of rely-guarantee reasoning [Jones 1983]. As lock and unlock share the
resource TL (to be defined soon), they can be composed.

States. In our ambient type theory [Nanevski et al. 2019], states are subjective [Ley-Wild and
Nanevski 2013]. That is, each state 𝑠 is a pair (𝑠s, 𝑠o), where 𝑠s and 𝑠o are referred to as self and
other components, respectively. The 𝑠s component describes the private state of a thread, whereas

2Increment-and-fetch is a generic RMW operation [Herlihy and Shavit 2008] that atomically increments the value stored

at tdr and returns the incremented value. Similar primitives exist in many systems, e.g., atomic add fetch of gcc.
3For simplicity, we don’t consider lock invariants that describe the heap that the lock protects. Attaching such invariants

is an orthogonal issue to the topic of this paper and has been discussed in [Nanevski et al. 2019].
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𝑎1

𝑎2

𝑎3

𝑠1s
= 𝑎1

𝑠1o
= 𝑎2 •𝑎3

(1) Thread 𝜃1

𝑎1

𝑎2

𝑎3

𝑠2s
= 𝑎2

𝑠2o
= 𝑎3 •𝑎1

(2) Thread 𝜃2

𝑎1

𝑎2

𝑎3

𝑠 = 𝑠1 ★ 𝑠2:

𝑠s = 𝑎1 •𝑎2

𝑠o = 𝑎3

(3) Parent thread 𝜃 = 𝜃1 ‖ 𝜃2

Fig. 1. States of concurrent threads. Self components are in light shade, other components are in dark.
Adapted from [Nanevski et al. 2019].

𝑠o describes the combined state of all the other threads, that is, the concurrent environment.4 Thus,
self and other components model, at the level of state, the same dichotomy modeled by the rely
and guarantee transitions of rely-guarantee reasoning. The value of 𝑠o may be used in specs, but
a program can’t alter it. Both 𝑠s and 𝑠o are elements of one and the same PCM. When we access
state components by a morphism 𝜙 , we attach the subscript to the morphism and write 𝜙s 𝑠 and

𝜙o 𝑠 instead of 𝜙 𝑠s and 𝜙 𝑠o respectively. We write 𝜙 𝑠 for 𝜙s 𝑠 •𝜙o 𝑠 . We also implicitly assume
that in every state 𝑠 , the components 𝑠s and 𝑠o are separate; that is, 𝑠s • 𝑠o is defined in the PCM of
the resource. Using the notation from Section 1.2, this is denoted as 𝑠s ⊥ 𝑠o.

Figure 1 illustrates the interaction among the state components of concurrent threads. Con-
sider three threads, 𝜃1, 𝜃2, and 𝜃3, running concurrently, and without any additional threads. Their
respective states must have the forms 𝑠1 = (𝑎1, 𝑎2 •𝑎3), 𝑠2 = (𝑎2, 𝑎3 •𝑎1), and 𝑠3 = (𝑎3, 𝑎1 •𝑎2), be-
cause any of the two threads combined represent the concurrent environment of the third. Thus,
the join of the self ’s of any two threads must equal the other of the third. If 𝜃 is the parent thread
of 𝜃1 and 𝜃2, then its state is 𝑠 = (𝑎1 •𝑎2, 𝑎3), since 𝜃 is the combination of 𝜃1 and 𝜃2, and has 𝜃3 as
its environment. In particular, the join of the self and other components is invariant across all the
threads. Figure 1 illustrates these relations. Moreover, we abbreviate the relationship of the state
𝑠 of the parent thread 𝜃 and the states 𝑠1 and 𝑠2 of children threads 𝜃1 and 𝜃2 by 𝑠 = 𝑠1 ★ 𝑠2.

Morphisms and Separating Relations. In the types of lock and unlock, 𝛼 computes the lock owner-
ship information from 𝑠s. It’s therefore apparent that the types capture what’s desired: that the
lock program starts not owning the lock (precondition 𝛼s 𝑠 = own), and acquires the lock upon
termination (postcondition 𝛼s 𝑠 = own), and conversely for unlock. We’ll see examples of other
morphisms and separating relations shortly, when we discuss the internal definition of the state.

2.3 Internal State of the Ticket Lock

Recall that our goal is to define morphism 𝛼 and reach the abstract specs (4) and (5) via concrete
specs of the implementations of lock and unlock. To that end, we next design the ghost state of the
ticket lock so that we can express the internal logical invariants needed for the typing derivations
of the implementations of lock and unlock. Later, the morphism 𝛼 will abstract these internals to
an element of 𝑂 . We use the following PCM 𝑈 for the internals.

𝑈 = N
+
⇀fin 𝐿 where 𝐿 = {wait, serve, used} (6)

Here, N+ ⇀fin 𝐿 is the type of finite (partial) maps from positive natural numbers, representing
tickets. Given a ticket 𝑡 , the value of the map at 𝑡 is one of the labels in the set 𝐿, denoting the
status of the ticket according to the ticket lock workflow from Section 2.1: wait means that 𝑡 has
been drawn from the dispenser and the thread holding 𝑡 is waiting to be called on the display;
serve means that 𝑡 has been called on the display and the thread has begun its turn holding the

4States in [Nanevski et al. 2019] also contain the third component 𝑠 𝑗 describing shared state, but we won’t need it here.
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lock; and used means 𝑡 ’s turn at the counter has finished, and the thread holding 𝑡 has unlocked
by signaling 𝑡 + 1’s turn on the display. Notice that we don’t throw away tickets, but just change
their status in the map to reflect their progress through the bakery. The map thus serves as a form
of history of the bakery. Similarly to heaps, the type N+ ⇀fin 𝐿 is a PCM under the operation of
disjoint union ·∪ of maps, which is undefined if the two operands share a ticket. The unit is the
empty (i.e., nowhere defined) map ∅. We take N+ as the domain instead of N in order to exclude
the ticket 0, as the latter can’t be drawn from the dispenser.

Given a ticket map 𝑥 ∈ 𝑈 that represents the history of tickets in the bakery, we can compute
out of 𝑥 the ticket called on the display by the following definition, where we assume that max of
the empty set of natural numbers is by default the value 0.

𝜓 𝑥 = max{𝑡 ∈ dom(𝑥) | 𝑥 𝑡 = used} + 1

Indeed, according to the workflow of ticket locks, upon finishing its turn with the lock a thread
holding the ticket 𝑡 sets the display to 𝑡 + 1 to call the next thread in the queue. Thus, the value of
the display, which at that point denotes the currently called ticket, is one larger than the largest
used ticket in 𝑥 . The function𝜓 : 𝑈 → N+ is our first example of a morphism, where we endowN+

with the PCM structure (N+,max, 1). Indeed, it’s easy to see that for any two disjoint ticket maps
𝑥 ⊥ 𝑦, we have

𝜓 (𝑥 •𝑦) = max(𝜓 𝑥,𝜓 𝑦)

Moreover,𝜓 ∅ = 1, and 1, being the smallest element of N+, is the unit w.r.t. max.

Morphism Notation for Ticket Locks. Let us name the identity morphism on𝑈 as 𝜎 . Giving a special
name to the identity morphism will provide for uniform notation in our specs, where we apply
𝜎 , 𝜓 and other morphisms to compute various values from states. In particular, when applying
morphisms 𝜎,𝜓 to state 𝑠 = (𝑠s, 𝑠o), and according to the morphism notation from the previous
section, we use the following expressions to denote various ticket maps and values.

• 𝜎s 𝑠 denotes the self map of tickets. These are the tickets, and their status, that the thread
under consideration (henceforth “we” or “us”) has drawn from the dispenser.
• 𝜎o 𝑠 denotes the other ticket map. These are the tickets, and their status, that every other

thread but “us” (henceforth “others”) has drawn from the dispenser.
• 𝜓s 𝑠 denotes the self value of the last called ticket. This is the ticket that “we” have called by

incrementing the display upon finishing our last turn at the counter, to call the next thread
in the ticket queue.
• 𝜓o 𝑠 is the ticket last called by “others”, when they finished their turns at the counter.

The combined ticket map 𝜎̂ 𝑠 = 𝜎s 𝑠 •𝜎o 𝑠 and the value 𝜓 𝑠 = 𝜓s 𝑠 •𝜓o 𝑠 = max(𝜓s 𝑠,𝜓o 𝑠) have
further important meanings. As tickets are drawn in order, we can compute the current value of
the ticket dispenser pointer tdr as max(dom(𝜎̂ 𝑠)) + 1. Similarly, we can compute the value of the

display pointer dsp as𝜓 𝑠 . Therefore, our specs needn’t explicitly store the values of tdr and dsp, or
any other shared state. In specs, any shared state can generally be computed out of self and other

ghost components that suitably track the history of the updates to that shared state, just like 𝜎̂

and𝜓 compute the values of tdr and dsp out of the self and other ticket maps.5

2.4 Concrete Specs, Ghost Code, and Proof Outlines

With the internal state defined, we can next establish the following types for the implementations,
in Section 2.1, of lock and unlock. The types are concrete, because they specify lock and unlock

5Of course, one needs to relate the ghost to concrete program state, shared or private, but that’s beyond our scope here.

We refer to [Nanevski et al. 2019] for more details on how this relationship is made in the ambient theory.
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in terms of components of the underlying PCM 𝑈 using morphisms 𝜎 and 𝜓 , thus exposing the
internal state of ticket lock. In the example, we denote by 𝑡 �⇒ 𝑙 the singleton map that assigns
label 𝑙 to a ticket 𝑡 , and is undefined elsewhere.

lock : {𝜆𝑠. 𝜎s 𝑠 = ∅} {𝜆𝑠. 𝜎s 𝑠 = (𝜓 𝑠) �⇒ serve}@TL

unlock : [𝑡] .{𝜆𝑠. 𝜎s 𝑠 = 𝑡 �⇒ serve ∧ 𝑡 = 𝜓 𝑠} {𝜆𝑠. 𝜎s 𝑠 = 𝑡 �⇒ used}@TL

The spec for lock says that initially the ghost ticket map is empty. Thus, as customary in separa-
tion logic, it can be framed to any ticket map. Upon termination, we hold the ticket being displayed

and this ticket is labeled as serve in our map (𝜎s 𝑠 = (𝜓 𝑠) �⇒ serve). Notice that the value 𝜓 𝑠 in
the postcondition is stable under interference, as other threads can’t change the display because
we hold the lock when we’re being served. In particular, they can’t change 𝜓o 𝑠 which is a factor

in the computation of𝜓 𝑠 = 𝜓s 𝑠 •𝜓o 𝑠 .

The spec for unlock says that we hold the displayed ticket 𝑡 (𝜎s 𝑠 = 𝑡 �⇒ serve and 𝑡 = 𝜓 𝑠). Upon
termination, we still hold 𝑡 , but it’s now labeled as used, to indicate we finished our turn. The
Hoare type for unlock explicitly binds the variable 𝑡 , denoted by [𝑡], to snapshot the initial value
of the display and to allow its use both in the precondition and the postcondition. The scope of 𝑡
extends through the precondition and postcondition to the right of the binding [𝑡]. We couldn’t

have ascribed to unlock the postcondition 𝜆𝑠. 𝜎s 𝑠 = 𝜓 𝑠 �⇒ used because the value 𝜓 𝑠 in the
postcondition isn’t stable. Indeed, after we unlock, other threads can get their turn at the counter
and increment the display. Thus, we use 𝑡 to explicitly bind the stable value that the display has
when unlock is invoked, and we hold the lock.

We emphasize howmorphisms in the above specs combine in the standardmathematical fashion
to compute various required values. For example, we apply 𝜓 to 𝑠s and 𝑠o to obtain 𝜓s 𝑠 and 𝜓o 𝑠 ,

and then combine the two into the expression 𝜓 𝑠 = 𝜓s 𝑠 •𝜓o 𝑠 , to define 𝜎s 𝑠 . But for this to be
possible, we had to make the binding of the state 𝑠 explicit in the assertions of the Hoare triple,
so that 𝜓 and 𝜎 could be applied to the different projections of the same state 𝑠 . Had we kept
𝑠 implicit, as customary in separation logic assertions, expressing the above specs would have
required somewhat more logical machinery. This convenience afforded by morphisms and explicit
states extends to proof outlines, and to the definitions of resource transitions (see below) which
relate two states, the input and output states, that are usefully differentiated by the explicit naming.

Transitions and State Space of the Resource TL. Before we can derive the types for lock and unlock,
we need to annotate the programs with ghost code, i.e., code that manipulates the ghost state
expressed in terms of 𝜎 and𝜓 . In our ambient type theory, the ghost code is formed by transitions
of the resource (i.e., the state-transition system) of the specs; in the current example, transitions of
the resource TL. In Figure 2 we show the three transitions that define TL: taketx tr, lock tr, and
unlock tr. Each is a relation over the initial state 𝑠 and final state 𝑠 ′, and defines one of the three
basic changes that ticket lock programs can perform over the state. We denote by 𝑓 [𝑥 ↦→ 𝑎] the
function obtained by changing the value of function 𝑓 at point 𝑥 to the value 𝑎.

In the transition taketx tr, the smallest undrawn ticket in the state 𝑠 , max(dom(𝜎̂ 𝑠)) + 1, is
added into the self component 𝜎s 𝑠

′ and labeled wait. Thus taketx tr models a thread drawing

a fresh ticket. In the transition lock tr, the value 𝑡 = 𝜓 𝑠 is the ticket on display. This transition
updates the ticket map 𝜎 at 𝑡 from wait to serve to model that the thread noticed its ticket called on
the display, and took its turn at the counter. The unlock tr transition checks that the ticket 𝑡 being
displayed is owned by the thread and is being served: so (𝜎s 𝑠) (𝑡) = serve. The transition updates
the status of 𝑡 to used to model finishing the turn. Note that from the definition of𝜓 (Section 2.3),
one can immediately compute that𝜓s 𝑠

′
= 𝑡 + 1 because 𝑡 is the largest used ticket in 𝑠 ′.
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taketx tr 𝑠 𝑠 ′ =̂ 𝜎s 𝑠
′
= (𝑡 �⇒ wait) ·∪ 𝜎s 𝑠 where 𝑡 = max(dom(𝜎̂ 𝑠)) + 1

lock tr 𝑠 𝑠 ′ =̂ (𝜎s 𝑠) (𝑡) = wait ∧ 𝜎s 𝑠
′
= (𝜎s 𝑠) [𝑡 ↦→ serve] where 𝑡 = 𝜓 𝑠

unlock tr 𝑠 𝑠 ′ =̂ (𝜎s 𝑠) (𝑡) = serve ∧ 𝜎s 𝑠
′
= (𝜎s 𝑠) [𝑡 ↦→ used] where 𝑡 = 𝜓 𝑠

𝑠 ∈ ΣTL =̂ ordered (𝜎̂ 𝑠) ∧ no gaps (𝜎̂ 𝑠)

where

ordered (𝑥) =̂ {𝑡 | 𝑥 (𝑡) = used} < {𝑡 | 𝑥 (𝑡) = serve} ∧

{𝑡 | 𝑥 (𝑡) = serve} < {𝑡 | 𝑥 (𝑡) = wait} ∧

{𝑡 | 𝑥 (𝑡) = used} < {𝑡 | 𝑥 (𝑡) = wait}

no gaps (𝑥) =̂ ∀𝑡 ∈ N+. 𝑡 + 1 ∈ dom(𝑥) ⇒ 𝑡 ∈ dom(𝑥)

ΣTL

unlock tr

lock tr

taketx tr

Fig. 2. The state transition system TL. For sets 𝑆,𝑇 , the notation 𝑆 < 𝑇 means ∀𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 . 𝑠 < 𝑡 .

We emphasize that resource transitions aren’t arbitrary relations on states. Rather, as customary
in separation logic [Calcagno et al. 2007], they must satisfy the important property of locality. The
latter constrains the behavior of a transition under ownership transfer, and is necessary for the
soundness of the rules of frame and parallel composition. The precise definition of locality in the
subjective setting is given by the ambient type theory [Nanevski et al. 2019, Definition 3.5]. Here,
we just mention that the three transitions of TL are all local, which we proved in the Coq code.
Because locality constrains ownership transfer, these proofs essentially rely on the functions 𝜎 and
𝜓 being morphisms. In Section 2.5 we illustrate how morphisms behave under ownership transfer
and specifically under the rule of frame.

TL, being a state transition system, requires a state space in addition to transitions. The state
space ΣTL, given in Figure 2, is a subset of 𝑈 × 𝑈 that the transitions preserve. Thus, the state
space imposes natural properties of ticket locks that: (1) tickets go through the bakery in order,
i.e. all used tickets are smaller than serve tickets, which in turn are smaller than all wait tickets,
as defined by the predicate ordered in Figure 2; and (2) tickets are drawn consecutively from the
dispenser and none are skipped, as defined by the predicate no gaps in Figure 2.

Ghost Code Annotation. We elide the discussion on how to formally factor transitions into the
ghost code, and refer to the ambient type theory [Nanevski et al. 2019] for details. Instead, we
decorate lock and unlock below to informally illustrate when the various transitions are invoked
to change the ghost components of the state.

lock =̂ 𝑥 ← 〈inc and fetch(tdr); taketx tr 〉;

do 𝑦 ←!dsp until 𝑥 = 𝑦;

〈 lock tr 〉

unlock =̂
〈
inc and fetch(dsp); unlock tr

〉

In the above code, angle brackets 〈−〉 signify that the code they enclose executes atomically, that
is without interference from other threads. In the first case, the value returned from the agglom-
eration of actual with ghost code is the value returned by the actual code itself. For example, the
lock program executes taketx tr atomically with the call to inc and fetch(tdr), to bind to 𝑥 the
incremented value of tdr , and set the status of 𝑥 in the ghost state to wait. When the condition
𝑥 = 𝑦 is satisfied, since 𝑦 is assigned the value of dsp, the ticket 𝑥 is called on the display. The
lock program then executes lock tr as its final command to set the status of ticket 𝑥 to serve. This
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models taking the turn at the counter and completes the acquisition of the lock. Similarly, unlock

executes unlock tr to record in the ghost state that the display is incremented upon unlocking.

Proof Outlines. We next present the proof outline for lock and discuss its key points.

1. {𝜎s 𝑠 = ∅}

2. 𝑥 ← 〈inc and fetch(tdr); taketx tr 〉

3. {𝜎s 𝑠 = 𝑥 �⇒ wait ∧𝜓 𝑠 ≤ 𝑥}

4. do 𝑦 ← !dsp

5. {𝜎s 𝑠 = 𝑥 �⇒ wait ∧ 𝑦 ≤ 𝜓 𝑠 ≤ 𝑥}

6. until 𝑥 = 𝑦;

7. {𝜎s 𝑠 = 𝑥 �⇒ wait ∧ 𝑦 = 𝜓 𝑠 = 𝑥}

8. 〈 lock tr 〉;

9. {𝜎s 𝑠 = 𝜓 𝑠 �⇒ serve}

Line 1 is the precondition for lock. Line 3 shows that after the execution of taketx tr, the drawn
ticket 𝑥 is the (only) ticket in 𝜎s 𝑠 . Moreover, 𝑥 is computed by inc and fetch, and hence is one
larger than the last ticket drawn. More precisely, 𝑥 is bound to max(dom(𝜎̂ 𝑠)) + 1, for 𝑠 taken at

line 2. Now, from the definition of𝜓 , it must be that𝜓 𝑠 ≤ 𝑥 at the state 𝑠 taken at line 2. Indeed,𝜓

computes the largest used ticket, and 𝑥 equals the largest ticket, used or not. The property𝜓 𝑠 ≤ 𝑥

propagates to line 3 and beyond because it’s stable under interference. Other threads can execute
the transitions of TL over their own states to increase the display (by increasing 𝜓o 𝑠 and thus

also𝜓 𝑠), but can’t increase the display beyond 𝑥 . In [Farka et al. 2020b, Appendix B] we formally
establish this stability property. For the do-until loop (lines 4-6), the loop invariant is on line 5:

it conjoins the property that 𝑦 is smaller than the displayed ticket (𝑦 ≤ 𝜓 𝑠). This property holds
in the loop because line 4 stores the display value into 𝑦, after which the display may be further
incremented by other threads. Line 7 marks the exit from the loop, thus the loop invariant holds

together with the condition 𝑥 = 𝑦 for exiting the loop. This immediately gives that 𝑥 = 𝜓 𝑠 , which
is a precondition for lock tr. Finally, line 9 directly follows from line 7 by the definition of lock tr.

2.5 Framing and Morphisms

The above spec for lock is in the small footprint style, where the spec’s precondition uses ∅ for 𝜎s 𝑠 .
A natural question is how this spec–which employs morphisms–can be lifted to large footprints. In
other words, how do we employ the frame rule by using, as a frame, an arbitrary ticket map 𝑘 for
𝜎s 𝑠 in the precondition? Framing is a standard operation in separation logic, but works somewhat
differently in the setting with self and other variables, and in the presence of morphisms.

1. {𝜎s 𝑠 = 𝑘}

2. {∃𝑠1 𝑠2 . 𝑠 = 𝑠1 ★ 𝑠2 ∧ 𝜎s 𝑠1 = ∅ ∧ 𝜎s 𝑠2 = 𝑘}

3. {((𝜆𝑠. 𝜎s 𝑠 = ∅) ∗ (𝜆𝑠. 𝜎s 𝑠 = 𝑘)) (𝑠)}

4. lock

5. {((𝜆𝑠. 𝜎s 𝑠 = 𝜓 𝑠 �⇒ serve) ∗ (𝜆𝑠. 𝜎s 𝑠 = 𝑘))(𝑠)}

6. {∃𝑠1 𝑠2 . 𝑠 = 𝑠1 ★ 𝑠2 ∧ 𝜎s 𝑠1 = 𝜓 𝑠1 �⇒ serve ∧ 𝜎s 𝑠2 = 𝑘}

7. {𝜎s 𝑠 = (𝜓 𝑠 �⇒ serve) ·∪ 𝑘}

On line 1, we start with 𝜎s 𝑠 = 𝑘 ; thus 𝑠 = (𝑘, 𝑠o). Line 2 expands line 1 into a form suitable for
applying the frame rule. It posits that 𝑠 can be split into states 𝑠1 and 𝑠2 such as 𝑠 = 𝑠1 ★ 𝑠2. It’s
easy to see that this holds: we can represent 𝑠s = ∅ •𝑘 , thus pick 𝑠1 = (∅, 𝑘 • 𝑠o) and 𝑠2 = (𝑘, ∅ • 𝑠o)

(see Figure 1). Line 3 represents line 2 using separating conjunction, which isn’t a primitive of our
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logic, but is defined in the ambient theory in the customary way, modulo the use of subjective
state splitting (Figure 1):

𝑃 ∗𝑄 = 𝜆𝑠. ∃𝑠1 𝑠2 . 𝑠 = 𝑠1 ★ 𝑠2 ∧ 𝑃 𝑠1 ∧𝑄 𝑠2

Line 5 applies the frame rule to the intermediate spec for lock and the frame (𝜆𝑠. 𝜎s 𝑠 = 𝑘) (given
in color above). Line 6 unfolds the definition of separating conjunction, and line 7 collapses line 6,
relying on the following two critical points.

The first critical point is that𝜓 𝑠 = 𝜓 𝑠1. Indeed,

𝜓 𝑠 = 𝜓s 𝑠 •𝜓o 𝑠 (by definition of𝜓 )
= (𝜓s 𝑠1 •𝜓s 𝑠2) •𝜓o 𝑠 (because 𝑠s = 𝑠1s

• 𝑠2s
by Figure 1, and𝜓 distributes over •)

= 𝜓s 𝑠1 •(𝜓s 𝑠2 •𝜓o 𝑠) (by associativity of •)
= 𝜓s 𝑠1 •𝜓o 𝑠1 (because 𝑠1o

= 𝑠2s
• 𝑠o by Figure 1, and𝜓 distributes over •)

= 𝜓 𝑠1 (by definition of𝜓 )

Notice that the proof of the property 𝜓 𝑠 = 𝜓 𝑠1 doesn’t rely on the definition of 𝜓 , but only on
𝜓 being a morphism (with a trivial separating relation). Thus, the above is a general property of
morphisms that follows because the join of self and other components are invariant for parent and

children states. In this particular proof of lock, it allows replacing𝜓 𝑠1 in line 6 with𝜓 𝑠 in line 7.
The second critical point is that 𝜎s 𝑠 = 𝜎s 𝑠1 ·∪ 𝜎s 𝑠2. This holds because 𝜎 is a morphism, and

𝑠 = 𝑠1 ★ 𝑠2 implies that 𝑠s = 𝑠1s
• 𝑠2s

by Figure 1, so 𝜎 can distribute over •. Thus 𝜎s 𝑠 = (𝜓 𝑠 �⇒

serve) ·∪ 𝑘 . Again, in this argument we didn’t rely on the definition of 𝜎 .

2.6 Morphisms as Functional Abstractions

We next proceed to transform the concrete specs of lock and unlock into specs using a morphism
𝛼 : 𝑈 → 𝑂 to more abstractly express lock ownership. We define 𝛼 as follows.

𝛼 𝑥 =̂

{
own if 𝑡 �⇒ serve ∈ 𝜎 𝑥 for some 𝑡

own otherwise
(7)

As before, in the definition of 𝛼 , one should think of 𝑥 as the self component of a thread. Then
the definition says that the thread owns the lock iff it holds a ticket labeled serve in the self set of
tickets (𝜎 𝑥 ).

Structure Preservation and Partiality of 𝛼 . Just like the morphism properties of 𝜎 and 𝜓 were im-
portant for the internal specs to behave correctly under framing, so any spec using 𝛼 requires 𝛼
to be a morphism. And indeed, 𝛼 satisfies the equation (3) from Section 1.2. In particular, 𝛼 (𝑥 •𝑦)
is defined and 𝛼 (𝑥 •𝑦) = 𝛼 𝑥 •𝛼 𝑦 but only under the condition that 𝑥 and 𝑦 don’t both contain a
ticket labeled serve. In the latter case 𝛼 𝑥 = 𝛼 𝑦 = own so their join is undefined.

A formal way to say this is that 𝛼 is associated with the following separating relation, where
#serve (𝑎) equals the number of serve tickets in the ticket map 𝑎.

𝑥 ⊥𝛼 𝑦 =̂ #serve (𝜎 𝑥) + #serve (𝜎 𝑦) ≤ 1 ∧ 𝑥 ⊥ 𝑦 (8)

The definition directly captures that together𝑥 and𝑦 contain atmost one served ticket.We shall see
in Section 3.2 that ⊥𝛼 is indeed a separating relation, and moreover (Example 3.11) that #serve (−)

itself is a morphism, composed out of map filter and map counter functions, both of which are
morphisms.
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For now it suffices to observe that if we want to use 𝛼 in a Hoare triple, then, at the very least, we
must also attach the property 𝑠s ⊥𝛼 𝑠o to the pre- and postcondition.6 Otherwise we won’t be able
to derive the framed Hoare triples generically, i.e., by using only the property that 𝛼 is a morphism,
without relying on 𝛼 ’s definition. Framing essentially relies on a morphism distributing over •, as
we’ve previously seen for 𝜎 and𝜓 , and the distribution of 𝛼 is conditional upon 𝑠s ⊥𝛼 𝑠o.

Deriving Abstract Specs. We thus continue to establish the following abstract, but still intermediate,
types of lock and unlock via 𝛼 .

lock : {𝜆𝑠. 𝛼s 𝑠 = own ∧ 𝑠s ⊥𝛼 𝑠o}{𝜆𝑠. 𝛼s 𝑠 = own ∧ 𝑠s ⊥𝛼 𝑠o}@TL

unlock : {𝜆𝑠. 𝛼s 𝑠 = own ∧ 𝑠s ⊥𝛼 𝑠o}{𝜆𝑠. 𝛼s 𝑠 = own ∧ 𝑠s ⊥𝛼 𝑠o}@TL

The derivations follow straightforwardly from the large footprint specs for lock and unlock. Below
we just present the proof outline for lock; the one for unlock is in [Farka et al. 2020b, Appendix A].

1. {𝑠s ⊥𝛼 𝑠o}

2. {𝜎s 𝑠 = 𝑘 ∧ 𝑠s ⊥𝛼 𝑠o}

3. lock

4. {𝜎s 𝑠 = (𝜓 𝑠 �⇒ serve) ·∪ 𝑘 ∧ 𝑠s ⊥𝛼 𝑠o}

5. {𝛼s 𝑠 = own ∧ 𝑠s ⊥𝛼 𝑠o}

Line 1 weakens the desired precondition by eliding that 𝛼s 𝑠 = own, as this property isn’t actually
required by the proof. Indeed, if lock is invoked by a thread that already holds the lock, i.e., where
𝛼s 𝑠 = own, the (partial correctness) Hoare triple for lock holds trivially because lock diverges.
Line 2 snapshots 𝜎s 𝑠 into 𝑘 , and gives the large footprint precondition for lock conjoined with
𝑠s ⊥𝛼 𝑠o. The latter property is an invariant of the resource TL. In other words, it isn’t only stable
under interference of other threads, but also it’s preserved by the actions of our own thread, as we
show in [Farka et al. 2020b, Appendix B]. In particular, 𝑠s ⊥𝛼 𝑠o can strengthen the precondition
and weaken the postcondition of any well-typed program that has TL as its resource type. In the
ambient type theory [Nanevski et al. 2019] this is formally captured by a variant of the standard
Hoare logic rule of consequence that admits the conjunction of resource invariants to the asser-
tions in a Hoare triple. Therefore, line 4 follows from the large footprint spec for lock and the
above invariance property. Finally, line 5 follows immediately by the definition of 𝛼 .

2.7 Sub-PCM

Construction Overview. To obtain the ultimately desired compact specs (4) and (5) our algebraic
approach provides the sub-PCM construction. The construction mods out the PCM 𝑈 by ⊥𝛼 , to
obtain a sub-PCM𝑈TL. Two ticket maps 𝑥,𝑦 ∈ 𝑈TL are considered disjoint only if 𝑥 ⊥𝛼 𝑦, i.e., if 𝑥
and 𝑦 have at most one serve ticket in total.

𝑈TL =̂ 𝑈 /⊥𝛼

In𝑈TL, the • operation restricts that of𝑈 so that 𝑥 •𝑈TL
𝑦 equals 𝑥 •𝑈 𝑦 if 𝑥 ⊥𝛼 𝑦, and is undefined

otherwise. Consequently, 𝑥 ⊥𝑈TL
𝑦 iff 𝑥 ⊥𝛼 𝑦. Therefore, the relation ⊥𝛼 is the default notion of

separateness in 𝑈TL. It’s thus assumed of every state, and doesn’t need to be explicitly listed in
any assertion.

It’s essential for the sub-PCM construction that the condition by which we mod out be a sep-
arating relation, otherwise •𝑈TL

won’t be commutative, associative, and admit a unit. But once
we know that the condition is a separating relation, there is a generic proof (Section 3.4) that the

6We’ll see in Section 4 that we’ll also require 𝛼 to be an invertible morphism, but that property is tied to 𝛼 and needn’t

appear in Hoare triples.
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construction results in a PCM. We also note that morphisms play a role in relating a PCM 𝑈 and
a sub-PCM 𝑈 /𝑅, for a separating relation 𝑅. As customary in algebraic definitions of substruc-
tures, the sub-PCM construction comes with two morphisms: injection 𝜄 : 𝑈 /𝑅 → 𝑈 and retraction
𝜌 : 𝑈 → 𝑈 /𝑅 that allow us to transfer values and reasoning between 𝑈 and 𝑈 /𝑅. We explain
the properties of 𝜄 and 𝜌 in Section 3.4. In our case, the sub-PCM 𝑈TL comes with the attendant
injection 𝜄TL : 𝑈TL → 𝑈 , and retraction 𝜌TL : 𝑈 → 𝑈TL. The injection is a morphism with the
separating relation ⊥𝑈TL

, and the retraction is a morphism with separating relation ⊥𝛼 .

Use in Specifications. Once we obtain the restricted PCM 𝑈TL, we can proceed to construct a sub-
resource TL′ which restricts the PCM𝑈 of TL to𝑈TL. The formal discussion of resources is given
in [Nanevski et al. 2019]. Here, we just mention that TL′ simulates TL, intuitively, because each
transition of TL preserves ⊥𝛼 . The latter is easy to check: if in a state 𝑠 the map 𝜎̂ 𝑠 has at most
one used ticket, then so does a state 𝑠 ′ obtained by executing one of the transitions of TL in 𝑠 .

The ambient type theory provides an inference rule by which one can compositionally change
the resource of a program from TL to TL′,7 while precomposing the morphisms in the specs with
the injection 𝜄TL. Thus, we can transform the previous specs using 𝛼 into the ones given below
where 𝛼 ′ = 𝛼 ◦ 𝜄TL. The condition 𝑠s ⊥𝛼 𝑠o transforms into 𝑠s ⊥𝑈TL

𝑠o and can thus be elided. This
yields the specs we set out to obtain, modulo the renaming of 𝛼 and TL into 𝛼 ′ and TL′.

lock : {𝜆𝑠. 𝛼 ′s (𝑠) = own}{𝜆𝑠. 𝛼 ′s (𝑠) = own}@TL′

unlock : {𝜆𝑠. 𝛼 ′s (𝑠) = own}{𝜆𝑠. 𝛼 ′s (𝑠) = own}@TL′

We emphasize that the simple Hoare specs are not the only benefit of the sub-PCM construction.
By constructing𝑈TL, we not only restricted the states of TL, but we did so in a way that promoted
⊥𝛼 into the new default notion of separateness. Thus, we can now reason about ⊥𝛼 using the
support that the ambient type theory provides for separateness in the form of lemma libraries and
decision procedures, and which wouldn’t have applied if ⊥𝛼 is simply listed as a conjunct in the
assertions, and tracked as just another hypothesis in the proof state. We shall see in Section 3 that
the ordered property can also be viewed as a separating relation and thus moved from the state
space ΣTL into the PCM by a sub-PCM construction. On the other hand, no gaps doesn’t admit
such a move. We demonstrate in Section 3 that no gaps isn’t a separating relation; it doesn’t
generalize a disjointness relation between states of two threads, but rather represents a global
property of the aggregated state of all threads.

It’s also worth mentioning that we could have obtained the above specs in several alternative
ways. For example, we could have started our example immediately by using 𝑈TL instead of 𝑈 .
Correspondingly, instead of 𝜎 and𝜓 , we would have used 𝜎 ′ = 𝜎 ◦ 𝜄TL and𝜓 ′ = 𝜓 ◦ 𝜄TL in our specs
and proof outlines. The whole development that we carried out in this section then retraces easily.
This shows that the approach is flexible enough to achieve the same specs and proofs by different
order and arrangement.

We could also have chosen a different internal representation altogether. For example, we could
have stored the tickets not into a map, but into three disjoint sets: one set for wait, one for serve,
and one for used tickets, with the restriction that the set for serve tickets has at most one element.
The algorithm would then shuffle tickets between sets to track the progress of the ticket through
the bakery. A PCM implementing this alternative representation would be isomorphic to𝑈TL. But,
to be able to formally speak of PCM isomorphism, one first has to have a notion of PCMmorphism,
as it applies to separation logic. Developing such a notion, along with the associated notion of
separating relation, is the contribution of this paper.

7Or to any resource simulating TL.
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3 PCM ABSTRACTIONS FORMALLY

3.1 Making Partiality Explicit

In previous sections, our discussion of partiality has been implicit, as we merely postulated that •
and various PCM morphisms are allowed to be undefined on some inputs. In practical formaliza-
tion, however, it’s useful to make partiality explicit by enriching the carriers with a new element
that a function returns whenever it’s supposed to be undefined. This is a common practice in theo-
ries of partial functions, e.g., domain theory [Abramsky and Jung 1995], and in symbolic execution
in separation logic [Berdine et al. 2005]. We make a similar enrichment here as well.

Definition 3.1. A topped partial commutative monoid is a 5-tuple (𝐴, •,1,⊤, 𝐷) such that • is
a total commutative and associative operation on 𝐴, with 1 as the unit. The element ⊤ ∈ 𝐴 is
the canonical undefined element, and 𝐷 ⊆ 𝐴 is the set of defined elements. The two satisfy the
following properties.

(1) ⊤ ∉ 𝐷

(2) 1 ∈ 𝐷
(3) if 𝑥 •𝑦 ∈ 𝐷 then 𝑥,𝑦 ∈ 𝐷

(4) 𝑥 •⊤ = ⊤•𝑥 = ⊤

We say that a topped PCM is normal, if 𝐴 = 𝐷 ∪ {⊤}, i.e., ⊤ is the only undefined element.

The definition introduces the element ⊤ which functions are supposed to return to signal unde-
finedness. For technical reasons that we explain below, we allow topped PCMs that have multiple
undefined elements, but ⊤ is a distinct one among them, and in particular, (1) ⊤ ∉ 𝐷 . The above
properties further say that (2) 1 is defined, and that (3) a join with an undefined element must be
undefined. More strongly, (4) a join with ⊤must equal ⊤, i.e., ⊤ is the absorbing element of𝐴 (also
known as the zero). We continue to say that 𝑥 and 𝑦 are separate, written 𝑥 ⊥ 𝑦, if 𝑥 •𝑦 is defined,
i.e., 𝑥 •𝑦 ∈ 𝐷 . It’s easy to see that 𝑥 ∈ 𝐴 is defined iff it’s separate from 1. Thus we write 𝑥 ⊥ 1

instead of 𝑥 ∈ 𝐷 to say that 𝑥 is defined. As all the PCMs we consider in this paper are topped, we
dispense with the adjective.

Example 3.2. The PCM N+ ⇀fin 𝐿, which we used to represent the internal state of ticket locks
is an instance of a more general PCM of finite maps. Finite maps 𝐴 ⇀fin 𝐵 form a topped normal
PCM: take (𝐴 ⇀fin 𝐵) ∪ {⊤} as the carrier, 𝐷 = 𝐴 ⇀fin 𝐵 for the defined elements, the empty map
∅ as the unit, and the join defined as

𝑓 •𝑔 =̂

{
𝑓 ∪ 𝑔 if 𝑓 , 𝑔 ≠ ⊤ and 𝑓 , 𝑔 are maps with disjoint domains

⊤ otherwise

PRॵॶॵsitiॵॴ 3.3. Given (topped) PCMs 𝐴, 𝐵, the Cartesian product 𝐴 × 𝐵 is a (topped) PCM

with •, 1 and ⊤ defined pointwise: (𝑎1, 𝑏1) • (𝑎2, 𝑏2) =̂ (𝑎1 •𝐴 𝑎2, 𝑏1 •𝐵 𝑏2), 1 =̂ (1𝐴,1𝐵) and

⊤ =̂ (⊤𝐴,⊤𝐵), and the set of defined elements 𝐷 = 𝐷𝐴 × 𝐷𝐵 .

The above proposition shows that𝑉 = 𝐴×𝐵 is a topped PCM whenever𝐴 and 𝐵 are, but𝑉 isn’t
necessarily normal. Indeed, 𝑉 contains elements of the form (𝑎,⊤𝐵) and (⊤𝐴, 𝑏), where 𝑎 ∈ 𝐷𝐴

and 𝑏 ∈ 𝐷𝐵 . These elements can’t be defined (hence, neither is in 𝐷𝑉 ), but they’re all distinct from
⊤𝑉 = (⊤𝐴,⊤𝐵). The common way to avoid the proliferation of undefined elements in theories
of partiality is to consider smash products instead of Cartesian products. In this paper, we instead
allow PCMs such as Cartesian products that aren’t normal. We also allowmorphisms on them, e.g.,
the projections 𝜋1 : 𝑉 → 𝐴 and 𝜋2 : 𝑉 → 𝐵. When required, we rely on the sub-PCM construction
(to be defined shortly) to normalize a PCM by removing the undefined elements other than ⊤.
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3.2 Separating Relations

We next define separating relations, a strengthening of disjointness⊥ of the underlying PCM. Hav-
ing in mind that our specs apply separating relations to self and other components of a state, one
can thus view separating relations as determining when two PCM values can be used to model the
state of two concurrent threads.

Definition 3.4. Relation 𝑅 on the carrier of the PCM 𝐴, is a separating relation if it satisfies the
following laws which make 𝑅 a structure-preserving relation on 𝐴.

(1) (definedness) if 𝑥 𝑅 𝑦 then 𝑥 𝑅 1

(2) (strengthening) if 𝑥 𝑅 𝑦 then 𝑥 ⊥ 𝑦

(3) (unit) 1 𝑅 1

(4) (symmetry) 𝑥 𝑅 𝑦 iff 𝑦 𝑅 𝑥

(5) (associativity) if 𝑥 𝑅 𝑦 and (𝑥 •𝑦) 𝑅 𝑧 then 𝑥 𝑅 (𝑦 • 𝑧) and 𝑦 𝑅 𝑧

The law (1) restricts the separating relation 𝑅 to defined elements only, as only a defined element
should represent the state of a thread. Law (2) says that 𝑅 strengthens the separating relation of
the underlying PCM. Law (3) says that empty state is a valid state for any two threads, and law (4)
says that the order in which threads appear in the relation is irrelevant.

The associativity law (5) describes whenwe can transfer ownership of state between two threads.
Let’s assume that we have two concurrent threads 𝜃1 and 𝜃2. Correspondingly, their states are
related by 𝑅. Let 𝑧 be the state of 𝜃2, and let 𝜃1 be a parent of two other concurrent threads with
states 𝑥 and 𝑦, respectively. Thus 𝑥 𝑅 𝑦 and (𝑥 •𝑦) 𝑅 𝑧. The law says that we can transfer 𝑦 from
𝜃1 to 𝜃2, which essentially corresponds to re-associating the child of 𝜃1 owning 𝑦 to 𝜃2. Intuitively,
this is possible because the ordering and grouping of the threads in a thread pool is irrelevant.

Notice that from 𝑥 𝑅 𝑦 and (𝑥 •𝑦) 𝑅 𝑧, by symmetry of 𝑅 and commutativity of •, we get 𝑦 𝑅 𝑥

and (𝑦 •𝑥) 𝑅 𝑧, which by associativity implies 𝑦 𝑅 (𝑥 • 𝑧) and 𝑥 𝑅 𝑧 as well. Thus, it’s convenient
to introduce the following notation for the antecedent of the associativity law:

𝑥 𝑅 𝑦 𝑅 𝑧 =̂ 𝑥 𝑅 𝑦 ∧ (𝑥 •𝑦) 𝑅 𝑧

to say that 𝑥 , 𝑦 and 𝑧 represent states of three concurrent threads, which are pairwise separate,
and each is separate from the join of the other two.

PRॵॶॵsitiॵॴ 3.5. Let𝑈 be a PCM, and 𝑅 a separating relation on𝑈 . Then 𝑥 𝑅𝑦 implies (𝑥 •𝑦) 𝑅 1.

PRॵॵf. From 𝑥 𝑅𝑦 we derive 1𝑅 𝑥 by the definedness and symmetry laws for 𝑅, and (1 •𝑥) 𝑅𝑦
because 1 is the unit. Then by associativity 1𝑅 (𝑥 •𝑦), and by symmetry (𝑥 •𝑦) 𝑅 1. �

The proof of Proposition 3.5 uses associativity, and we can explain the proposition using threads
similarly to how we explained associativity. The proposition says: if 𝑥,𝑦 are valid states of two
concurrent threads, then joining them produces a parent whose state (𝑥 •𝑦) is valid as well.

Basic Examples of Separating Relations. The smallest separating relation of a PCM 𝐴 is induced by
𝐴’s unit. We denote it ⊥1𝐴

, and define it by

𝑥 ⊥1𝐴
𝑦 =̂ 𝑥 = 1𝐴 ∧ 𝑦 = 1𝐴

The relation clearly satisfies the required laws. Similarly, the PCM 𝐴 itself induces the trivial sep-
arating relation ⊥ (or ⊥𝐴 when we want to make 𝐴 explicit), defined as

𝑥 ⊥𝐴 𝑦 =̂ (𝑥 •𝑦) is defined

This is the largest separating relation on 𝐴, since any larger relation violates the strengthening
property (2). The intersection of two separating relations is also a separating relation. The join
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relation 𝐽 on 𝐴2 defined as (𝑎1, 𝑎2) 𝐽 (𝑏1, 𝑏2) iff (𝑎1 •𝑎2) ⊥ (𝑏1 •𝑏2) iff (𝑎1 •𝑎2 •𝑏1 •𝑏2) ⊥ 1𝐴 is a
separating relation.

Separating Relation ⊥𝛼 . Our formalization of ticket locks in Section 2 uses the invariant 𝑥 ⊥𝛼 𝑦 on
the PCM 𝑈 , defined in (8) to state that at most one of the maps 𝜎 𝑥 and 𝜎 𝑦 holds the serve ticket.
The property ensures that 𝛼 is a morphism.

It’s easy to see that ⊥𝛼 is a separating relation. The conditions (1-4) of Definition 3.4 are im-
mediate. To show associativity, assume that (𝑥 •𝑦) ⊥𝛼 𝑧 (we don’t need 𝑥 ⊥𝛼 𝑦). Because #serve

distributes over • (to be shown in a more general form in Example 3.11), the assumption gives us

(#serve (𝜎 𝑥) + #serve (𝜎 𝑦)) + #serve (𝜎 𝑧) ≤ 1

But then #serve (𝜎 𝑥) + (#serve (𝜎 𝑦) + #serve (𝜎 𝑧)) ≤ 1 and #serve (𝜎 𝑦) + #serve (𝜎 𝑧) ≤ 1, i.e., 𝑥 ⊥𝛼
(𝑦 • 𝑧) and 𝑦 ⊥𝛼 𝑧. We see that associativity in this example says that three threads may group in
any way while preserving ⊥𝛼 because at most one of them can hold the serve ticket.

Separating Relation ordered. In Section 2.4, we defined the state space ΣTL of the resource TL using
the predicate ordered to capture that used tickets are smaller than serve ticket, which in turn is
smaller than wait tickets. While ordered is defined as a predicate over a single PCM element 𝑥 ∈ 𝑈 ,
it easily lifts to a binary relation as follows:

𝑥 𝜔 𝑦 =̂ ordered (𝑥 •𝑦) ∧ 𝑥 ⊥ 𝑦

It’s easy to see that 𝜔 is a separating relation; again, the key property is associativity: (𝑥 𝜔 𝑦)

and (𝑥 •𝑦) 𝜔 𝑧 imply (𝑦 𝜔 𝑧) and 𝑥 𝜔 (𝑦 • 𝑧). By definition of 𝜔 , we must show: ordered (𝑥 •𝑦)

and ordered (𝑥 •𝑦 • 𝑧) together imply ordered (𝑦 • 𝑧) and ordered (𝑥 •𝑦 • 𝑧). This holds because if
a map is ordered, then trivially, every subset of that map is ordered as well. The conjunct 𝑥 ⊥ 𝑦

ensures the strengthening property (2) of Definition 3.4. Thus, our construction of TL′ could have
moved ordered from the state space ΣTL into the definition of the sub-PCM𝑈TL.

Non-Example of Separating Relation: no gaps. The state space ΣTL also used the predicate no gaps

to capture that the tickets are drawn consecutively starting from ticket 1. Similarly to ordered,
no gaps can be made into a binary relation:

𝑥 𝜐 𝑦 =̂ no gaps (𝑥 •𝑦) ∧ 𝑥 ⊥ 𝑦

In contrast to 𝜔 , however, the relation 𝜐 isn’t associative, and hence isn’t a separating relation.
For example, let 𝑥 , 𝑦 and 𝑧 be ticket maps with domains dom(𝑥) = {2}, dom(𝑦) = {1}, and
dom(𝑧) = {3}, respectively. Then 𝑥 𝜐 𝑦 and (𝑥 •𝑦) 𝜐 𝑧 hold because dom(𝑥 •𝑦) = {1, 2} and
dom(𝑥 •𝑦 • 𝑧) = {1, 2, 3} contain consecutive tickets starting from ticket 1. But clearly𝑦 ✁𝜐 𝑧 because
dom(𝑦 • 𝑧) = {1, 3} has a gap, missing the ticket 2 (see Figure 3).

In this sense, no gaps is a global property. It holds of the collective state of all threads taken
together, but, unlike separating relations, doesn’t relate any two individual threads. In particular,
no gaps can’t be moved from ΣTL into𝑈TL. In other words, PCMs and separating relations encode
local properties of thread states, while resource state spaces encode global ones.

3.3 Morphisms

Definition 3.6. Amorphism 𝜙 : 𝐴→ 𝐵 with a separating relation ⊥𝜙 is a function 𝜙 from 𝐴 to 𝐵
such that.

(1) (preservation of unit) 𝜙 1𝐴 = 1𝐵

(2) (preservation of undefinedness) 𝜙 ⊤𝐴 = ⊤𝐵
(3) (distributivity) if 𝑥 ⊥𝜙 𝑦 then 𝜙 𝑥 ⊥ 𝜙 𝑦, and 𝜙 (𝑥 •𝑦) = 𝜙 𝑥 •𝜙 𝑦

We say that 𝜙 is a total PCM morphism if ⊥𝜙 equals the trivial separating relation ⊥𝐴.
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𝑥 •𝑦

𝑧

𝑦

𝑦 • 𝑧

Fig. 3. Binary relation over predicate no gaps. Adjacent elements satisfy the relation.

Some basic examples of morphisms include the identity function 𝜄𝐴 : 𝐴 → 𝐴, which is a total
morphism on 𝐴. So is the always-unit function − ↦→ 1𝐵 : 𝐴→ 𝐵, as are the projections out of the
product PCM. We also have the morphism join𝐴 : 𝐴2 → 𝐴 defined as join𝐴 (𝑎, 𝑏) = 𝑎 •𝑏, which is
a morphism under the separating relation 𝐽 (Section 3.2).

Morphisms and separating relations support a number of common algebraic constructions.

Definition 3.7. Let 𝛼 , 𝛽 be PCMmorphisms.The composition 𝛼 ◦𝛽 , tensor product 𝛼 ⊗𝛽 , and arrow
product 𝛼 × 𝛽 are defined as below. All three are morphisms, under the given separating relations.

(𝛼 ◦ 𝛽) 𝑥 =̂ 𝛼 (𝛽 𝑥) with 𝑥 ⊥𝛼◦𝛽 𝑦 =̂ 𝑥 ⊥𝛽 𝑦 ∧ 𝛽 𝑥 ⊥𝛼 𝛽 𝑦

(𝛼 ⊗ 𝛽) 𝑥 =̂ (𝛼 𝑥, 𝛽 𝑥) with 𝑥 ⊥𝛼⊗𝛽 𝑦 =̂ 𝑥 ⊥𝛼 𝑦 ∧ 𝑥 ⊥𝛽 𝑦

(𝛼 × 𝛽) (𝑥1, 𝑥2) =̂ (𝛼 𝑥1, 𝛽 𝑥2) with (𝑥1, 𝑥2) ⊥𝛼×𝛽 (𝑦1, 𝑦2) =̂ 𝑥1 ⊥𝛼 𝑦1 ∧ 𝑥2 ⊥𝛽 𝑦2

We can also define kernels, equalizers and restrictions of PCM morphisms, as customary in
various algebraic theories. We don’t apply these constructions in the ticket lock example but com-
ment below why they are useful. Importantly, our theory is closed under these constructions, as
equalizers and kernels of morphisms are separating relations, and a restriction of a morphism by a
separating relation is a morphism.This shows that separating relations and morphisms are natural
notions to consider together. Moreover:

TheॵReॳ 3.8. Morphism composition is associative, with the identity morphism as unit. Thus, the

structure with (topped) PCMs as objects and PCM morphisms as arrows, forms a category.

Definition 3.9. Let𝛼 and 𝛽 be PCMmorphisms.The kernel ker𝛼 and equalizer eql 𝛼 𝛽 are defined
below. Both are separating relations.

• 𝑥 (ker 𝛼) 𝑦 =̂ 𝑥 ⊥𝛼 𝑦 ∧ 𝛼 𝑥 = 𝛼 𝑦 = 1, and
• 𝑥 (eql 𝛼 𝛽) 𝑦 =̂ 𝑥 ⊥𝛼 𝑦 ∧ 𝑥 ⊥𝛽 𝑦 ∧ 𝛼 𝑥 = 𝛽 𝑥 ∧ 𝛼 𝑦 = 𝛽 𝑦.

Equalizers are useful whenever one wants to equate components of a PCM. For example, it’s
common in practice to have PCMs 𝐴 and 𝐵, and to consider pairs (𝑎,𝑏) ∈ 𝐴 × 𝐵, but only under
the restriction that 𝜙 (𝑎) = 𝜓 (𝑏) for some morphisms 𝜙 : 𝐴→ 𝑋 and𝜓 : 𝐵 → 𝑋 . The morphisms 𝜙
and𝜓 would typically be projections, thus forcing that 𝐴 and 𝐵 are “stitched” along the projected
components. The desired pairs are described by the equalizer eql (𝜙 × 𝜄𝐵) (𝜄𝐴 × 𝜓 ). Kernels are a
special case of equalizers, when one of the morphisms is the always-unit function.

Definition 3.10. A restriction of a morphism 𝛼 with separating relation 𝑅 is defined below. It’s a
morphism under the given separating relation.

(𝛼/𝑅) 𝑥 =̂

{
𝛼 𝑥 if 𝑥 𝑅 1

⊤ otherwise
with 𝑥 ⊥𝛼/𝑅 𝑦 =̂ 𝑥 ⊥𝛼 𝑦 ∧ 𝑥 𝑅 𝑦

Returning to our leading example of ticket lock, we can identify several other examples of mor-
phisms that we used.
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Section 2.6 mentioned that #serve (−) is a morphism. This morphism, however, can be decom-
posed into two simpler morphisms.

Example 3.11. The function filter𝑙 : (𝐴 ⇀fin 𝐵) → (𝐴 ⇀fin 𝐵) over a finite map selects only
the entries that map to the label 𝑙 .

filter𝑙 𝑚 =̂ {𝑧 �⇒ 𝑙 | 𝑚𝑧 = 𝑙} with𝑚 ⊥filter𝑙 𝑛 =̂ 𝑚 ⊥ 𝑛

The filter function is a total morphism. Similarly, the counting function # : (𝐴 ⇀fin 𝐵) →

N computing the size of the domain of a finite map is a total morphism. Then, we can define
#serve (𝑥) = (# ◦ filterserve) (𝑥) and since morphisms compose, it’s a morphism as well.

3.4 Sub-PCMs

In Section 2.7, we restricted the PCM𝑈 with a separating relation ⊥𝛼 . Formally, this construction
is developed as a sub-object of a PCM, a sub-PCM. As customary in abstract algebra, we present
the construction through two morphisms on the objects; injection of a sub-PCM into a PCM and a
retraction from a PCM into its sub-PCM.

Definition 3.12. A PCM𝐴 is a sub-PCM of a PCM 𝐵 if there exists a total PCMmorphism 𝜄 : 𝐴→

𝐵 (an injection) and a morphism 𝜌 : 𝐵 → 𝐴 (a retraction), such that:

(1) 𝜌 (𝜄 𝑥) = 𝑥 ,
(2) if 𝑢 ⊥𝜌 1 then 𝜄 (𝜌 𝑢) = 𝑢

(3) if 𝜌 𝑢 ⊥𝐴 𝜌 𝑣 then 𝑢 ⊥𝜌 𝑣

(4) if 𝜄 𝑥 ⊥𝐵 1 then 𝑥 ⊥𝐴 1

Property (1) says that 𝜄 is injective, i.e., if we coerce 𝑥 ∈ 𝐴 into 𝜄 𝑥 , we can recover 𝑥 back
by 𝜌 , since no other element of 𝐴 maps by 𝜄 into 𝜄 𝑥 . This is a common property in sub-object
constructions, and essentially says that 𝜄 embeds𝐴 into a subset of 𝐵. The dual property (2) allows
the same for the elements of 𝐵 that are defined according to ⊥𝜌 . Hence,𝐴 is in 1-1 correspondence
with that subset of 𝐵. Property (3) extends the correspondence between 𝐴 and the subset of 𝐵 to
their respective notions of disjointness. That is, ⊥𝐴, when considered on images under 𝜌 , implies
(and hence, by properties of morphisms equals)⊥𝜌 . Property (4) says that 𝜄 preserves the undefined
elements, so that embedding𝐴 into 𝐵 doesn’t accidentally turn an undefined element into a defined
one. A similar property of 𝜌 is a consequence of (3). Finally, 𝜄 is total in order to embed the whole of
𝐴 into 𝐵. A partial 𝜄 would embed only a subset of𝐴 into 𝐵, but that can be modeled by considering
a total morphism from that subset into 𝐵.

As a simple example, we note that 𝐴 is a sub-PCM of itself with the identity injection and
retraction and trivial separating relations.

Definition 3.12 says what it means to be a sub-PCM abstractly, in terms of morphisms and
separating relations. We next proceed to give a concrete construction that mods out a PCM𝑈 by a
separateness relation 𝑅 to obtain a PCM𝑈 /𝑅, that is a sub-PCM of𝑈 according to Definition 3.12.
It is this construction that we used in Section 2 to obtain the PCM𝑈TL out of𝑈 . The construction
starts by defining the carrier set𝑈 /𝑅, and the unit and • as follows.

𝑈 /𝑅 =̂ {𝑧 : 𝑈 | 𝑧 𝑅 1𝑈 } ∪ {⊤} 1𝑈 /𝑅 =̂ 1𝑈 𝑥 •𝑈 /𝑅 𝑦 =̂

{
𝑥 •𝑈 𝑦 if 𝑥 𝑅𝑦

⊤ otherwise

Elements of the sub-PCM are the elements of 𝑈 that are defined wrt. 𝑅, and the unit and • are
obtained by lifting the operations of 𝑈 . Notice that the operations are well-defined. In particular,
1𝑈 /𝑅 is in the carrier set 𝑈 /𝑅, since 1𝑈 𝑅 1𝑈 by the properties of separating relations. Also, if
𝑥,𝑦 ∈ 𝑈 /𝑅, then 𝑥 •𝑈 /𝑅 𝑦 ∈ 𝑈 /𝑅. This is proved by case analysis on whether 𝑥 and 𝑦 are defined
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or ⊤. The interesting case is when they’re defined and 𝑥 𝑅𝑦. Then by Proposition 3.5, (𝑥 •𝑦) 𝑅 1,
so the conclusion follows immediately.

Leॳॳa 3.13. The definitions of 1𝑈 /𝑅 and •𝑈 /𝑅 satisfy the following properties:

(1) •𝑈 /𝑅 is commutative, i.e., 𝑥 •𝑈 /𝑅 𝑦 = 𝑦 •𝑈 /𝑅 𝑥 ,

(2) •𝑈 /𝑅 is associative, i.e., (𝑥 •𝑈 /𝑅 𝑦) •𝑈 /𝑅 𝑧 = 𝑥 •𝑈 /𝑅 (𝑦 •𝑈 /𝑅 𝑧),

(3) 1𝑈 /𝑅 is the unit for •𝑈 /𝑅 , i.e., 1𝑈 /𝑅 •𝑈 /𝑅 𝑥 = 𝑥 •𝑈 /𝑅 1𝑈 /𝑅 = 𝑥 ,

(4) ⊤ ∉ {𝑧 : 𝑈 | 𝑧 𝑅 1},

(5) 1 ∈ {𝑧 : 𝑈 | 𝑧 𝑅 1}, and

(6) if 𝑥 •𝑈 /𝑅 𝑦 ∈ {𝑧 : 𝑈 | 𝑧 𝑅 1} then 𝑥,𝑦 ∈ {𝑧 : 𝑈 | 𝑧 𝑅 1}.

PRॵॵf. (Sketch.) By easy analysis of the cases in the definition of 𝑈 /𝑅 and •𝑈 /𝑅 . The proof
essentially requires all the separating relation properties of 𝑅. For example, the commutativity
property (1) relies on the symmetry of 𝑅, the associativity property (2) relies on the associativity
of 𝑅, and the unit property (3) relies on the unit law of separating relations. Thus, separating
relation laws are directly obtained as a requirement for proving this lemma. �

Thus, by the above lemma, we have a PCM:

(𝑈 /𝑅, •𝑈 /𝑅,1𝑈 /𝑅,⊤, {𝑧 : 𝑈 | 𝑧 𝑅 1})

It remains to show that this PCM is a sub-PCM in the sense of Definition 3.12. To that purpose, we
define the two necessary morphisms:

𝜄 𝑥 =̂ 𝑥 with ⊥𝜄 =̂ ⊥𝑈 /𝑅 𝜌 𝑢 =̂

{
𝑢 if 𝑢 𝑅 1

⊤ otherwise
with ⊥𝜌 =̂ 𝑅

Note that these functions are indeed morphisms. That 𝜄 and 𝜌 preserve unit and ⊤ is trivial to
show, and so is that 𝜄 (𝑥 •𝑦) = 𝜄 𝑥 • 𝜄 𝑦 when 𝑥 ⊥𝜄 𝑦. It remains to show that 𝜌 (𝑢 • 𝑣) is defined
and 𝜌 (𝑢 • 𝑣) = 𝜌 𝑢 • 𝜌 𝑣 , if 𝑢 𝑅 𝑣 . To see this, assume 𝑢 𝑅 𝑣 and observe that from the law of defined
elements of separating relation, this implies 𝑢 𝑅 1 and 𝑣 𝑅 1. Thus 𝜌 𝑢 = 𝑢 and 𝜌 𝑣 = 𝑣 and so
𝜌 𝑢 • 𝜌 𝑣 = 𝑢 • 𝑣 . By Proposition 3.5, we also have (𝑢 • 𝑣) 𝑅 1; thus (𝑢 • 𝑣) is defined and 𝜌 (𝑢 • 𝑣)

equals 𝑢 • 𝑣 , concluding that 𝜌 is a morphism. Now it’s also easy to see that the injection 𝜄 is total
(by definition, since it has the trivial separating relation), and that 𝜄 and 𝜌 satisfy the requirements
of Definition 3.12. Therefore𝑈 /𝑅 is a sub-PCM of𝑈 .

We conclude this section by noticing that 𝑈 /𝑅 is a normal PCM, since ⊤ is its only undefined
element. Thus, we can use the sub-PCM construction to normalize PCMs, when desirable. Given
a non-normal PCM 𝐴, the PCM 𝐴/⊥𝐴 is normal and contains all the defined elements of 𝐴.

3.5 Histories, Morphisms, and Separating Relations

This section illustrates how PCM morphisms and separating relations apply to reasoning about
data structures specified via time-stamped histories. Histories are a common and general abstrac-
tion in concurrency, used, for example, in the formulation of consistency criteria such as lineariz-
ability [Herlihy and Wing 1990]. Here, we specifically focus on their application to locking.

An abstract locking history of a thread is a finite map from timestamps represented by positive
natural numbers to set Op = {L, U}, i.e. Hist = N+ ⇀fin Op. If a thread’s history has the value L at
timestamp 𝑡 , that signifies that the thread has locked at time 𝑡 . Similarly, if the value is U then the
thread has unlocked at time 𝑡 . If the history of a thread is undefined at 𝑡 , then the thread was idle
at that moment, and some other thread may have locked or unlocked at time 𝑡 . We overload the
notation from Section 2.4 and write 𝑡 �⇒ L (resp. 𝑡 �⇒ U) for a singleton history containing only
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the timestamp 𝑡 with the locking (resp. unlocking) operation. Histories form a PCM under disjoint
union, with the nowhere defined map (i.e., empty history) as unit.

Using PCMHist In a Resource. Let us assume thatwe have defined an internal state of some (unspec-
ified) locking algorithm and a corresponding resource with a state space and transitions, similar to
how we defined the resource TL in Section 2. Then we will typically have a morphism, which we
name 𝜏 here, that projects the history component of the underlying state; that is 𝜏s 𝑠 is the history
of “our” thread in state 𝑠 , and 𝜏o 𝑠 is the history of all “other” threads combined.

Moreover, we will also typically use the resource state space to specify global properties of
histories, similar to no gaps from Figure 2. For example, at the very least, we will require that the
global history 𝜏 𝑠 alternates the operations L and U, i.e., 𝜏 𝑠 has the form 𝜏 𝑠 = 1 �⇒ L • 2 �⇒ U • 3 �⇒

L • . . . The alternation property specifies the key relationship between locking and unlocking, but
doesn’t form a separating relation itself. However, as we show presently, there’s an important
separating relation ⊥𝜔 over locking histories that gives rise to a morphism 𝜔 : Hist → 𝑂 for
computing lock ownership out of a thread’s history.

Histories of Exclusive Locking. Note that histories, even with the alternation property imposed,
don’t exclude the possibility that one thread may take the lock, which is then released by another
thread. In our subjective setting, we may represent the situation as follows

𝜏s (𝑠) (𝑡) = L 𝜏o (𝑠) (𝑡 + 1) = U

The equations say that we have locked at time 𝑡 , but another thread has unlocked at 𝑡 +1. Modeling
such behavior is desirable because there exist locking algorithms that admit it. For example, even
simple spin locks physically allow that the locking and unlocking threads are different. Readers-
writers locks [Courtois et al. 1971], which can be built over spin locks, allow an initial reader
thread to acquire a lock and a possibly different reader thread to release it. In a setting where a
lock can be released by any thread, one can’t really speak about lock ownership. Thus, structures
that admit such behavior and that can utilize the general histories above, typically require richer
internal ghost state in order to specify the desired locking discipline. For example, readers-writes
locks require enrichment with permissions [Bornat et al. 2005], which we forego here.

Nevertheless, even without enrichment, we can already illustrate how to impose on locking his-
tories a more restricted behavior, whereby the thread that unlocks must be the one that currently
holds the lock. Such “mutually exclusive” histories form a sub-PCM of general locking histories,
and thus the property of mutual exclusion can be captured as a separating relation. Analogous to
the ticket lock example, we then construct the morphism 𝜔 that computes lock ownership.

Let us first define the separating relation:

𝑥 ⊥𝜔 𝑦 =̂ (∀𝑡 . 𝑥 (𝑡) = L⇒ max(dom(𝑥 •𝑦)) ≤ 𝑡 ∨ 𝑥 (𝑡 + 1) = U) ∧

(∀𝑡 . 𝑦 (𝑡) = L⇒ max(dom(𝑦 •𝑥)) ≤ 𝑡 ∨ 𝑦 (𝑡 + 1) = U) ∧ 𝑥 ⊥ 𝑦
(9)

Intuitively, the relation states that whenever the thread with history 𝑥 locked at time 𝑡 then the
thread with history 𝑦 couldn’t have proceeded. On the other hand, the thread with history 𝑥 could
have proceeded by unlocking at the immediate time 𝑡 + 1. Similarly to the separating relations in
the previous sections, the relation symmetrically applies to the history 𝑦 as well, and requires that
the join of 𝑥 and 𝑦 be valid, i.e., that the histories of two threads don’t share timestamps.

Leॳॳa 3.14. The relation ⊥𝜔 is a separating relation.

PRॵॵf. The proof shows that properties of Definition 3.4 hold:
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(1) Definedness: Assume that 𝑥 ⊥𝜔 𝑦, and show that 𝑥 ⊥𝜔 1. Indeed, consider 𝑡 such that
𝑥 (𝑡) = L. By case analysis on 𝑡 , either 𝑡 = max(dom(𝑥)) = max(dom(𝑥 •1)), or 𝑡 ≤
max(dom(𝑠)) = max(dom(𝑥 •1)). In either case, trivially 𝑥 ⊥𝜔 1.

(2) Strengthening: Follows trivially form definition of ⊥𝜔 .
(3) Unit property: follows from symmetry (4) and definedness (1).
(4) Symmetry: Immediate from symmetry of conjunction and symmetry of 𝑥 ⊥ 𝑦.
(5) Associativity: Assume (𝑥 •𝑦) ⊥𝜔 𝑧 and 𝑥 ⊥𝜔 𝑦 to show 𝑦 ⊥𝜔 𝑧 and 𝑥 ⊥𝜔 (𝑦 • 𝑧). Let 𝑡 be

a timestamp such that 𝑦 (𝑡) = L (the cases when 𝑥 (𝑡) = L or 𝑧 (𝑡) = L are similar). Then
from 𝑥 ⊥𝜔 𝑦 we get that max(dom(𝑥 •𝑦)) ≤ 𝑡 (and more specifically max(dom(𝑥)) < 𝑡 ), or
𝑦 (𝑡 + 1) = U. In the first case, it must be (𝑥 •𝑦) (𝑡) = L. Thus from (𝑥 •𝑦) ⊥𝜔 𝑧, we infer
that either max(dom(𝑧)) < 𝑡 , and thus 𝑦 ⊥𝜔 𝑧 and 𝑥 ⊥𝜔 (𝑦 • 𝑧), or (𝑥 •𝑦) (𝑡 + 1) = U, which
implies that 𝑦 (𝑡 + 1) = U, which we consider as part of the second case. In the second case,
i.e., when 𝑦 (𝑡 + 1) = U, the property 𝑦 ⊥𝜔 𝑧 is immediate. On the other hand, we also have
(𝑦 • 𝑧) (𝑡) = L and (𝑦 • 𝑧) (𝑡 + 1) = U, thus 𝑥 ⊥𝜔 (𝑦 • 𝑧) holds as well.

�

Finally, we can define the morphism 𝜔 : Hist→ 𝑂 .

𝜔 ℎ =̂




⊤ if ℎ = ⊤

own if max(dom(ℎ)) > 0 and ℎ (max(dom(ℎ))) = L

own otherwise

(10)

Leॳॳa 3.15. The map 𝜔 is a morphism with separating relation ⊥𝜔 .

PRॵॵf. The properties of Definition 3.6 hold as follows:

(1) Map 𝜔 clearly preserves unit since max(dom(1Hist)) = 0; thus 𝜔 (1Hist) = own = 1𝑂 .
(2) Undefinedness is preserved trivially.
(3) To show distributivity, assume that 𝑥 ⊥𝜔 𝑦 and let 𝑡 = max(dom(𝑥 •𝑦)). We consider only

the interesting case when 𝑡 > 0, and w.l.o.g., 𝑡 ∈ 𝑥 , and 𝑥 (𝑡) = L. Then by definition of
𝜔 , 𝜔 𝑥 = own. But it must also be that 𝜔 𝑦 = own, for if otherwise, then by 𝑥 ⊥𝜔 𝑦, the
history 𝑦 must have an unlocking entry at time 𝑡 + 1 and thus contains a timestamp beyond
𝑡 = max(dom(𝑥 •𝑦)). Therefore 𝜔 (𝑥 •𝑦) = own = 𝜔 𝑥 •𝜔 𝑦.

�

4 INVERTIBLE MORPHISMS AND SEPARATING RELATIONS

4.1 Invertibility of Morphisms

Aswe have seen in the previous sections, the key property of amorphism𝜙 : 𝐴→ 𝐵 is𝜙 distributes
over •. In other words, if the argument of 𝜙 splits into 𝑎1 •𝑎2, then the result splits as well, that is:

𝜙 (𝑎1 •𝑎2) = 𝜙 𝑎1 •𝜙 𝑎2

under a suitable condition on 𝑎1 and 𝑎2 expressed as a separating relation 𝑎1 ⊥𝜙 𝑎2.
In verification practice, however, we often have to show the converse: that if the result of 𝜙 is

defined and splits into 𝑏1 •𝑏2, then the argument must split as well, that is:

𝑎 ⊥𝜙 1 ∧ 𝜙 𝑎 = 𝑏1 •𝑏2 ⇒ ∃𝑎1 𝑎2. 𝑎 = 𝑎1 •𝑎2 ∧ 𝑎1 ⊥𝜙 𝑎2 ∧ 𝜙 𝑎1 = 𝑏1 ∧ 𝜙 𝑎2 = 𝑏2 (11)

We call this property invertibility, because it can be seen as imposing a form of distributivity on
the inverse image 𝜙−1 : P(𝐵) → P(𝐴), where we take only inverses that are separate from 1 by
⊥𝜙 , i.e. 𝜙

−1 (𝑋 ) = {𝑥 ∈ 𝐴 | 𝜙 𝑥 ∈ 𝐵 ∧ 𝑥 ⊥𝜙 1}. Indeed, property (11) can be restated compactly as

𝜙−1 {𝑏1 •𝑏2} ⊆ (𝜙
−1 {𝑏1}) •⊥𝜙

(𝜙−1 {𝑏2}) (12)
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where •⊥𝜙
is a special case of the more general operation •𝑅 that lifts a separating relation 𝑅 on

𝐴 to an operation on sets 𝑋1, 𝑋2 ∈ P(𝐴) as follows.

𝑋1 •𝑅 𝑋2 = {𝑎1 •𝑎2 | 𝑎1 ∈ 𝑋1 ∧ 𝑎2 ∈ 𝑋2 ∧ 𝑎1 𝑅 𝑎2}

Invertibility of morphisms appears naturally in separation logic when reasoning by framing or
parallel composition. For example, imagine a program 𝑒 with the following spec, similar to our
abstract spec for lock.

𝑒 : {𝜆𝑠. 𝜙s 𝑠 = 𝑏1}{𝜆𝑠. 𝜙s 𝑠 = 𝑏 ′1}

Here 𝜙 is a total morphism (i.e., 𝜙 has a trivial separating relation), and we want to frame it by
(𝜆𝑠. 𝜙s 𝑠 = 𝑏2). The direct application of the frame rule, unfolding the definition of ∗ that we in-
troduced in Section 2, derives

𝑒 : {𝜆𝑠. ∃𝑠1 𝑠2 . 𝑠 = 𝑠1 ∗ 𝑠2 ∧ 𝜙s 𝑠1 = 𝑏1 ∧ 𝜙s 𝑠2 = 𝑏2}

{𝜆𝑠. ∃𝑠1 𝑠2 . 𝑠 = 𝑠1 ∗ 𝑠2 ∧ 𝜙s 𝑠1 = 𝑏 ′1 ∧ 𝜙s 𝑠2 = 𝑏2}

Of course, we would like to strengthen the precondition and weaken the postcondition of this spec
into the more compact and ultimately desirable form

𝑒 : {𝜆𝑠. 𝜙s 𝑠 = 𝑏1 •𝑏2}{𝜆𝑠. 𝜙s 𝑠 = 𝑏 ′1 •𝑏2}

Here’s where invertibility comes in. It’s easy to see that the postcondition readily weakens into
the desired form just by using that 𝜙 is a (total) morphism, and the fact that 𝑠s = 𝑠1s

• 𝑠2s
. However,

the precondition doesn’t strengthen immediately. We need to show

𝜙s 𝑠 = 𝑏1 •𝑏2 ⇒ ∃𝑠1 𝑠2. 𝑠 = 𝑠1 ∗ 𝑠2 ∧ 𝜙s 𝑠1 = 𝑏1 ∧ 𝜙s 𝑠2 = 𝑏2

but this doesn’t follow from distributivity of 𝜙 . It does follow, however, if 𝜙 is invertible. To see
this, assume that 𝑠s = 𝑎. Then 𝜙s 𝑠 = 𝑏1 •𝑏2 transforms into 𝜙 𝑎 = 𝑏1 •𝑏2. From the assumption
that 𝑠s ⊥ 𝑠o and the properties of separating relations, we get 𝑠s ⊥ 1 and thus 𝑎 ⊥ 1 as well. Then
invertibility of 𝜙 gives us 𝑎1 and 𝑎2 such that 𝑎 = 𝑎1 •𝑎2, 𝑎1 ⊥𝜙 𝑎2 (which equals 𝑎1 ⊥ 𝑎2 because 𝜙
is a total morphism), 𝜙 𝑎1 = 𝑏1, and 𝜙 𝑎2 = 𝑏2. Choosing 𝑠1 = (𝑎1, 𝑎2 • 𝑠o) and 𝑠2 = (𝑎2, 𝑎1 • 𝑠o) gives
us 𝑠 = 𝑠1 ∗ 𝑠2 such that 𝜙s 𝑠1 = 𝜙 𝑎1 = 𝑏1 and 𝜙s 𝑠2 = 𝜙 𝑎2 = 𝑏2. This strengthens the precondition
as desired.

4.2 Invertibility of Separating Relations

Similar style of reasoning applies if 𝜙 isn’t total, but has a non-trivial separating relation ⊥𝜙 . It
turns out, however, that then we need to impose an additional condition of ⊥𝜙 , thus giving rise to
a notion of invertible separating relations also. To see what this condition should be, imagine that
we have a program 𝑒 with the following spec, similar to our intermediate abstract spec for lock.

𝑒 : {𝜆𝑠. 𝜙s 𝑠 = 𝑏1 ∧ 𝑠s ⊥𝜙 𝑠o}{𝜆𝑠. 𝜙s 𝑠 = 𝑏 ′1 ∧ 𝑠s ⊥𝜙 𝑠o}

Because 𝜙 is not total, we include the conjunct 𝑠s ⊥𝜙 𝑠o into the spec to ensure that 𝜙 distributes
when framed. We now want to frame with (𝜆𝑠. 𝜙s 𝑠 = 𝑏2 ∧ 𝑠s ⊥𝜙 𝑠o). Similarly to the previous
Section 4.1, unfolding the definition of ★ derives us the following spec:

𝑒 : {𝜆𝑠. ∃𝑠1 𝑠2. 𝑠 = 𝑠1 ∗ 𝑠2 ∧ 𝜙s 𝑠1 = 𝑏1 ∧ 𝑠1s
⊥𝜙 𝑠1o

∧ 𝜙s 𝑠2 = 𝑏2 ∧ 𝑠2s
⊥𝜙 𝑠2o

} (13)

{𝜆𝑠. ∃𝑠1 𝑠2. 𝑠 = 𝑠1 ∗ 𝑠2 ∧ 𝜙s 𝑠1 = 𝑏 ′1 ∧ 𝑠1s
⊥𝜙 𝑠1o

∧ 𝜙s 𝑠2 = 𝑏2 ∧ 𝑠2s
⊥𝜙 𝑠2o

}

However, we ultimately desire to obtain a compact spec in the following form:

𝑒 : {𝜆𝑠. 𝜙s 𝑠 = 𝑏1 •𝑏2 ∧ 𝑠s ⊥𝜙 𝑠o}{𝜆𝑠. 𝜙s 𝑠 = 𝑏 ′1 •𝑏2 ∧ 𝑠s ⊥𝜙 𝑠o} (14)
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As before, we need to prove two implications to weaken (13) to (14).

𝜙s 𝑠 = 𝑏1 •𝑏2 ∧ 𝑠s ⊥𝜙 𝑠o ⇒ (15)

∃𝑠1 𝑠2. 𝑠 = 𝑠1 ∗ 𝑠2 ∧ 𝜙s 𝑠1 = 𝑏1 ∧ 𝑠1s
⊥𝜙 𝑠1o

∧ 𝜙s 𝑠2 = 𝑏2 ∧ 𝑠2s
⊥𝜙 𝑠2o

𝑠 = 𝑠1 ∗ 𝑠2 ∧ 𝜙s 𝑠1 = 𝑏 ′1 ∧ 𝑠1s
⊥𝜙 𝑠1o

∧ 𝜙s 𝑠2 = 𝑏2 ∧ 𝑠2s
⊥𝜙 𝑠2o

⇒ (16)

𝜙s 𝑠 = 𝑏 ′1 •𝑏2 ∧ 𝑠s ⊥𝜙 𝑠o

Or alternatively, if we replace the state variables by pairs of self and other components, e.g., 𝑠 =

(𝑎, 𝑎′), 𝑠1 = (𝑎1, 𝑎2 •𝑎
′), 𝑠2 = (𝑎2, 𝑎1 •𝑎

′), we obtain after some simplification:

𝜙 𝑎 = 𝑏1 •𝑏2 ∧ 𝑎 ⊥𝜙 𝑎′⇒ (17)

∃𝑎1 𝑎2. 𝑎 = 𝑎1 •𝑎2 ∧ 𝜙 𝑎1 = 𝑏1 ∧ 𝑎1 ⊥𝜙 (𝑎2 •𝑎
′) ∧ 𝜙 𝑎2 = 𝑏2 ∧ 𝑎2 ⊥𝜙 (𝑎1 •𝑎

′)

𝜙 𝑎1 = 𝑏 ′1 ∧ 𝑎1 ⊥𝜙 (𝑎2 •𝑎
′) ∧ 𝜙 𝑎2 = 𝑏2 ∧ 𝑎2 ⊥𝜙 (𝑎1 •𝑎

′) ⇒ (18)

𝜙 (𝑎1 •𝑎2) = 𝑏 ′1 •𝑏2 ∧ (𝑎1 •𝑎2) ⊥𝜙 𝑎′

If we assume that 𝜙 is invertible, then from 𝑎 ⊥𝜙 𝑎′, we get 𝑎 ⊥𝜙 1 by the definedness property
of separating relations, and then (17) immediately follows by associativity of separating relations.
However, to obtain the first conjunct in the conclusion of (18), we require that 𝑎1 ⊥𝜙 𝑎2, so that
we can distribute 𝜙 over 𝑎1 •𝑎2 and then use that 𝜙 𝑎1 = 𝑏1 and 𝜙 𝑎2 = 𝑏2. To obtain the second
conjunct in (18), we need to reassociate 𝑎1, 𝑎2 and 𝑎′, which can be done if 𝑎1 ⊥𝜙 𝑎2 ⊥𝜙 𝑎′. Thus,
we obtain the required condition that makes it possible to derive (14).

𝑎1 ⊥𝜙 (𝑎2 •𝑎
′) ∧ 𝑎2 ⊥𝜙 (𝑎1 •𝑎

′) ⇒ 𝑎1 ⊥𝜙 𝑎2 ⊥𝜙 𝑎′

To establish this implication it suffices to show that either 𝑎1 ⊥𝜙 𝑎′ or 𝑎2 ⊥𝜙 𝑎′ as the consequent
𝑎1 ⊥𝜙 𝑎2 ⊥𝜙 𝑎′ then follows from associativity of separating relations.

4.3 Duality of Invertibility of Morphisms and Separating Relations

We note an interesting duality in the interplay of 𝜙 and ⊥𝜙 in the above framing process. When
strengthening the precondition, it’s the invertibility of 𝜙 that provides the split of 𝑎 into 𝑎1 •𝑎2
such that 𝑎1 ⊥𝜙 𝑎2, which is then used to reassociate ⊥𝜙 . When weakening the postcondition, the
situation is dual. We start with 𝑎 already split into 𝑎 = 𝑎1 •𝑎2, but it’s the invertibility of ⊥𝜙 that
ensures the split is such that 𝜙 can distribute over it. Thus, in the precondition, 𝜙 helps ⊥𝜙 and in
the postcondition ⊥𝜙 helps 𝜙 .

Thus, to summarize, we have the following definitions of invertibility for separating relations
and morphisms that enable framing in the abstract of specs of above form, i.e., without relying on
the definitions of morphism or its separating relation.

Definition 4.1. A separating relation 𝑅 on the PCM 𝐴 is invertible if for all 𝑎1, 𝑎2, 𝑎
′ such that

𝑎1 𝑅 (𝑎2 •𝑎
′) and 𝑎2 𝑅 (𝑎1 •𝑎

′), it must also be 𝑎1 𝑅 𝑎2 𝑅 𝑎′. Moreover, it suffices to prove 𝑎1 𝑅 𝑎′

or 𝑎2 𝑅 𝑎′, as 𝑎1 𝑅 𝑎2 𝑅 𝑎′ follows by associativity.

Definition 4.2. A morphism 𝜙 : 𝐴→ 𝐵 is invertible if ⊥𝜙 is an invertible separating relation and
for all 𝑎 ∈ 𝐴 such that 𝑎 ⊥𝜙 1, and 𝑏1, 𝑏2 ∈ 𝐵 where 𝜙 𝑎 = 𝑏1 •𝑏2, there exist 𝑎1, 𝑎2 ∈ 𝐴, such that
𝑎 = 𝑎1 •𝑎2, 𝑎1 ⊥𝜙 𝑎2, 𝜙 𝑎1 = 𝑏1 and 𝜙 𝑎2 = 𝑏2.

We now demonstrate the invertibility of various constructions we introduced earlier. First, sep-
arating relations of total morphisms are always invertible.

PRॵॶॵsitiॵॴ 4.3. Let 𝐴 be a PCM. The trivial separating relation ⊥𝐴 is invertible.
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PRॵॵf. Let 𝑎1 ⊥𝐴 (𝑎2 •𝑎
′). Recall that the trivial separating relation is given by 𝑥 ⊥𝐴 𝑦 =̂

(𝑥 •𝑦) is defined. Hence we obtain that 𝑎1 • (𝑎2 •𝑎
′) is defined, and, using commutativity and as-

sociativity of join •, we have that (𝑎1 •𝑎
′) •𝑎2 is defined. Thus, by law (3) of Definition 3.1, also

𝑎1 •𝑎
′ is defined whence 𝑎1 ⊥𝐴 𝑎′. Similarly for 𝑎2 ⊥𝐴 𝑎′. �

Similarly, other basic constructions on separating relation preserve invertibility. So do the con-
struction on morphisms. Recall the composition of morphisms, tensor and arrow product in Defi-
nition 3.7.

PRॵॶॵsitiॵॴ 4.4. Let 𝛼 , 𝛽 be invertible morphisms. Then 𝛼 ◦ 𝛽 and 𝛼 × 𝛽 are invertible morphisms.

PRॵॵf. We just show the case for ◦ as the one for × is simple. Let 𝛼 : 𝐶 → 𝐴, 𝛽 : 𝐵 → 𝐶

be invertible morphisms. First, we show that ⊥𝛼◦𝛽 , the induced separating relation of 𝛼 ◦ 𝛽 , is
invertible. Consider 𝑎1, 𝑎2, 𝑎

′, such that 𝑎1 ⊥𝛼◦𝛽 (𝑎2 •𝑎
′), and 𝑎2 ⊥𝛼◦𝛽 (𝑎1 •𝑎

′). We need to
show that 𝑎1 ⊥𝛼◦𝛽 𝑎2 ⊥𝛼◦𝛽 𝑎′. From Definition 3.7 of composition, we obtain 𝑎1 ⊥𝛽 (𝑎2 •𝑎

′) ∧

𝛽 𝑎1 ⊥𝛼 𝛽 (𝑎2 •𝑎
′), and 𝑎2 ⊥𝛽 (𝑎1 •𝑎

′) ∧ 𝛽 𝑎2 ⊥𝛼 𝛽 (𝑎1 •𝑎
′). Since 𝛽 is an invertible morphism

also its separating relation ⊥𝛽 is invertible. We use invertibility of ⊥𝛽 and the first conjunct to
obtain that 𝑎1 ⊥𝛽 𝑎2 ⊥𝛽 𝑎′. Now considering the second conjuncts, we get by distributivity of
𝛽 , 𝛽 𝑎1 ⊥𝛼 (𝛽 (𝑎2) • 𝛽 (𝑎

′)) and 𝛽 𝑎2 ⊥𝛼 (𝛽 (𝑎1) • 𝛽 (𝑎
′)). Because 𝛼 is invertible, so is ⊥𝛼 . We

therefore obtain 𝛽 𝑎1 ⊥𝛼 𝛽 𝑎2 ⊥𝛼 𝛽 𝑎′. Thus ⊥𝛼◦𝛽 is invertible.
Second, we show that 𝛼 ◦ 𝛽 is an invertible morphism. Assume 𝑏 ∈ 𝐵 and 𝑎1, 𝑎2 ∈ 𝐴 such that
(𝛼 ◦ 𝛽) 𝑏 = 𝑎1 •𝑎2. Also assume that 𝑏 ⊥𝛼◦𝛽 1; that is, 𝑏 ⊥𝛽 1 and 𝛽 𝑏 ⊥𝛼 1. Using invertibility
of 𝛼 on 𝛽 𝑏 ∈ 𝐶 , we obtain 𝑐1, 𝑐2 ∈ 𝐶 , such that 𝛽 𝑏 = 𝑐1 • 𝑐2, 𝑐1 ⊥𝛼 𝑐2, 𝛼 𝑐1 = 𝑎1, and 𝛼 𝑐2 = 𝑎2.
Using invertibility of 𝛽 on 𝑏 we further obtain 𝑏1, 𝑏2 ∈ 𝐵, such that 𝑏 = 𝑏1 •𝑏2, 𝑏1 ⊥𝛽 𝑏2, 𝛽 𝑏1 = 𝑐1,
and 𝛽 𝑏2 = 𝑐2. Consequently 𝛽 𝑏1 ⊥𝛼 𝛽 𝑏2. Hence, using 𝑏1 ⊥𝛽 𝑏2, we obtain 𝑏1 ⊥𝛼◦𝛽 𝑏2. Finally,
(𝛼 ◦ 𝛽) 𝑏1 = 𝛼 (𝛽 𝑏1) = 𝛼 (𝑐1) = 𝑎1 and similarly for 𝑎2. Therefore, we have 𝑏1, 𝑏2 ∈ 𝐵 such that
𝑏 = 𝑏1 •𝑏2, 𝑏1 ⊥𝛼◦𝛽 𝑏2, (𝛼 ◦ 𝛽) 𝑏1 = 𝑎1 and (𝛼 ◦ 𝛽) 𝑏2 = 𝑎2. Hence morphism 𝛼 ◦ 𝛽 is invertible. �

Notice that 𝛼 ⊗ 𝛽 is an example of a morphism that isn’t necessarily invertible, even if 𝛼 and
𝛽 are. By definition, (𝛼 ⊗ 𝛽) 𝑥 = (𝛼 𝑥, 𝛽 𝑥). Thus, if we’re given (𝛼 ⊗ 𝛽) 𝑥 = (𝑦, 𝑧), we can induce
one split of 𝑥 by 𝛼 and 𝑦, and another by 𝛽 and 𝑧. However, there’s no reason to expect that these
splits are equal, which is required for 𝛼 ⊗ 𝛽 to be invertible.

We also introduced the notions of kernel and equalizer, which are separating relations. These
illustrate constructions that turn invertible morphisms into invertible separating relations.

PRॵॶॵsitiॵॴ 4.5. Let 𝛼 , 𝛽 be morphisms with invertible separating relations. Then ker 𝛼 is an

invertible separating relation, while eql 𝛼 𝛽 is so if the range PCM of 𝛼 and 𝛽 is cancellative.8

PRॵॵf. We show the proof for equalizers. A kernel is a special case of an equalizer when one
of the morphisms is the always-unit one, which circumvents the need for cancellativity. Consider
𝑥 , 𝑦, 𝑧, such that 𝑥 (eql 𝛼 𝛽) (𝑦 • 𝑧) and 𝑦 (eql 𝛼 𝛽) (𝑥 • 𝑧). By Definition 4.1, it suffices to show
𝑦 (eql 𝛼 𝛽) 𝑧; that is 𝑦 ⊥𝛼 𝑧 ∧ 𝑦 ⊥𝛽 𝑧 ∧ 𝛼 𝑦 = 𝛽 𝑦 ∧ 𝛼 𝑧 = 𝛽 𝑧. From the assumptions, we get
𝑥 ⊥𝛼 (𝑦 • 𝑧) ∧𝑥 ⊥𝛽 (𝑦 • 𝑧) ∧𝛼 𝑥 = 𝛽 𝑥∧𝛼 (𝑦 • 𝑧) = 𝛽 (𝑦 • 𝑧), and𝑦 ⊥𝛼 (𝑥 • 𝑧) ∧𝑦 ⊥𝛽 (𝑥 • 𝑧) ∧𝛼 𝑦 =

𝛽 𝑦 ∧ 𝛼 (𝑥 • 𝑧) = 𝛽 (𝑥 • 𝑧). Since ⊥𝛼 and ⊥𝛽 are both invertible separating relations, this obtains
𝑦 ⊥𝛼 𝑧 ∧𝑦 ⊥𝛽 𝑧. Thus, we can distribute 𝛼 and 𝛽 over 𝑦 • 𝑧 to derive: 𝛼 𝑦 •𝛼 𝑧 = 𝛽 𝑦 • 𝛽 𝑧. Since we
already have 𝛼 𝑦 = 𝛽 𝑦, we apply cancellativity to derive 𝛼 𝑧 = 𝛽 𝑧 and conclude the proof. �

8A PCM is cancellative if 𝑎 •𝑏 = 𝑎 •𝑐 implies 𝑏 = 𝑐 , whenever 𝑎 ⊥ 𝑏 and 𝑎 ⊥ 𝑐 .
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Sub-PCM. Section 2.7 demonstrates how to use the sub-PCM construction to provide a compact
spec. First, we start with a spec like the following:

𝑒 : {𝜆𝑠. 𝛼s (𝑠) = 𝑏1 ∧ 𝑠s ⊥𝛼 𝑠o}{𝜆𝑠. 𝛼s (𝑠) = 𝑏 ′1 ∧ 𝑠s ⊥𝛼 𝑠o}

Using the sub-PCM construction, we can write the spec compactly as follows:

𝑒 : {𝜆𝑠. (𝛼 ◦ 𝜄)
s
𝑠 = 𝑏1}{𝜆𝑠. (𝛼 ◦ 𝜄)s 𝑠 = 𝑏 ′1}

Note that, implicitly, we also have that 𝑠s ⊥ 𝑠o. We show the following theorem that states that
invertibility is preserved by such construction:

TheॵReॳ 4.6. Let 𝛼 : 𝐴 → 𝐵 be an invertible morphism and let 𝜄 : 𝐴/⊥𝛼 → 𝐴 be a sub-PCM

injection. Then 𝛼 ◦ 𝜄 : 𝐴/⊥𝛼 → 𝐵 is invertible.

PRॵॵf. Recall the sub-PCM construction in Section 3.4 and use ⊥𝛼 as the separating relation
for the construction of sub-PCM. Then 𝜄 𝑥 =̂ 𝑥 and both 𝜄 and 𝛼 ◦ 𝜄 are total morphisms, with the
separating relation ⊥𝐴/⊥𝛼 . This separating relation is a restriction of ⊥𝛼 to the set 𝐴/⊥𝛼 = {𝑎 ∈

𝐴 | 𝑎 ⊥𝛼 1𝐴}. The separating relation is also trivial and thus invertible, by Proposition 4.3.
Now we proceed with the proof of invertibility itself. Assume that we are given 𝑎 ∈ 𝐴/⊥𝛼 and

𝑏1, 𝑏2 ∈ 𝐵 such that (𝛼 ◦ 𝜄) 𝑎 = 𝛼 (𝜄 𝑎) = 𝛼 𝑎 = 𝑏1 •𝑏2 and 𝑎 ⊥𝐴/⊥𝛼 1. The second conjunct implies
𝑎 ⊥𝛼 1𝐴. Now, because 𝛼 is invertible, there exist 𝑎1, 𝑎2 ∈ 𝐴 such that 𝑎 = 𝑎1 •𝐴 𝑎2, 𝑎1 ⊥𝛼 𝑎2,
𝛼 𝑎1 = 𝑏1, and 𝛼 𝑎2 = 𝑏2. But, because 𝑎1 ⊥𝛼 𝑎2 it follows that 𝑎1, 𝑎2 ∈ 𝐴/⊥𝛼 , 𝑎 = 𝑎1 •𝐴/⊥𝛼 𝑎2, and
𝑎1 ⊥𝐴/⊥𝛼 𝑎2. Since also (𝛼 ◦ 𝜄) 𝑎𝑖 = 𝛼 𝑎𝑖 = 𝑏𝑖 , the morphism 𝛼 ◦ 𝜄 is invertible. �

We can now show that the morphisms and separating relations used in our abstract specs (both
the intermediate and final one) of ticket lock are invertible.

Leॳॳa 4.7. The separating relation ⊥𝛼 from (8) is invertible.

PRॵॵf. Assume that there are 𝑎1, 𝑎2, 𝑎
′ such that 𝑎1 ⊥𝛼 (𝑎2 •𝑎

′) and 𝑎2 ⊥𝛼 (𝑎1 •𝑎
′). Using the

definition of ⊥𝛼 , we obtain #serve (𝜎 𝑎1) + #serve (𝜎 (𝑎2 •𝑎
′)) ≤ 1∧𝑎1 ⊥ (𝑎2 •𝑎

′) and #serve (𝜎 𝑎2) +

#serve (𝜎 (𝑎2 •𝑎
′)) ≤ 1∧𝑎2 ⊥ (𝑎1 •𝑎

′).This gives us, using the second conjuncts and commutativity
and associativity of • as in the proof of Proposition 4.3, that 𝑎1 ⊥ 𝑎2 ⊥ 𝑎′. Further, since #serve (−)

and 𝜎 are morphisms, we obtain, using either of the first conjuncts, #serve (𝜎 𝑎1) + #serve (𝜎 𝑎2) +

#serve (𝜎 𝑎
′) ≤ 1. Therefore #serve (𝜎 𝑎1) + #serve (𝜎 𝑎

′) ≤ 1 and we conclude that 𝑎1 ⊥𝛼 𝑎′. The rest
follows from associativity of separating relations. �

Leॳॳa 4.8. The morphism 𝛼 from (7) is invertible.

PRॵॵf. The separating relation⊥𝛼 is invertible by Lemma 4.7. Now, assume that there are 𝑎 ∈ 𝑈
and 𝑏1, 𝑏2 ∈ 𝑂 such that 𝛼 𝑎 = 𝑏1 •𝑏2 and 𝑎 ⊥𝛼 1. We must show there exist 𝑎1, 𝑎2 ∈ 𝑈 , such that
𝑎 = 𝑎1 •𝑎2, 𝑎1 ⊥𝛼 𝑎2, 𝛼 𝑎1 = 𝑏1, and 𝛼 𝑎2 = 𝑏2. Proceed by case analysis on 𝑏1 •𝑏2.

Case: 𝑏1 •𝑏2 = own. W.l.o.g. 𝑏1 = own and 𝑏2 = own. Choose 𝑎1 = 𝑎, 𝑎2 = 1. Then trivially 𝑎 =

𝑎1 •𝑎2 and by assumption 𝑎1 ⊥𝛼 𝑎2. Also, 𝛼 𝑎1 = 𝛼 𝑎 = own = 𝑏1 and 𝛼 𝑎2 = 𝛼 1 = 1𝑂 = own = 𝑏2.
Case: 𝑏1 •𝑏2 = own. Then 𝑏1 = 𝑏2 = own. Choose 𝑎1 = 𝑎, 𝑎2 = 1. Again trivially 𝑎 = 𝑎1 •𝑎2 and

by assumption 𝑎1 ⊥𝛼 𝑎2. Also, 𝛼 𝑎1 = 𝛼 𝑎 = own = 𝑏1 and 𝛼 𝑎2 = 𝛼 1 = 1𝑂 = own = 𝑏2. �

CॵRॵॲॲaRy 4.9. The morphism 𝛼 ′ = 𝛼 • 𝜄TL from Section 2.7 is invertible.

The same holds also for the morphism and the separating relation we discussed in Section 3.5:

Leॳॳa 4.10. The separating relation ⊥𝜔 from (9) is invertible.
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PRॵॵf. Assuming 𝑎1 ⊥𝜔 (𝑎2 •𝑎
′) and 𝑎2 ⊥𝜔 (𝑎1 •𝑎

′), by associativity of ⊥𝜔 , it suffices to
establish 𝑎1 ⊥𝜔 𝑎′. In Definition 4.1, we only consider the clause whereby 𝑎′ (𝑡) = L implies
max(dom(𝑎1 •𝑎

′)) ≤ 𝑡 or 𝑎′ (𝑡 + 1) = U. From 𝑎′ (𝑡) = L, it follows that (𝑎2 •𝑎
′) (𝑡) = L. Therefore,

𝑎1 ⊥𝜔 (𝑎2 •𝑎
′) derives that max(dom(𝑎1 •(𝑎2 •𝑎

′))) ≤ 𝑡 or (𝑎2 •𝑎
′) (𝑡 + 1) = U. In the first case,

it must also be max(dom(𝑎1 •𝑎
′)) ≤ max(dom(𝑎1 •(𝑎2 •𝑎

′))) ≤ 𝑡 , which completes the proof. In
the second case, it can be either 𝑎′ (𝑡 + 1) = U or 𝑎2 (𝑡 + 1) = U. The first case also completes the
proof. The second case contradicts the assumption 𝑎2 ⊥𝜔 (𝑎1 •𝑎

′), and is thus impossible. �

Leॳॳa 4.11. The morphism 𝜔 from (10) is invertible.

PRॵॵf. The separating relation ⊥𝜔 is invertible by Lemma 4.10. The rest of the proof follows
similarly as in the case of Lemma 4.8. �

4.4 Invertibility and Separating Conjunction

We close this section with two lemmas that show how invertible morphisms and separating rela-
tions interact with separating conjunction. We’ll elaborate more on these properties in Section 5
on the related work.

Leॳॳa 4.12. Let 𝑆 be an invertible separating relation, and let𝑅 = 𝜆𝑠. (𝑠s 𝑆 𝑠o).Then𝑅 is duplicable,

i.e., 𝑅 ⇔ 𝑅 ∗𝑅.

PRॵॵf. For the⇒ direction, let’s assume that 𝑠 = (𝑎, 𝑎′) and 𝑅 𝑠; that is 𝑎 𝑆 𝑎′. Consider states
𝑠1 = 𝑠 = (𝑎, 𝑎′) and 𝑠2 = (1, 𝑎 •𝑎′). By definition, 𝑠 = 𝑠1 ★ 𝑠2. For 𝑠1, we do have 𝑠1s

𝑆 𝑠1o
. Indeed,

the latter by definition equals 𝑎 𝑆 𝑎′, and thus holds by assumption. For 𝑠2, we do have 𝑠2s
𝑆 𝑠2o

.
Indeed, the latter by definition equals 1 𝑆 (𝑎 •𝑎′), which holds by Proposition 3.5. But then 𝑅 𝑠1
and 𝑅 𝑠2, and thus (𝑅 ∗𝑅) (𝑠).

For the ⇐ direction, let’s assume 𝑠 = 𝑠1 ★ 𝑠2 where 𝑠 = (𝑎1 •𝑎2, 𝑎
′), 𝑠1 = (𝑎1, 𝑎2 •𝑎

′) and
𝑠2 = (𝑎2, 𝑎1 •𝑎

′), such that 𝑅 𝑠1 and 𝑅 𝑠2. That is, for 𝑠1: 𝑎1 𝑆 (𝑎2 •𝑎
′). And for 𝑠2: 𝑎2 𝑆 (𝑎1 •𝑎

′). By
invertibility of 𝑆 then 𝑎1 𝑆 𝑎2 𝑆 𝑎′, and thus by associativity (𝑎1 •𝑎2) 𝑆 𝑎′, i.e. 𝑅 𝑠 . �

Leॳॳa 4.13. Let 𝜙 be an invertible morphism, and let 𝐹 (𝑏) = 𝜆𝑠. (𝜙s 𝑠 = 𝑏 ∧ 𝑠s ⊥𝜙 𝑠o). Then

𝐹 (𝑏1 •𝑏2) ⇔ 𝐹 𝑏1 ∗ 𝐹 𝑏2.

PRॵॵf. For the⇒ direction, let 𝑠 = (𝑎, 𝑎′) and 𝐹 (𝑏1 •𝑏2) (𝑠); that is 𝜙 𝑎 = 𝑏1 •𝑏2 and 𝑎 ⊥𝜙 𝑎′.
By defined elements property of ⊥𝜙 , it must be 𝑎 ⊥𝜙 1. Then by invertibility of 𝜙 , there exist
𝑎1 and 𝑎2, such that 𝑎 = 𝑎1 •𝑎2, 𝑎1 ⊥𝜙 𝑎2, 𝜙 𝑎1 = 𝑏1 and 𝜙 𝑎2 = 𝑏2. From (𝑎1 •𝑎2) ⊥𝜙 𝑎′ and
𝑎1 ⊥𝜙 𝑎2, by associativity of separating relations, we get 𝑎1 ⊥𝜙 (𝑎2 •𝑎

′) and 𝑎2 ⊥𝜙 (𝑎1 •𝑎
′).

Combined with 𝜙 𝑎1 = 𝑏1 and 𝜙 𝑎2 = 𝑏2, we get 𝐹 (𝑏1) (𝑠1) and 𝐹 (𝑏2) (𝑠2), where 𝑠1 = (𝑎1, 𝑎2 •𝑎
′)

and 𝑠2 = (𝑎2, 𝑎1 •𝑎
′). Because also 𝑠 = 𝑠1 ★ 𝑠2, we get (𝐹 (𝑏1) ∗ 𝐹 (𝑏2)) (𝑠).

For the⇐ direction, let 𝑠 = 𝑠1 ★ 𝑠2 where 𝑠 = (𝑎1 •𝑎2, 𝑎
′), 𝑠1 = (𝑎1, 𝑎2 •𝑎

′) and 𝑠2 = (𝑎2, 𝑎1 •𝑎
′),

such that 𝐹 (𝑏1) (𝑠1) and 𝐹 (𝑏2) (𝑠2). That is, 𝜙 𝑎1 = 𝑏1 and 𝑎1 ⊥𝜙 (𝑎2 •𝑎
′) and 𝜙 𝑎2 = 𝑏2 and

𝑎2 ⊥𝜙 (𝑎1 •𝑎
′). By invertibility of ⊥𝜙 , then 𝑎1 ⊥𝜙 𝑎2 ⊥𝜙 𝑎′, and by associativity (𝑎1 •𝑎2) ⊥𝜙 𝑎′.

By distributivity of 𝜙 , also 𝜙 (𝑎1 •𝑎2) = 𝜙 𝑎1 •𝜙 𝑎2 = 𝑏1 •𝑏2. In other words, 𝐹 (𝑏1 •𝑏2) (𝑠). �

5 RELATEDWORK

PCMs in Separation Logics. PCMs arise as the structure underpinning the semantics of (con-
current) separation logic: the PCMs of heaps capture the dynamics of ownership transfer which
is quintessential to separation logics. Initially, cancellative PCMs, also known as separation alge-

bras [Calcagno et al. 2007] were used to provide abstract semantic treatment of separation logic.
Later, Cao et al. [2017] unified different semantics of separation logics using ordered separation
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algebras to account for affine aspects of various memory models; that is, to model whether deal-
location is explicitly allowed to the user, or is carried out implicitly by garbage collection. Several
program logics continue this trend, adding further properties to PCMs to give semantics to (higher-
order) ghost state [da Rocha Pinto et al. 2014; Dinsdale-Young et al. 2013, 2010; Gotsman et al. 2007;
Hobor et al. 2010; Jung et al. 2018, 2015; Krishnaswami et al. 2012; Svendsen and Birkedal 2014;
Svendsen et al. 2013; Swamy et al. 2020; Turon et al. 2014]. In this paper we don’t consider higher-
order state and focus on the algebraic treatment of PCMs without additional properties, as these
aren’t required by our ambient logic, which admits explicit deallocation. We expect that in the
future morphisms and separating relations can be developed for these enriched PCMs.

Recently, several program logics, most notably those that are built on top of the Iris frame-
work [Bizjak et al. 2019; Hinrichsen et al. 2020; Jung et al. 2018, 2020, 2015], the SteelCore frame-
work [Swamy et al. 2020], VST [Appel et al. 2014], and also FCSL [Ley-Wild and Nanevski 2013;
Nanevski et al. 2014; Sergey et al. 2015a,b, 2016], have allowed PCMs to be declared at the user
level, and sometimes even constructed by means of a predetermined set of combinators.

However, none of these logics have considered morphisms over PCMs, as we do here. Instead,
when the state space of a program has to be restricted by some property, that is usually done by
conjoining the property to the state space of the underlying state transition system. In contrast,
with PCM morphisms, we can restrict the PCM itself, thus promoting the property into a new no-
tion of separateness. The move makes it possible to provide clients with the PCM most suitable to
their needs. The new PCM may also be subjected to mathematical theories and their mechaniza-
tions that are parametric in the PCM, such as, for example, our theory of invertibility, to facilitate
the reuse of mechanized proofs.

Morphisms are a standard component in the study of structures in algebra and category theory.
They provide the user with the most general and systematic way to define her own PCM combi-
nators and, as we illustrated, are also useful in specs. Morphisms generally are also essential in
the definitions of functors and natural transformations which we plan to consider in the PCM set-
ting in the future. In contrast to our morphism-based specifications, most of the related program
logics follow the specification style originating from the work on Concurrent Abstract Predicates
(CAP) [Dinsdale-Young et al. 2010], to which we compare below.

We aren’t aware of any other work that considers separating relations as a standalone concept.
That said, the key separating relation property of associativity (property 5 in Definition 3.4) has
been considered before [Jacobs 2018; Krebbers 2015], though as a property of the disjointness
relation ⊥ of the underlying PCM. In our setting, the latter is just one possible separating relation,
associated with total PCM morphisms.

Comparison with concurrent abstract predicates (CAP). The intermediate abstract specs for ticket
locks we developed in Section 2.6 are similar to the lock specs from CAP [Dinsdale-Young et al.
2010]. We show the CAP specs below, ignoring lock invariants (see Footnote 3 in Section 2),
adapted to our type-based notation with explicit binding of the state 𝑠 in the assertions, and using
∧ instead of ∗ .

lock𝐶𝐴𝑃 : {𝜆𝑠. is lock 𝑠 ∧ unlocked 𝑠}{𝜆𝑠. is lock 𝑠 ∧ locked 𝑠}

unlock𝐶𝐴𝑃 : {𝜆𝑠. is lock 𝑠 ∧ locked 𝑠}{𝜆𝑠. is lock 𝑠 ∧ unlocked 𝑠}

Here is lock, locked, and unlocked are separation logic assertions (hence, predicates over 𝑠). The
predicate is lock captures the internal conditions required of 𝑠 to represent a lock, and locked and
unlocked capture that the lock is taken and free, respectively.9 The definitions of the predicates

9In [Dinsdale-Young et al. 2010], the unlocked predicate is replaced by separation logic emp, and thus elided. We include

it here explicitly to exemplify the similarity with our specs.
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are hidden from the clients, but for the specs to be usable wrt. framing and parallel composition,
one must export a number of their properties, such as (a) locked ∗ locked ⇒ ⊥, and (b) is lock is
duplicable, i.e. is lock⇔ is lock ∗ is lock.

We could turn our specs of lock and unlock into the same format by setting, for example:

is lock 𝑠 =̂ 𝑠s ⊥𝛼 𝑠o unlocked 𝑠 =̂ 𝛼s 𝑠 = own ∧ 𝑠s ⊥𝛼 𝑠o locked 𝑠 =̂ 𝛼s 𝑠 = own ∧ 𝑠s ⊥𝛼 𝑠o

and because ⊥𝛼 is an invertible separating relation and 𝛼 an invertible total morphism, by Lem-
mas 4.12 and 4.13, the equations (a) and (b) above hold. In this sense, we see our algebraic formula-
tion as explaining why the two different kinds of abstract predicates appear in CAP: the duplicable
predicates are a lifting of invertible separating relations as in Lemma 4.12, and the non-duplicable
ones are a lifting of invertible morphisms as in Lemma 4.13.

Of course, morphisms and separating relations have uses where abstract predicates simply don’t
apply. Examples are the algebraic constructions that we introduced in Section 3, or the sub-PCM
construction which we used to obtain the ultimately simplest abstract specs in Section 2.7. Fur-
thermore, by being functions, morphisms can compute values out of the state,10 and thus lead to
convenient specs and proofs in a formalization based on type theory. We thus propose that ab-
stract specs be given directly in terms of morphisms and separating relations, instead of using
their coercion into abstract predicates.

Comparison with the ambient type theory. This paper builds on previous work by Nanevski et al.
[2019] which provides a type-theoretic formulation of concurrent separation logic. Nanevski et
al. consider an algebraic treatment of state transition systems of resources, introduces notions of
resource morphisms and simulations. While that paper focuses on the logic of Hoare triples, in the
present paper we focus on the logic of assertions and the associated algebraic constructions.

The goal of Nanevski et al. is to provide a systematic way of coercing a program from one
resource type to another, as long as the target resource simulates the source one. The system
provides an inference rule in the style of Hoare’s rule of invariance, to reason about the coerced
programs. We utilized this rule implicitly in Section 2.7 to coerce lock from a resource with PCM𝑈

to one with PCM𝑈TL. A program is coerced from resource𝑉 to resource𝑊 by means of a resource
morphism, which modifies the behavior of the program on the ghost state. Programmatically, the
coercion may be seen as re-instrumenting a program with a ghost code specific to𝑊 , a posteriori
to the proof of the program against the initial ghost intrumentation specific to 𝑉 , and using the
resources as a type-style interface.The same mechanism of resource morphisms provides a scoped
way to allocate a new resource into the private state of another resource. Resource morphisms are
similar in spirit to the refinement mappings of Abadi and Lamport [1991], and enable a form of
refinement-style reasoning within separation logic.

PCM morphisms versus homomorphisms in effect algebras. Effectus theory [Cho et al. 2015] is a
fairly new field of category theory whose aim is to describe quantum computation and its logic,
hence generalizing probabilistic and Boolean logic. The mathematical backbone of effectus theory
is effect algebras, which essentially are PCMs with an orthosupplement, i.e. a total unary negation
operation. An effectus is a category with finite coproducts and final object that satisfies three
technical properties: 1) a form of partial pairing for compatible partial maps; 2) disjointness of
coprojections; and 3) joint monicity of partial projections. In effectuses, predicates are total maps
of the form 𝑋 → 𝑌 + 1 which, as usual, are equivalent to partial maps of the form 𝑋 → 𝑌 . In
particular, given an effectus 𝐵, the category 𝑃𝑎𝑟 (𝐵) of partial maps over 𝐵 is enriched over the
category of PCMs.

10For example, how we used𝜓 in the concrete specs for ticket lock to compute the displayed ticket.
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Interestingly, the notion of homomorphism for effect algebras [Cho 2015; Cho et al. 2015; Jacobs
2018] is similar to our notions of PCM morphisms. Indeed, the similarities between our Defini-
tion 3.4 and Definition 3.6 with [Cho et al. 2015, Definition 12] are clear. One difference, however,
is that their definition only considers PCM morphisms with trivial separating relation (what we
call total morphisms), whereas our morphisms can have more general separating relations, and are
thus properly partial. The origins of PCM morphisms, as described in our paper, lie in separation
logic and we have explored their applications to verification of concurrent programs. Neverthe-
less the close relation to effectuses encourages us to explore future applications of our work to
recent extensions of separation and Hoare logic such as quantum relational Hoare logic [Unruh
2019a,b], relational proofs of quantum programs [Barthe et al. 2020b], and probabilistic separation
(and other program) logics [Barthe et al. 2020a; Batz et al. 2019; Sato et al. 2019; Tassarotti and
Harper 2019].

6 CONCLUSION AND FUTURE WORK

Morphisms are a standard notion in algebra and category theory, where algebraic structures give
rise to structure-preserving functions, i.e. morphisms, between them. We adapt the notion of mor-
phisms to the structure of PCMs, thereby extending standard algebraic and categorical approaches
to concurrent separation logics.

The mathematics behind this adaptation gives rise to separating relations, which delineate the
domain where a function is structure preserving and thus a morphism. We introduce invertibility
as a property of morphisms and separating relations that allows working with morphisms under
abstraction. Our exposition of PCMs and their morphisms is natural; we recover the standard al-
gebraic constructions (e.g. that of a sub-object, a sub-PCM), show that the constructions preserve
structure (e.g., composition of morphisms is a morphism, equalizer of morphisms is a separating
relation, etc.), and show that invertibility is preserved under composition and products of mor-
phisms. Morphisms are useful in specs to compute values out of the state; structure preservation
ensures that morphisms are well behaved under ownership transfer.

In the future, we will build on the scaffolding provided by PCMmorphisms, along with resource
morphisms and simulations [Nanevski et al. 2019], to obtain an algebraic theory of linearizable
resources. Such a formalism will unite logical, categorical, and type-theoretic foundations [Harper
2011], while supporting the verification of a wide range of realistic concurrent programs.

ACKNOWLEDGMENTS

We thank Gordon Stewart and Joe Tassarotti for their comments on various drafts of the paper.
We thank the anonymous reviewers from the POPL’21 PC and AEC for their feedback. This re-
search was partially supported by the Spanish MICINN projects BOSCO (PGC2018-102210-B-I00)
and ProCode-UCM (PID2019-108528RB-C22), the European Research Council project Mathador
(ERC2016-COG-724464) and the US National Science Foundation (NSF). Any opinions, findings,
and conclusions or recommendations expressed in the material are those of the authors and do
not necessarily reflect the views of the funding agencies.

REFERENCES

Martín Abadi and Leslie Lamport. 1991. The existence of refinement mappings. Theoretical Computer Science (TCS) 82, 2

(1991), 253–284. https://doi.org/10.1016/0304-3975(91)90224-P

Samson Abramsky and Achim Jung. 1995. Domain Theory. Oxford University Press, Inc., USA, 1–168.

Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon Stewart, Sandrine Blazy,

and Xavier Leroy. 2014. Program Logics for Certified Compilers. Cambridge University Press. https://doi.org/10.1017/

CBO9781107256552

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 5. Publication date: January 2021.

https://doi.org/10.1016/0304-3975(91)90224-P
https://doi.org/10.1017/CBO9781107256552
https://doi.org/10.1017/CBO9781107256552


5:30 František Farka, Aleksandar Nanevski, Anindya Banerjee, Germán Andrés Delbianco, and Ignacio Fábregas

Gilles Barthe, Justin Hsu, and Kevin Liao. 2020a. A probabilistic separation logic. Proc. ACM Program. Lang. 4, POPL (2020),

55:1–55:30. https://doi.org/10.1145/3371123

Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou. 2020b. Relational proofs for quantum programs. Proc.

ACM Program. Lang. 4, POPL (2020), 21:1–21:29. https://doi.org/10.1145/3371089

Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Thomas Noll. 2019. Quantitative

separation logic: a logic for reasoning about probabilistic pointer programs. Proc. ACM Program. Lang. 3, POPL (2019),

34:1–34:29. https://doi.org/10.1145/3290347

Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Symbolic Execution with Separation Logic. In Programming

Languages and Systems, Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings. 52–68.

https://doi.org/10.1007/11575467_5

Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, and Lars Birkedal. 2019. Iron: managing obligations in higher-order concur-

rent separation logic. Proc. ACM Program. Lang. 3, POPL, 65:1–65:30. https://doi.org/10.1145/3290378

Richard Bornat, Cristiano Calcagno, Peter W. O’Hearn, and Matthew J. Parkinson. 2005. Permission accounting in sep-

aration logic. In ACM Symposium on Principles of Programming Languages (POPL). 259–270. https://doi.org/10.1145/

1040305.1040327

Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. 2007. Local Action and Abstract Separation Logic. In 22nd

IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wroclaw, Poland, Proceedings. IEEE Computer

Society, 366–378. https://doi.org/10.1109/LICS.2007.30

Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel. 2017. Bringing Order to the Separation Logic Jungle. In Program-

ming Languages and Systems - 15th Asian Symposium, APLAS 2017, Suzhou, China, November 27-29, 2017, Proceedings.

190–211. https://doi.org/10.1007/978-3-319-71237-6_10

Kenta Cho. 2015. Total and Partial Computation in Categorical Quantum Foundations. In Proceedings 12th International

Workshop on Quantum Physics and Logic, QPL 2015, Oxford, UK, July 15-17, 2015 (EPTCS, Vol. 195). 116–135. https:

//doi.org/10.4204/EPTCS.195.9

Kenta Cho, Bart Jacobs, Bas Westerbaan, and Abraham Westerbaan. 2015. An Introduction to Effectus Theory. CoRR

abs/1512.05813 (2015). arXiv:1512.05813 http://arxiv.org/abs/1512.05813

P. J. Courtois, F. Heymans, and D. L. Parnas. 1971. Concurrent control with ”readers” and ”writers”. Commun. ACM 14, 10

(1971), 667–668. https://doi.org/10.1145/362759.362813

Pedro da Rocha Pinto,Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A logic for time and data abstraction. In

European Conference on Object-Oriented Programming (ECOOP). 207–231. https://doi.org/10.1007/978-3-662-44202-9_9

Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2017. Concurrent data structures

linked in time. In European Conference on Object-Oriented Programming (ECOOP). 8:1–8:30. https://doi.org/10.4230/

LIPIcs.ECOOP.2017.8

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang. 2013. Views: com-

positional reasoning for concurrent programs. In ACM Symposium on Principles of Programming Languages (POPL).

287–300. https://doi.org/10.1145/2429069.2429104

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

abstract predicates. In European Conference on Object-Oriented Programming (ECOOP). 504–528. https://doi.org/10.

1007/978-3-642-14107-2_24

František Farka, Aleksandar Nanevski, Anindya Banerjee, Germán Andrés Delbianco, and Ignacio Fábregas. 2020a. On

Algebraic Abstractions for Concurrent Separation Logics (artefact). (October 2020). https://doi.org/10.5281/zenodo.

4069513

František Farka, Aleksandar Nanevski, Anindya Banerjee, Germán Andrés Delbianco, and Ignacio Fábregas. 2020b. On

Algebraic Abstractions for Concurrent Separation Logics (extended version). CoRR (October 2020). https://arxiv.org/

abs/2010.12686

AlexeyGotsman, Josh Berdine, Byron Cook, NoamRinetzky, andMooly Sagiv. 2007. Local Reasoning for Storable Locks and

Threads. In Programming Languages and Systems, 5th Asian Symposium, APLAS 2007, Singapore, November 29-December

1, 2007, Proceedings (Lecture Notes in Computer Science, Vol. 4807), Zhong Shao (Ed.). Springer, 19–37. https://doi.org/10.

1007/978-3-540-76637-7_3

Robert Harper. 2011. The Holy Trinity. https://existentialtype.wordpress.com/2011/03/27/the-holy-trinity/.

Maurice Herlihy and Nir Shavit. 2008. The art of multiprocessor programming. M. Kaufmann. https://doi.org/10.1108/

03684920810907904

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness condition for concurrent objects. ACM Trans-

actions on Programming Languages and Systems (TOPLAS) 12, 3 (1990), 463–492. https://doi.org/10.1145/78969.78972

Jonas KastbergHinrichsen, Jesper Bengtson, and Robbert Krebbers. 2020. Actris: session-type based reasoning in separation

logic. Proc. ACM Program. Lang. 4, POPL (2020), 6:1–6:30. https://doi.org/10.1145/3371074

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 5. Publication date: January 2021.

https://doi.org/10.1145/3371123
https://doi.org/10.1145/3371089
https://doi.org/10.1145/3290347
https://doi.org/10.1007/11575467_5
https://doi.org/10.1145/3290378
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1109/LICS.2007.30
https://doi.org/10.1007/978-3-319-71237-6_10
https://doi.org/10.4204/EPTCS.195.9
https://doi.org/10.4204/EPTCS.195.9
https://arxiv.org/abs/1512.05813
http://arxiv.org/abs/1512.05813
https://doi.org/10.1145/362759.362813
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.5281/zenodo.4069513
https://doi.org/10.5281/zenodo.4069513
https://arxiv.org/abs/2010.12686
https://arxiv.org/abs/2010.12686
https://doi.org/10.1007/978-3-540-76637-7_3
https://doi.org/10.1007/978-3-540-76637-7_3
https://doi.org/10.1108/03684920810907904
https://doi.org/10.1108/03684920810907904
https://doi.org/10.1145/78969.78972
https://doi.org/10.1145/3371074


On Algebraic Abstractions for Concurrent Separation Logics 5:31

Aquinas Hobor, Robert Dockins, and Andrew W. Appel. 2010. A theory of indirection via approximation. In Proceedings of

the 37th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2010, Madrid, Spain, January

17-23, 2010. 171–184. https://doi.org/10.1145/1706299.1706322

Bart Jacobs. 2018. From probability monads to commutative effectuses. J. Log. Algebr. Meth. Program. 94 (2018), 200–237.

https://doi.org/10.1016/j.jlamp.2016.11.006

Jonas Braband Jensen and Lars Birkedal. 2012. Fictional Separation Logic. In ESOP.

Cliff B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs. ACM Transactions on

Programming Languages and Systems (TOPLAS) 5, 4 (1983). https://doi.org/10.1145/69575.69577

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming

(JFP) 28 (2018), e20. https://doi.org/10.1017/S0956796818000151

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, and Bart Jacobs.

2020. The future is ours: prophecy variables in separation logic. Proc. ACM Program. Lang. 4, POPL (2020), 45:1–45:32.

https://doi.org/10.1145/3371113

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

monoids and invariants as an orthogonal basis for concurrent reasoning. In ACM Symposium on Principles of Program-

ming Languages (POPL). 637–650. https://doi.org/10.1145/2676726.2676980

Robbert Krebbers. 2015. The C standard formalized in Coq. Phd Thesis. Radboud University Nijmegen. https://hdl.handle.

net/2066/147182

Neelakantan R. Krishnaswami, Aaron Turon, Derek Dreyer, and Deepak Garg. 2012. Superficially substructural types. In

ICFP.

Leslie Lamport. 1974. ANew Solution of Dijkstra’s Concurrent Programming Problem. Commun. ACM 17, 8 (1974), 453–455.

https://doi.org/10.1145/361082.361093

Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary state for coarse-grained concurrency. In ACM Sympo-

sium on Principles of Programming Languages (POPL). 561–574. https://doi.org/10.1145/2429069.2429134

John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for Scalable Synchronization on Shared-memory Multi-

processors. ACM Transactions on Computer Systems (TOCS) 9, 1 (1991), 21–65. https://doi.org/10.1145/103727.103729

Aleksandar Nanevski, Anindya Banerjee, Germán Andrés Delbianco, and Ignacio Fábregas. 2019. Specifying concurrent

programs in separation logic: morphisms and simulations. PACMPL 3, OOPSLA (2019), 161:1–161:30. https://doi.org/

10.1145/3360587

Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating state transition

systems for fine-grained concurrent resources. In European Symposium on Programming (ESOP). 290–310. https://doi.

org/10.1007/978-3-642-54833-8_16

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. 2006. Polymorphism and separation in Hoare Type Theory. In

Proceedings of the 11th ACM SIGPLAN International Conference on Functional Programming (ICFP 2006). https://doi.org/

10.1145/1159803.1159812

David J. Pym, Peter W. O’Hearn, and Hongseok Yang. 2004. Possible worlds and resources: the semantics of BI. Theor.

Comput. Sci. 315, 1 (2004), 257–305. https://doi.org/10.1016/j.tcs.2003.11.020

Tetsuya Sato, Alejandro Aguirre, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Justin Hsu. 2019. Formal verification of

higher-order probabilistic programs: reasoning about approximation, convergence, Bayesian inference, and optimiza-

tion. Proc. ACM Program. Lang. 3, POPL (2019), 38:1–38:30. https://doi.org/10.1145/3290351

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015a. Mechanized Verification of Fine-grained Concurrent

Programs. In ACM Conference on Programming Languages Design and Implementation (PLDI). https://doi.org/10.1145/

2737924.2737964

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015b. Specifying and verifying concurrent algorithms with

histories and subjectivity. In European Symposium on Programming (ESOP). 333–358. https://doi.org/10.1007/978-3-662-

46669-8_14

Ilya Sergey, Aleksandar Nanevski, Anindya Banerjee, and Germán Andrés Delbianco. 2016. Hoare-style specifications

as correctness conditions for non-linearizable concurrent objects. In ACM Conference on Object-Oriented Programming

Systems, Languages, and Applications (OOPSLA). 92–110. https://doi.org/10.1145/3022671.2983999

Kasper Svendsen and Lars Birkedal. 2014. Impredicative concurrent abstract predicates. In European Symposium on Pro-

gramming (ESOP). 149–168. https://doi.org/10.1007/978-3-642-54833-8_9

Kasper Svendsen, Lars Birkedal, and Matthew J. Parkinson. 2013. Modular reasoning about separation of concurrent data

structures. In European Symposium on Programming (ESOP). 169–188. https://doi.org/10.1007/978-3-642-37036-6_11

Nikhil Swamy, Aseem Rastogi, Aymeric Fromherz, Denis Merigoux, Danel Ahman, and Guido Martínez. 2020. SteelCore:

an extensible concurrent separation logic for effectful dependently typed programs. Proc. ACM Program. Lang. 4, ICFP

(2020), 121:1–121:30. https://doi.org/10.1145/3409003

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 5. Publication date: January 2021.

https://doi.org/10.1145/1706299.1706322
https://doi.org/10.1016/j.jlamp.2016.11.006
https://doi.org/10.1145/69575.69577
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3371113
https://doi.org/10.1145/2676726.2676980
https://hdl.handle.net/2066/147182
https://hdl.handle.net/2066/147182
https://doi.org/10.1145/361082.361093
https://doi.org/10.1145/2429069.2429134
https://doi.org/10.1145/103727.103729
https://doi.org/10.1145/3360587
https://doi.org/10.1145/3360587
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1145/1159803.1159812
https://doi.org/10.1145/1159803.1159812
https://doi.org/10.1016/j.tcs.2003.11.020
https://doi.org/10.1145/3290351
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1145/3022671.2983999
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1145/3409003


5:32 František Farka, Aleksandar Nanevski, Anindya Banerjee, Germán Andrés Delbianco, and Ignacio Fábregas

Joseph Tassarotti and Robert Harper. 2019. A separation logic for concurrent randomized programs. Proc. ACM Program.

Lang. 3, POPL (2019), 64:1–64:30. https://doi.org/10.1145/3290377

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: navigating weak memory with ghosts, protocols, and sep-

aration. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languagesc

& Applications, OOPSLA 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM, 691–707. https://doi.org/10.1145/

2660193.2660243

Dominique Unruh. 2019a. Quantum Hoare Logic with Ghost Variables. In 34th Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. IEEE, 1–13. https://doi.org/10.1109/LICS.2019.

8785779

Dominique Unruh. 2019b. Quantum relational Hoare logic. Proc. ACM Program. Lang. 3, POPL (2019), 33:1–33:31. https:

//doi.org/10.1145/3290346

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 5. Publication date: January 2021.

https://doi.org/10.1145/3290377
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1109/LICS.2019.8785779
https://doi.org/10.1109/LICS.2019.8785779
https://doi.org/10.1145/3290346
https://doi.org/10.1145/3290346

	Abstract
	1 Introduction
	1.1 Morphisms as Ownership-Preserving Abstractions
	1.2 Partiality and Separating Relations as Abstraction of Disjointness
	1.3 Morphisms and Separating Relations in the Abstract
	1.4 Use of Morphisms in Specs

	2 PCM Abstractions by Example
	2.1 Ticket Lock
	2.2 Hoare Types, States and Specifications
	2.3 Internal State of the Ticket Lock
	2.4 Concrete Specs, Ghost Code, and Proof Outlines
	2.5 Framing and Morphisms
	2.6 Morphisms as Functional Abstractions
	2.7 Sub-PCM

	3 PCM Abstractions Formally
	3.1 Making Partiality Explicit
	3.2 Separating Relations
	3.3 Morphisms
	3.4 Sub-PCMs
	3.5 Histories, Morphisms, and Separating Relations

	4 Invertible Morphisms and Separating Relations
	4.1 Invertibility of Morphisms
	4.2 Invertibility of Separating Relations
	4.3 Duality of Invertibility of Morphisms and Separating Relations
	4.4 Invertibility and Separating Conjunction

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

