VULGEN: Realistic Vulnerability Generation Via
Pattern Mining and Deep Learning

Yu Nong
Washington State University
Pullman, WA, USA
yu.nong @wsu.edu

Feng Chen
The University of Texas at Dallas
Richardson, TX, USA
feng.chen @utdallas.edu

Abstract—Building new, powerful data-driven defenses against
prevalent software vulnerabilities needs sizable, quality vulner-
ability datasets, so does large-scale benchmarking of existing
defense solutions. Automatic data generation would promisingly
meet the need, yet there is little work aimed to generate much-
needed quality vulnerable samples. Meanwhile, existing similar
and adaptable techniques suffer critical limitations for that
purpose. In this paper, we present VULGEN, the first injection-
based vulnerability-generation technique that is not limited to
a particular class of vulnerabilities. VULGEN combines the
strengths of deterministic (pattern-based) and probabilistic (deep-
learning/DL-based) program transformation approaches while
mutually overcoming respective weaknesses. This is achieved
through close collaborations between pattern mining/application
and DL-based injection localization, which separates the concerns
with how and where to inject. By leveraging large, pretrained
programming language modeling and only learning locations,
VULGEN mitigates its own needs for quality vulnerability data
(for training the localization model). Extensive evaluations show
that VULGEN significantly outperforms a state-of-the-art (SOTA)
pattern-based peer technique as well as both Transformer- and
GNN-based approaches in terms of the percentages of generated
samples that are vulnerable and those also exactly matching the
ground truth (by 38.0-430.1% and 16.3-158.2%, respectively).
The VULGEN-generated samples led to substantial performance
improvements for two SOTA DL-based vulnerability detectors
(by up to 31.8% higher in F1), close to those brought by the
ground-truth real-world samples and much higher than those by
the same numbers of existing synthetic samples.

Index Terms—Software vulnerability, data generation, bug
injection, pattern mining, deep learning, vulnerability detection

I. INTRODUCTION

The prevalence of code vulnerabilities are a major cause
of security risks with modern software systems [1]. As a re-
sponse, significant effort has been made in helping secure these
systems by detecting [2]-[8] and repairing [9]], [[10] software
vulnerabilities—most of these exemplified works follow data-
driven (e.g., machine/deep-learning based) approaches. Indeed,
such approaches have been gaining growing momentum in

* Haipeng Cai is the corresponding author.

Yuzhe Ou
The University of Texas at Dallas
Richardson, TX, USA
yuzhe.ou@utdallas.edu

Michael Pradel
University of Stuttgart

Stuttgart, Germany
michael @binaervarianz.de

Haipeng Cai*
Washington State University
Pullman, WA, USA
haipeng.cai@wsu.edu

recent years, showing promising performance according to the
originally reported experimental results.

Meanwhile, the scarcity of quality vulnerability datatsets has
become a critical barrier to further advancing those data-driven
defense techniques—without being trained on such datasets,
the techniques often fail to perform well in real-world scenar-
ios (e.g., detecting vulnerabilities in large/complex real-world
software), just as expected [2]], [11]]. Not only has it blocked
training new, more powerful learning-based approaches, this
scarcity is also a main reason behind weak evaluations of
existing techniques regardless of their being data-driven or
not (e.g., code-analysis-based) [[12]-[14]]. The urgent need for
realistic vulnerability datasets has been put under the spotlight
in a recent study [15].

High-quality vulnerability datasets do exist [[16]—[19], but
they are commonly or even collectively not sizable enough
to train powerful data-driven models or serve large-scale
benchmarking. On the other hand, existing larger datasets [20],
[21] are not well representative of real-world vulnerabilities,
while current automated data-collection methods suffer from
great inaccuracy/noise in the resulting datasets [22[]-[24].

To address this data-shortage problem, a few data-
generation methods have been proposed as well, mainly
based on pattern mining/application [25]], [26] or machine/deep
learning (DL) [15]], [27]—the approach in [28] is based on
static code analysis and covers one single vulnerability class.
Yet these approaches face critical challenges that substantially
limit their potentials. In particular, solely pattern mining/ap-
plication based (i.e., pattern-based for brevity) techniques
suffer from great ambiguity—the patterns extracted are either
too generic or too specific to be applicable, while purely DL-
based approaches are subject to the data-shortage problem by
itself—they need a sizable, quality training dataset to be ef-
fective [15] (i.e., the chicken-egg dilemma). Like Getafix [25],
approaches originally designed for bug [29] or vulnerability
repair [10] could be adapted for bug/vulnerability injection
as done in [15]. While conceptually repair and injection may
seem to be dual/reversals to each other, technically injection

mailto:yu.nong@wsu.edu
mailto:yuzhe.ou@utdallas.edu
mailto:michael@binaervarianz.de
mailto:feng.chen@utdallas.edu
mailto:haipeng.cai@wsu.edu

can be harder as it requires more buggy/vulnerable samples
which are what we lack (versus repair may just need more
normal samples—learning to generate normal code directly
without using paired data as in [[30], which are richly avail-
able). When it comes to vulnerability injection, the problem
is even worse given the greater scarcity of vulnerable samples
than that of bug datasets.

To tackle these challenges, we propose VULGEN, a novel
automatic data-generation approach that aims at realistic
injection-based vulnerability generation via pattern min-
ing/application collaborating with deep learning in synergy.
With a corpus of existing pairs of vulnerable samples and their
fixed versions, VULGEN first extracts patterns of vulnerability-
introducing code edits which represent how to inject vulnera-
bilities, while training a DL-based model (on the same corpus)
to locate where to inject. Then, given a normal program,
VULGEN queries the trained model to identify candidate
injection locations where it applies compatible edit patterns
to realize vulnerability injection (in the normal program).

The key insight underlying our approach is that, through
the collaboration of a deterministic process (i.e., pattern
mining/application) and a probabilistic process (i.e., injection
localization) and the separation of the how and where parts of
injection, VULGEN combines the strengths of pattern- and DL-
based approaches while mitigating each others’ weaknesses. In
particular, the localization model guides pattern application to
mitigate the ambiguity challenge to pattern-based approaches;
meanwhile, the mined patterns inform the localization model
to choose the best locations. Also, the chicken-egg dilemma
in training the (DL-based) localization model is mitigated
by (1) leveraging a large pretrained programming-language
model hence reducing general data needs and (2) learning to
predict just the injection locations without further generating
the injected code hence further reducing task-specific data
needs (or improving model performance for a given amount
of training data since predicting locations alone is intuitively
easier than predicting the injected code in addition).

We evaluate VULGEN on a real-world vulnerability dataset
containing 10,783 pairs of normal functions and respective
vulnerable versions for training and testing. VULGEN achieved
14.6% precision (i.e., percentage of generated samples ex-
actly matching ground truth) and a 69% success rate (i.e.,
percentage of generated samples that are indeed vulnerable).
Without an existing peer work targeting vulnerability injection,
we adapt a pattern-based approach (originally designed for
bug repair [25]]), a DL/Transformer-based text-to-text trans-
lation approach (originally for vulnerability repair [10]), and
a deep/GNN-based neural code editing approach (originally
for general code-edits generation [31]) as baselines. VULGEN
outperforms these potential peer approaches by 16.3-158.2%
and 38.0-430.1% in terms of relative precision and success
rate improvements, respectively. We also assess the usefulness
of the VULGEN-generated samples by adding them to the
original training sets of two state-of-the-art DL-based vul-
nerability detectors. The addition boosted their performance
significantly (by up to 31.8% greater F1) in both reproduction

and replication settings—very close to those by adding the
ground-truth vulnerable samples and much higher than adding
equal numbers of existing synthetic samples. VULGEN is also
efficient, generating 900+ vulnerable samples in one hour.

In summary, our paper makes the following contributions:

« To the best of our knowledge, VULGEN is the first automatic
approach to injection-based realistic vulnerability genera-
tion without being limited to a particular vulnerability class.

« We show the design of combining deterministic and proba-
bilistic approaches for program transformation, where pat-
tern mining/application and localization deal with how and
where to inject respectively while collaborating in synergy.

« We performed extensive experiments that demonstrate sig-
nificant merits of this VULGEN design over both pattern-
and learning-based (both sequence and graph modeling)
approaches; our results also show substantial improvements
the generated samples bring to vulnerability detection.

II. MOTIVATION AND BACKGROUND

In this section, we motivate our vulnerability injection
technique using concrete examples and discuss key challenges.
Then, we use these examples to illustrate the limitations of
existing peer techniques on the challenges. Later, we will use
the same examples to illustrate our own approach.

A. Motivation Examples and Challenges

As an example of vulnerable sample generation, let us
consider injecting vulnerabilities to existing real-world normal
functions. Figure [l| shows three examples of vulnerability
injections on normal functions, which delete a buffer size (i.e.,
sizeof (d->msg)) checking for early return, change to use
an unsafe memory allocation rather a self-defined, safe one,
and remove one of the boundary checking in an if condition,
respectively. Overall, to inject the vulnerabilities automatically,
the technique needs to solve at least two challenges below:

First, the technique needs to know where to inject the
vulnerabilities. In other code editing tasks, such as bug fixing,
the code fragments to be edited have already been provided,
either by the testing dataset itself [10] or external static
analyzers [25]. However, such location information is not
available in the vulnerability generation task, nor is it trivial
to obtain. The localization for vulnerability injection needs
both syntactic (e.g., the code structures) and semantic (e.g.,
information hidden in identifier names and insights into what
kinds of statements typically are most prone to vulnerabilities)
information in the code [15]]. For instance, in the first example
in Figure [I] we not only need to locate an if statement that
contains an early return (syntactic information), but also need
to know it is a buffer size checking (semantic information).

Second, the technique needs to know how to edit the
located code fragments to inject vulnerabilities. For instance,
in the second example in Figure [T} the technique needs to
change the function call name in the assignment statement
from safe_calloc to malloc. In the third example, the
technique needs to remove the OR expression in the if
condition and replace it with the second expression in the

Delete a buffer size checking

Use an unsafe memory allocation rather
than a self-defined safe one.

Remove one of the boundary checking in an
if condition

static int // . /] ..

cx24116_send_diseqc_msg(/*.*/) sz = pdf->xrefs[i].end - ftell(fp); __ __ _ BDRVVPCState *s = bs->opaque;

{ buf_= safe_calle z—+ '_=>mlﬁc£z¢1_)_;] uint32_t pagetable_index,pageentry_index;
struct cx24116_state *state=fe->demodulator_priv; SAFE_E(fread(buf, 1, sz, fp), sz, pagetable_index=offset/s->block_size;

—int i, ret; _ _ __ __ __ __ "Failed to load /Root.\n"); rpa_ggeﬁry_irm_exioisel%szbl_ock_siﬁ)&lz_;_ —

W 1 buf[sz] = "\0’; if(pagetable_ind = s->max—table—entries—|}

_____ ALy] /] s->pagetable[pagetable_index]==9xffff¥fff)I
11 Lretuen L |

/1 .

Fig. 1. Motivating/illustrating examples on vulnerability injection.

OR expression. These vulnerable functions are not easy to
generate, as we need to ensure the syntactic correctness of
the code (e.g., any token mistakenly generated in the example
would make the code not compilable). Therefore, we need to
ensure that the technique edits the code in a correct way.

B. Existing Peer Techniques and Limitations

To motivate our technique, we illustrate two existing peer
techniques that can be used for vulnerability injection and
discuss their limitations on the two challenges.

1) Getafix: Getafix is a technique which automatically
fixes bugs using the patterns learned in the existing bug-fixing
examples. Specifically, it has three phases to learn the bug-
fixing patterns and apply them to fix a new buggy program:

Phase 1: Pattern Mining. Given a set of example fixes
where each is a pair of buggy and fixed code, Getafix converts
the code into abstract syntax trees (ASTs) which contain a set
of nodes indicating the syntactic structure of the code [25].
Then, Getafix employs an AST differencer to get the edits
from the buggy code to the fixed code, called concrete edits.

With the concrete edits, Getafix uses anti-unification to
obtain abstracted edits and then hierarchical clustering to mine
the summarized edit patterns for bug fixes. Because of the
space limit, we refer readers to the original Getafix paper [25]
for further details. After hierarchical clustering, the concrete
edit patterns are merged into generalizable edit patterns which
can inject vulnerabilities in a variety of normal functions.

Phase 2: Pattern Application. After the hierarchical clus-
tering, there are many edit patterns available, ranging from
very generic to very specific [25]. Getafix thus needs to
select an appropriate pattern and a candidate pattern-applicable
location. It thus grades the pairs of patterns and locations with
three scores: (1) the proportion of bugs in the training set that
can be fixed by applying the pattern (i.e., prevalence score);
(2) the proportion of bugs in the training set that can be fixed
z lines away from the static analyzer warning location (i.e.,
location score), and (3) the reciprocal of the proportion of
subtrees in the given input program that the pattern can match
(i.e., specialization score) [25]]. Then, Getafix ranks the pairs
of patterns and locations with the products of the three scores
and selects the top-k pairs to apply the patterns to fix bugs.

Phase 3: Validation. In the list of ranked bug fixes, Getafix
uses static analyzers to validate whether the bug has been
removed. If so, Getafix suggests the bug fixes to developers.

As Getafix uses a deterministic approach to learn bug
fixing, the number of training samples can be relatively
small compared to the one for DL-based approaches. The

hierarchical clustering also allows Getafix to generate human-
like (i.e., realistic) bug fixes. Thus, it is a good approach for
our vulnerability generation technique to start with. However,
it has two major technical limitations for our task:

« Getafix uses static analyzers to locate buggy code to fix, but
there is no static analyzer to do so for vulnerability injection.

o The edit patterns mined only match and edit code syntacti-
cally without semantic awareness, making the vulnerability
injection ambiguous. For example, in the third example of
Figure |1} the mined pattern may be like 1 £ (hO| | hl) =>
if (hl) where hO and h1 are place holders that can match
any expression. However, such an edit pattern that removes
one of the conditions in the if statement may not inject a
vulnerability if the conditions are not relevant to security.
This may make Getafix fail to inject vulnerabilities.

2) Transformer-based Code Edit Model: A number of
pretrained transformer models have been built for software
engineering (SE) tasks, of which CodeT5 [32] has been shown
to be quite promising for semantic-aware code generation
[10], [33]. Thus, these models seem to be a good starting
point for our task. Yet they also suffer two key challenges:

o Current Transformer-based bug fixing techniques rely on the
error messages [33] or the bug location information [10]]
to be given. Thus, the techniques only need to output the
fixed version of the buggy code fragments rather than the
whole programs/functions. This allows the outputs to be
short texts. However, for vulnerability generation, the model
has to output the whole programs/functions which are much
longer, as we do not have the information that the bug-fixing
techniques rely on. Previous work [[15]] has shown that these
models are not good at generating long texts. This greatly
limit their ability to directly generate vulnerable code.

o While the CodeT5 model has the capability to understand
code semantics, it is not syntax-aware [34]. Since program-
ming languages are highly structured, any erroneous tokens
would make the generated code invalid. For example, in the
third example of Figure [I] missing or wrongly predicting
any token like —>,] or) would break the whole program.
Thus, every token has to be predicted correctly, but this is
difficult for the Transformer model to accomplish alone.

III. OVERVIEW

Figure 2] gives an overview of our technical design. As
shown, VULGEN consists of three main technical mod-
ules/phases: pattern mining, localization learning, and vulner-
ability injection, working in two modes. In the mining/learning

Localization Learning

Existing real-world

Pattern Mining

®

@ Source differencing vulnerable samples AST differencing
modified statements $ and their fixed + concrete edits
Fine-tuning [(normal) versions [Anti-unification
Pretrained initial W y abstracted edits
PL model model | Hierarchical clustering
) (CodeT5) weights
Trained)
model X Mined
Preprocessing edit
[subword tokenization | | AST construction | patterns
]
VULGEN Vulnerability Injection Generated
input M Candidate X —— vulnerable
Localization 7—4 Pattern--location mutual filtering program(s)
Given normal del location(s) elocted locath z prog
orogram mode v Selected location(s) & patterns VULGEN
$] Pattern application output
T

probabilistic process

(largely) deterministic process

—_—
generation workflow

R
mining/learning workflow

Fig. 2. An overview of VULGEN, including its three key technical modules (phases) and two workflows (modes).

mode, VULGEN mines patterns of real-world vulnerability-
inducing code edits (i.e., reversal of respective fixes) from the
given corpus of existing vulnerable program samples and their
fixed (i.e., normal) versions and then learns to locate where
vulnerabilities may be injected. With the resulting edit patterns

and the trained localization model, in the subsequent genera-

tion mode, VULGEN takes a given normal program as input,
queries the model to obtain candidate injection locations and
applies compatible patterns, and hence produces vulnerable
program(s). Two preprocessing steps, AST construction and
subword tokenization, are shared between both modes.

During the pattern mining phase, VULGEN extracts concrete
(AST) edits from the pairs of (normal and respective vulner-
able) samples in the given corpus through AST differencing,
followed by anti-unification to obtain abstracted edits and then
hierarchical clustering to mine the eventual edit patterns—
an idea similar to that for bug-fixing pattern extraction in
Getafix [25]]. Yet the resulting patterns are often either (1) too
generic, which are compatible with numerous code locations
but not helpful for vulnerability injection since these patterns
tend to have many placeholders (holes) that cannot be instan-
tiated, or (2) too specific, which are hardly compatible with
any code locations for injection, as illustrated in

Thus, VULGEN comes with localization learning, a dedi-
cated module to disambiguate pattern-based injection. In this
phase, VULGEN aims to learn injection localization from real-
world developers’ historical vulnerability-fixing code-change
locations. Given the scarcity of such fixes, we leverage
CodeT5 [32], a state-of-the-art programming-language (PL)
model that was pretrained on millions of code samples against
relevant objectives. To enable its working for our localization
task, VULGEN fine-tunes it against those historical locations
obtained by source-level differencing between the sample pairs
in the given corpus. Note that this module learns only where

to inject (i.e., predicting injection locations), but not how (i.e.,
generating the injected code itself).

Finally, in the vulnerability injection phase, VULGEN feeds
the trained localization model with the subword-tokenized
code of a given input normal program to obtain candidate
injection location(s) and selects those compatible with any of
the mined edit patterns, followed by injecting vulnerabilities
at chose locations via pattern application. This results in the
vulnerability-injected (i.e., potentially vulnerable) version of
the input program. Depending on how many top candidate
locations taken from the localization model, VULGEN may
produce one or multiple vulnerable programs as its output(s).
A key novelty of VULGEN lies in the close collaboration of
a deterministic process (i.e., pattern mining and application)
with a probabilistic process (i.e., injection localization), as
reflected in the pattern-location mutual filtering step: (1) the
probabilistic (localization) informs the deterministic (pattern
application) about where to apply patterns and which to
apply—the resulting locations help filter out incompatible pat-
terns, while (2) the deterministic (pattern mining) helps select
the best locations returned by the probabilistic (localization)—
the mined patterns help filter out incompatible locations.

The overall vulnerable sample generation (vulnerability in-
jection) process by VULGEN is realistic for two reasons. First,
when an injection is localized, the location prediction is made
based on real-world vulnerability-introducing code locations.
Second, when a vulnerability is injected, the code editing
is done by following (the reversal of) how developers make
vulnerability fixes in diverse real-world software projects.

IV. APPROACH

In this section, we describe the detailed design of VULGEN,
elaborating on its key technical components/phases shown in
Figure [2] and illustrating each using the examples of Figure

A. Pattern Mining

In the pattern mining phase, VULGEN follows Getafix to
mine the patterns for vulnerability injection. VULGEN takes
the pairs of normal functions and the respective vulnerable
versions as the inputs for pattern mining (as well as for
localization learning). Each pair is a vulnerability injection
example. To convert the code to ASTs, we use srcML [35]], an
AST parser for C language, to get the ASTs for each example.
We choose srcML because we can convert the parsed AST
back to source code easily. Then, VULGEN uses GumTree [36]
to differentiate the ASTs to get concrete edits. Then it follows
the original Getafix to perform hierarchical clustering and get
the edit patterns for vulnerability injection.

To illustrate, consider the vulnerability-injection case in the
second example of Figure [[, VULGEN extracts the concrete
edit patterns below.

safe_calloc(sz + 1) => malloc(sz + 1) (1)

Then, Getafix uses anti-unification to merge similar con-
crete edits into abstracted edits. For example, Pattern [I] and
safe_calloc (bufsize)=>malloc (bufsize) can be
merged into safe_calloc (h0)=>malloc (h0), where h0
is a placeholder that can match any subtrees. With anti-
unification, Getafix performs hierarchical clustering to get edit
patterns for vulnerability injection.

B. localization Learning

In this phase, VULGEN trains a Transformer-based model
for locating vulnerability injection spots. We formulate the
task as a text-to-text prediction problem: given a normal
function, the model generates the statement text where an edit
pattern should apply to inject a vulnerability. For instance,
in Figure [T} given the whole functions as the input, the
model outputs the statements in the red rectangle, without
any modification. We use a Transformer-based model only for
localization rather than vulnerability injection, because: (1) it
is hard for the model to predict whole functions which are
long; (2) programming languages are highly structured and
thus every token predicted has to be correct, which is hard for
the model to achieve.

To build the localization model, VULGEN fine-tunes the
pretrained Transformer model CodeT5 [32] because CodeT5
is able to understand code semantically. To deal with the
out-of-vocabulary (OOV) issue which is widely exists in
code relevant tasks [37]], we leverage the Byte Pair Encoding
(BPE) approach [38]] to represent the input and output text.
Specifically, BPE splits the original tokens into sequences of
characters and merges the frequent symbol pairs into new
tokens. Thus, it can split rare tokens into meaningful subwords
so that the vocabulary size can be reduced.

Different from traditional Transformer that leverages an
absolute positional encoding layer, we use a relative positional
encoding layer [39] to captures the relative information be-
tween tokens. Specifically, in the relative positional encoding,
the self-attention is computed through four matrices: the query

matrix (), the key matrix K, the value matrix V' [40], and the
matrix P that encodes relative positional information.

QK +P)T
Vi

where P is the edge representation for the pairwise inputs. P
is supplied as a sub-component of the value matrix [39].

To fine-tune the CodeT5 model for injection localization,
we process our examples into a fine-tuning dataset D =
{(n4, s:)}Y.,, where each sample consists of a normal function
n and the respective ground-truth statement s where the
vulnerability can be injected, both in text form. Denote the
model parameters as 6, the fine-tuning objective is a maximum
likelihood estimation which minimizes the following negative
log-likelihood loss:

Attention(Q,K,V,P) = so ftmax(YV +P) (2

N
L(D;0) =Y _ —log p(si|ni; 0) 3)
i=1

To obtain the ground-truth statement s as our localization
target, we apply the diff tool to each example and use
the modified statement as the ground-truth output. After fine-
tuning, the injection localization model is expected to predict a
statement to inject a vulnerability in a given normal function.
Given that the injection localization model is a probabilistic
model, we leverage beam search to select multiple statements
given a normal program. The number of predicted statement
candidates replies on a parameter called beam size . Beam
search selects the best [statement candidates that have the
highest probability. Later we will use different beam sizes to

evaluate VULGEN and the baseline techniques.

C. Vulnerability Injection

Once we have the edit patterns mined and the localization
model trained, VULGEN is expected to inject a vulnerability
given a new normal function. This input function is first fed
into the localization model, and the model locates a statement
for vulnerability injection. Since the edit patterns are based
on and supposed to be eventually applied back on ASTs, we
again use srcML [35] to parse the input normal function into an
AST. As the localization model outputs the located statements
in source code, we convert all the subtrees in the AST back
to source code and compare the source code of each subtree
with the localization model output to get the located subtree.

Given the located subtree, we need to select an appropriate
pattern to apply. The original Getafix ranks edit patterns based
on the three scores described in Section [l Since we cannot
use localization score as no static analyzer can be used, we
only compute the prevalence score and the specialization score
to rank the edit patterns.

Specifically, given an edit pattern £ and normal functions
n in the training set D, VULGEN computes prevalence score
for E as follows:

E [{n € D|E can inject a vulnerability to n}|

Sprevalence = |D|

“4)

This computes the likelyhood that a pattern can inject a
vulnerability. Note that in the equation above, we assume that
the pattern can find the location to apply perfectly (i.e., once
applying E' to one of the applicable locations in n can inject
a vulnerability, E' can inject a vulnerability to n).

Thus, given an edit pattern E¥ and a new normal function
n/, VULGEN computes the specialization score as:

B’ [{AST nodes of n'}|
s =
specialization | L AQT gubtrees of n/ that match E}|

This avoids the selected patterns to be too general and priori-
tizes the more specific patterns.
Given an edit pattern £ and a new normal function n’/, VUL-

. En
GEN/ computes the ranking score s, ;..o
Emn

specialization 10T €ach pattern and uses the ranking scores to
rank the edit patterns. The rationale is to select a pattern that
is not only likely to inject vulnerabilities but also specialized
enough. Then, VULGEN selects the first pattern in the ranking
from higher to lower scores that matches the located statement
to inject a vulnerability. However, it is possible that a given
function does not involve any security-relevant code hence no
vulnerability could be injected. Thus, to reduce false positives,
if the located statement cannot match any pattern, VULGEN
would not output a function and the input function is identified
as "no vulnerability can be injected". Otherwise, the output
function is expected to be vulnerable.

To illustrate, consider the third example in Figure [I] Once
the localization model locates the if statement in the red
rectangle, VULGEN ranks the patterns using the ranking score
above. Then, the first edit pattern applicable in the ranking
like if (hO|h1l)h2 => if (h1l)h2 will be applied, and the
normal function is injected with a vulnerability as shown.

®)

- Sp’r‘evalence

V. EVALUATION

We describe our tool implementation and evaluation dataset,

and then seek to answer the following research questions:

« RQ1: How effective is VULGEN in vulnerability genera-
tion?

« RQ2: Hoe does VULGEN compare to a Transformer-based
program-transformation approach?

« RQ3: How does VULGEN compare to a traditional pattern-
based code-generation approach?

« RQ4: How does VULGEN compare to a GNN-based code-
editing approach?

« RQS: How useful are the VULGEN-generated vulnerabilities
for training DL-based vulnerability detectors?

« RQ6: How efficient is VULGEN in vulnerability generation?

A. Tool Implementation

As Getafix is not publicly available, we re-implemented its
pattern mining and pattern application modules. For local-
ization learning, we use the pre-trained model CodeT5 and
the respective APIs provided by HuggingFace [41]]. We partly
reused the CodeT5 fine-tuning code of VulRepair [[10], only
for the injection-localization step in VULGEN. As that original
code of VulRepair is used for generating vulnerability fixes, we

TABLE I
EFFECTIVENESS OF VULGEN AND THE BASELINES FOR VULNERABILITY
INJECTION. THE NUMBERS IN PARENTHESES INDICATE VULGEN’S
RELATIVE IMPROVEMENT COMPARED TO THE BASELINES.

Editor Precision (Exactly-Matched) Success Rate
VulGen 14.64% 69%
T5 10.29% (42.27%7) 17% (305.88%1)
Getafix 5.67% (158.20%1) 50% (38.00%1)
Graph2Edit 12.59% (16.28%71) 13% (430.77%1)

changed/adapted it in order to serve our localization purposes.
Our experiments were performed on a server with an AMD
Ryzen Threadripper 3970X (3.7GHz) CPU with 32 Cores, an
Nvidia GeForce RTX 3090 GPU, and 256GB memory.

B. Dataset

Since the available real-world vulnerability data is rare,
we perform a comprehensive literature study for vulnerability
analysis datasets and combine them to build a relatively
large dataset. As a result, we build our evaluation dataset by
including (some of) the vulnerability fixing examples from five
reliable human-labeled vulnerability fixing datasets:

1) Devign [2[]: 23,355 vulnerability fixing examples in C
language from four real-world projects, among which two
are publicly available. We include the 7,938 examples from
these two available projects to our evaluation dataset.

2) ReVeal [11]: 18,169 human-labeled vulnerable/non-
vulnerable samples in C language for vulnerability
detection. We select the vulnerable samples that are paired
with corresponding fixed versions and finally include 921
vulnerability fixing examples to our evaluation dataset.

3) PatchDB [[18]: 12,073 vulnerability fixing examples in C
language extracted by nearest link search and then con-
firmed by humans. We include all of them to our dataset.

4) BigVul [17]]: 3,754 vulnerability fixing examples extracted
from the CVE/NVD database where 2,185 examples are in
C language, we include the 2,185 to our dataset.

5) CVEFixes [19]: 31,092 vulnerability fixing examples from
CVE/NVD database where 4,120 are in C language, we
include the 4,120 to our dataset.

Thus, we include 27,237 vulnerability fixing examples to our
evaluation dataset. All the examples are at function level (i.e.,
each example is a pair of a vulnerable function and a respective
fixed one). We notice that many of the real-world vulnerability
fixing edits by the developers not only fix the vulnerabilities
themselves, but also modify the functionality or refactor the
code, thus there are code changes irrelevant to vulnerability in
these examples. To avoid the impact of these irrelevant code
changes, we only use samples where the edits are limited to
one statement, resulting in 10.783 samples. Since our goal is to
inject vulnerabilities, we reverse the fix in each example to get
the vulnerability injection examples. The 10,783 vulnerability
injection examples are the evaluation dataset we used.

C. RQI: Effectiveness in Generating Vulnerabilities

We evaluate VULGEN’s ability to generate real-world vul-
nerabilities using the examples in the evaluation dataset. We

TABLE 11

DO THE VULGEN-GENERATED VULNERABLE SAMPLES HELP IMPROVE THE DL-BASED VULNERABILITY DETECTORS?

Generated

Ground Truth

Wild

11.65% (16.50%7)
52.85% (107.04%71)
19.09% (31.84%71)

10.97% (9.70%71)
47.91% (101.48%1)
17.86% (23.34%7)

9.74% (-2.60%1)
59.70% (127.60%71)
16.75% (15.67%71)

8.59% (-4.18%7)
51.98% (95.71%7)
14.75% (7.04%1)

8.92% (-4.18%71)
54.99% (107.04%7)
15.36% (11.46%1)

8.13% (-12.67%7)
53.48% (101.35%7)
14.12% (2.47%71)

12.00% (12.88%1)
73.38% (-2.02%1)
20.63% (10.80%1)

12.56% (18.16%1)
74.52% (-0.51%1)
21.50% (15.47%71)

11.28% (6.11%1)
79.85% (6.61%7)
19.77% (6.18%71)

Tool Setting Metric Baseline Synthetic
Reproduction: Precision 10.00% 10.69% (6.90%71)
Training: Devign ~ Recall 26.23% 37.26% (42.05%71)

Devign Testing: ReVeal F1 14.48 % 16.62% (12.87%1)
Replication: Precision 9.31% 8.85% (-4.94%7)
Training: Devign Recall 26.56% 24.67% (-7.11%7)
Testing: Xen F1 13.78 % 13.02% (-5.51%71)
Reproduction: Precision 10.63% 12.00% (12.88%71)
Training: Devign Recall 74.90% 49.80% (-33.51%7)

ReVeal Testing: ReVeal F1 18.62 % 19.35% (3.92%7)
Replication: Precision 7.68% 6.89% (-10.29%71)
Training: Devign ~ Recall 82.67% 31.64% (-61.72%7)
Testing: Xen F1 14.05% 11.33% (-19.36%1)

8.50% (10.68%7)
60.64% (-26.64%7)
14.90% (6.05%1)

8.17% (6.38%7)
94.54% (14.36%71)
15.04% (7.05%71)

791% (2.99%7)
95.29% (15.27%7)
14.60% (3.91%71)

split the 10,783 examples into 9:1 for training and testing,
as prior work did [37]—which also gave us a sizable set
(i.e., >1000 samples) for testing. We also checked duplicates
between the training and testing sets and removed them to
ensure that the two sets have no overlap. As a result, we have
9,704 examples for pattern mining and localization learning.
The remaining 1,078 examples are used in the vulnerability
injection phase to test the effectiveness of VULGEN. For each
testing example, we input the normal function to VULGEN
and it outputs a (potential) vulnerable function if it can inject
a vulnerability to it. We count the number of output functions
that exactly match the ground-truth vulnerable functions, and
compute the precision by the proportion of exactly-match
functions in the output functions.

With the 1,078 testing examples, VULGEN outputs 963
functions and the remaining 115 are identified as "no vul-
nerability can be injected” (see Section IV.C). In the 963
functions, 141 of them exactly-match the ground truths. Thus,
the precision is 14.64%.

However, it is possible that a vulnerability is injected but
the output function does not exactly match the ground truth.
This usually happens when the input function has multiple
locations to do vulnerability injection. Thus, to further evaluate
the effectiveness of VULGEN, we increase the beam size of
the localization model to 10. Thus, given a normal function,
the model outputs 10 statements for the edit patterns to inject
vulnerabilities and a normal function can be used to generate
up to 10 functions. With the 1,078 examples, VULGEN
generates 9,573 functions. We randomly sample 100 of the
generated functions and manually check whether they are
vulnerable. Note that 100 is sizable relative to the total number
of generated samples as used in our comparison studies.
Recent peer work used only <60 samples for similar-purpose
manual validation [22]. This is still not ideal, but manually
examining a sample is tedious and costly, while general,
accurate automated vulnerability detection is unavailable.

The manual checking is done by the first (Rater-1) and
second (Rater-2) authors of this paper and a non-author PhD
student (Rater-3) who have 2—4 years of experience in software
engineering and security, all following the same labeling
process. Based on the labels they agreed on, we calculated the

inter-rater agreement as 0.7877, 0.7476, and 0.6826 between
(Rater-1, Rater-2), (Rater-1, Rater-3), and (Rater-2, Rater-3),
respectively, in terms of Cohen’s Kappa. These agreements are
all substantial, showing reasonable reliability of our manual
labeling. Since each generated sample has a corresponding
normal sample, they focus on the changed code between the
pair and mainly check if the change introduces vulnerabilities
(by tracking data/control flow from the changed lines), which
also helped mitigate any possible biases during these manual
processes. As a result, 69 out of 100 checked functions
are vulnerable. Thus, the success rate of vulnerable sample
generation estimated by sub-sampling is 69%.

We also assess the generality of VULGEN by examining
the vulnerability types of the 100 randomly sampled functions
generated and assigning them with CWE vulnerability type
IDs [42]. Among them, the success cases of VULGEN covered
18 different CWE IDs, versus those of Getafix, TS5, and
Graph2Edit only covering 12, 8, and 5 classes, respectively.
This indicates that by decoupling where-to-inject and how-
to-inject, VULGEN allows for more flexible/diverse identifi-
cation of injectable code locations where vulnerabilities can
be injected deterministically via pattern matching/applica-
tion, hence more general vulnerability generation than earlier
approaches. Besides, VULGEN learns injection patterns of
different vulnerability classes from the training data, making
it not limited to generating a particular class of vulnerabilities.

VULGEN achieves 14.64% exactly-match precision
and 69% success rate, suggesting its promising capa-
bility for realistic vulnerability generation.

D. RQ2: Comparison with Transformer-based Approach

VULGEN injects vulnerabilities based on the combination
of Transformer/CodeT5-based localization and pattern-based
code editing. However, as other studies have also shown that
the fine-tuned CodeT5 model has the capability to generate the
edited code directly [10], [33]], people may cast a question:
whether we can directly fine-tune the CodeT5 model to
generate the vulnerable functions.

To test that, we remove the pattern mining phase and di-
rectly fine-tune CodeT5 for vulnerability injection. When fine-
tuning CodeT5, we replace the ground-truth outputs, which are

originally the respective statements to inject vulnerabilities,
with the respective vulnerable functions. After fine-tuning, the
model is expected to output a respective vulnerable function
given a normal function. We keep the training examples and
testing examples the same as the ones for VULGEN.

Given the 1078 testing examples, the model outputs a
new function for each testing example. Thus, the model
generates 1078 new functions. However, among the generated
1078 functions, only 111 of them exactly match the ground-
truth vulnerable functions, making the precision only 10.29%,
where VULGEN outperforms it by 42.27%.

We again increase the beam size to 10 and randomly
sample 100 outputs and manually check whether they are
indeed vulnerable. Given the 1078 testing examples, the model
generate 10780 new functions. In the 100 sampled output
functions, only 17 of them are vulnerable and thus the success
rate of generating vulnerable functions is only 17%, which is
too low to build a high-quality vulnerability dataset.

The failure indicates the limitation of Transformer-based
code edit model for vulnerability generation. By manually
inspecting the generated samples, we notice that many of the
generated functions are not syntactically valid. For example,
some generated code ends at the middle of the functions. Some
generated code simply repeats the tokens until the maximum
limitation of the output tokens. We notice that such failures
are more serious when the functions are longer.

The Transformer-based approach achieves only
10.29% precision and 17% success rate, suggesting
its poor capability for vulnerability generation.

E. RQ3: Comparison with Pattern-based Approach (Getafix)

To show the effectiveness of VULGEN’s CodeT5-based
localization model, we remove the localization model and use
the original Getafix approach to inject the vulnerabilities. We
directly use the ranked patterns to edit the normal functions to
inject vulnerabilities. As the localization score which is based
on static analyzer error messages is not available, we cannot
rank the statements that the patterns can match. Thus, given a
normal function, we first get the top-10 patterns in the ranking
and extract the statements that the 10 patterns can match. Then,
we randomly select a statement and a pattern that match the
statement to inject a vulnerability.

Given the 1078 examples, Getafix generates 1073 new
functions. Only 61 of them match their ground-truth vulnerable
functions, making the precision 5.67%, where VULGEN out-
performs it by 158.20%. To compare the beam size 10 results
for VULGEN and the Transformer-based code edit approach,
we randomly select 10 pairs of patterns and statements to
generate new functions for each given normal sample. If there
are less than 10 pairs of patterns and statements, we use all the
pairs to generate new functions. Getafix thus generates 8114
new functions. With randomly sampling 100 new functions
and manually checking, 50 of them are vulnerable, thus the
success rate of generating vulnerable functions is 50%.

The results indicate the limitation of traditional-pattern-
based approach for vulnerability injection and show the impor-
tance of using semantic-aware model for injection localization.
The 5.67% exactly-match precision indicates that, although the
mined patterns have the capability to match the statements
to inject vulnerabilities syntactically, without the semantic
localization, they are difficult to find the correct locations
to inject vulnerabilities. However, the 50% success rate for
vulnerability injection also indicates the value of traditional
pattern-based approach. Compared with Transformer-based
code edit approach, it ensures the syntax validity and has
the capability to match some special tokens (e.g., memset,
free, etc.), although without understanding the context code.
This further indicates the necessity to combine semantic-aware
approach with traditional-pattern-based approach.

Getafix achieves 5.67% exactly-match precision, sug-
gesting the necessity of using semantic-aware model
for injection localization. However, the 50% success
rate also indicates value of pattern-based approach,
showing that the combination of pattern-based ap-
proach and CodeT5-based localization is promising.

. J

F. RQ4: Comparison to GNN-based Approach (Graph2Edit)

In the study [15]], Nong et al. show that the GNN-based
code edit approach Graph2Edit [31] achieves the highest
effectiveness for vulnerability injection. Graph2Edit takes the
AST of a given program as input, converts it into a graph,
and use its GNN embedding to predict a sequence of AST
edits to generate a new program. The design of the edit
operations and the dynamic programming algorithm makes
Graph2Edit outperforms other DL-based code editors [15].
Thus, we compare effectiveness of Graph2Edit with VULGEN.

We follow the experiments in [[15] to set up Graph2Edit,
preprocess our examples into ASTs, use the same examples
for VULGEN to train and test the Graph2Edit model. For beam
size 1, Graph2Edit generates 1024 new functions and 129 of
them exactly match their ground-truth vulnerable functions.
Thus, the exactly-match precision is 12.59%, where VULGEN
outperforms it by 16.28%. For beam size 10, Graph2Edit gen-
erates 10240 functions. Sampling 100 of them and manually
checking the 100 functions, only 13 of them are vulnerable,
making the success rate only 13%.

The results indicate the advantage of VULGEN compared
with the GNN-based approach. We notice that Graph2Edit
does not have the capability to understand the code semantic
compared with our localization model. One of the main
reasons is that our localization model is based on CodeT5
which are trained on millions of code samples. Thus, the fine-
tuned model has the capability to deal with more diverse code
and is better at understanding the code semantics rather than
uses irrelevant code features (e.g., program lengths or single
tokens) to edit code. In comparison, Graph2Edit is a randomly
initialized model and only the 9704 examples from our dataset
are used to train the model. Given the fact that DL models
require a large amount data (usually >100,000 samples) to train

the models well, our 9704 examples are too few. Therefore, the
Graph2Edit model is overfitted and cannot deal with complex
code edit scenarios. Given the fact that there is a lack of
vulnerability data to train the DL model, the GNN-based code
edit approach may not be suitable for vulnerability injection.

Graph2Edit achieves 12.59% precision and 13% suc-
cess rate, indicating its limitation of understanding
code semantics compared with VULGEN.

G. RQS5: Usefulness of VULGEN

To evaluate the usefulness of VULGEN, we explore the
effectiveness of using the generated functions to improve the
DL-based vulnerability detectors. We follow the experiment
settings in [[15] and perform the evaluation on Devign [2] as
well as ReVeal [[11] which are the state-of-the-art vulnerability
detectors at function level for C language. There might be
other even more advanced DL-based detectors (e.g., in the
future). Yet our main goal with RQS5 here is to show the
improvement our generated samples can bring, instead of the
absolute numbers on detection accuracy. Thus, whether the
chosen detectors outperform all other options may not be our
major concern for this paper. We believe that if our samples
can help improve the chosen detectors, they would be expected
to help other detectors (e.g., LineVul [37]) as well.

Similar to [15], we apply the independent testing that
the training samples and testing samples are from different
datasets to simulate the real-world vulnerability detection
scenario. We use the datasets in [15]] as the baseline datasets
for training and testing. As our generated functions involve
samples from the datasets Devign and ReVeal, we remove
the duplicates in the datasets for vulnerability detection. Thus,
the numbers of samples in our experiments are different from
the ones in [15]. We use Devign dataset (which has 9,744
vulnerable samples and 11,012 non-vulnerable samples) for
training and use ReVeal (which has 1,630 vulnerable samples
and 16,487 non-vulnerable samples) and Xen (which has 531
vulnerable samples and 7,436 non-vulnerable samples) for
testing as the Devign dataset is relatively balanced.

Then, we add the 963 generated functions from VULGEN
to the training set of Devign and see whether the new training
set improves the performance of the detectors—since we have
963 samples produced by VULGEN, we simply use all of
them. To avoid the impact on training brought by any change
in the dataset balance (ratio of #vulnerable samples to #non-
vulnerable samples), we also add the proportional number of
real-world normal samples from [43]] to the training set to
keep the balance the same as before. Table [lI] column Baseline
shows the performance of the two detectors on testing sets
ReVeal and Xen using the original Devign training set. The
column Generated shows the improvement compared to the
baseline using the new training set. We can see that VULGEN’s
generated functions significantly improve the vulnerability
detector performance. For example, in the reproduction setting,
our the training set improves Devign’s F1 by 31.84%, which
generally shows the effectiveness of the generated functions.

To show that the VULGEN’s generated functions are better
than the synthetic samples, we replace the 963 generated
functions with equal number of synthetic vulnerable functions
from SARD [20]] and re-train the Devign and ReVeal detectors.
Table column Synthetic shows the improvements using
the synthetic samples. We notice that the synthetic samples
improve the detectors much less than the VULGEN’s generated
samples do (Reproduction setting for both Devign and ReVeal)
or even decrease the performance (Replication setting for De-
vign and ReVeal). This indicates that the VULGEN’s generated
functions are more useful than the synthetic ones.

We also compare the VULGEN’s generated functions with
their respective ground-truth vulnerable functions. Table[I] col-
umn Ground Truth shows the improvements using the ground-
truth vulnerable functions of the 963 generated functions. We
notice that the improvements are mostly better than the ones
of the generated functions (except for Devign’s replication
setting experiment), which is as expected since our generated
functions have 69% success rate and there is noise brought in
the rest of generated functions.

To show that VULGEN is not limited to use the normal
functions from the examples of vulnerability fixes to generate
vulnerable functions, we use the normal functions which are
not fixed from vulnerable functions in the BigVul dataset [|17]]
for injection. To support it, and make the experiment compa-
rable, we randomly select the same number (963) of generated
functions to improve the training set and column Wild shows
the improvements. We notice that although the improvements
are less than the ones in the Generated and Ground Truth
experiments, they are still better than the ones in the Synthetic
experiment, indicating the potential of VULGEN to generate a
large amount of useful vulnerable functions.

the DL-based vulnerability detectors.

VULGEN’s generated functions are useful to improve]

H. RQ6: Efficiency

We measure the efficiency of VULGEN by tracking the
time cost of generating the 963 functions. The experiment
is performed on the machine we descirbe in Section IILF.
We apply 15-process parallel computing for the task. In total,
VULGEN takes 55 minutes to generate 963 functions, and thus
it generates 17.5 functions per minute in average.

VULGEN is efficient for vulnerability generation.

VI. DISCUSSION

In this section, we use several case studies to show why
VULGEN works better than other learning-based code edit
approaches for vulnerability injection.

Pattern-based approach is more effective than Trans-
former-based model for code editing. Figure [3] shows an
example that VULGEN successfully injects a vulnerability but
the Transformer-based code edit model does not. The not-
commented code is the normal function before edited (lines
1-6 and 16-26). The ground truth of the vulnerability injection

static int mp_property_video_frame_info(void *ctx,
struct m_property *prop, int action, void *arg)
{
MPContext *mpctx = ctx;
struct mp_image *f = mpctx->video_out
? vo_get_current_frame(mpctx->video_out) : NULL;
// The code below is added by the translation model
/*const char *pict_types[] = {e, "I", "P", "B"};
const char *pict_type = f->pict_type >= 1
&& f->pict_type <= 3
? pict_types[f->pict_type] : NULL;
struct m_sub_property props[] = {{“picture-type”/*.*/};
MPContext *mpctx = ctx;
struct mp_image *f = mpctx->video_out
? vo_get_current_frame(mpctx->video_out) :
if (1)
return M_PROPERTY_UNAVAILABLE;
const char *pict_types[] = {0, "I", "P",
const char *pict_type = f->pict_type >= 1
&& f->pict_type <= 3
? pict_types[f->pict_type] : NULL;
22 struct m_sub_property props[] = {{"picture-type"/*.*/};
23 // The statement below is deleted by both VulGen and translation model
24 talloc_free(f);
25 return m_property_read_sub(props, action, arg);
26 }

Fig. 3.
approach.

NULL;*/

"8"};

An example of VULGEN’s merits over the Transformer-based

static inline unsigned int get_rtc_time(struct rtc_time *wtime){
struct pdc_tod tod_data;
long int days, rem, y;
const unsigned short int *ip;
The line below is deleted by VulGen
memset(wtime, @, sizeof(*wtime));
if (pdc_tod_read(&tod_data) < 0)
return RTC_24H | RTC_BATT_BAD;
/*.*/
y = 1970;
Graph2Edit modifies the line below is modified into
while (days < @)
while (days < @ || days >= (__isleap(y) ? 366 :
{

1
2
3
4
5 //
6
7
8

9

10
11
12
13

1/
//
365))

long int yg = y + days / 365 - (days % 365 < 0);

days -= ((yg - y) * 365 + LEAPS_THRU_END_OF(yg - 1)
- LEAPS_THRU_END_OF(y - 1));

y = Y8

}

%%/

wtime->tm_mday = days + 1;
return RTC_24H;

23 }

Fig. 4. An example of VULGEN’s merits over the GNN-based approach.

is to remove the free statement at line 24 to inject a memory
leak vulnerability [44]]. VULGEN uses its injection localization
model to correctly locate that line, and uses the edit pattern to
delete the free statement to inject the vulnerability. In compar-
ison, the Transformer-based model also correctly deletes line
24, indicating that it also has the capability to correctly locate
the statement to inject a vulnerability. However, it strangely
adds the code from line 8 to 15 and completely changes the
code functionality. It seems that the translation model wants
to delete the statement at lines 16-17 (indeed, deleting the if
statement could also inject a use of null pointer vulnerability),
as the first added 5 lines are the same as the 5 lines after the if
statement. Then, it messes up and generates the function body
again and deletes the free statement at line 24.

This indicates that the translation model may not be suit-
able for whole-function code editing. Different from other
Transformer-based code edit approaches (e.g., bug repair) that
only need to generate a few tokens (e.g., a buggy statement),
our vulnerability injection task needs to edit whole functions
(of often hundreds of tokens), since we do not have an external
static analyzer to extract the statements to inject vulnerabil-
ities and the code contexts are also important. However, the
translation model is not good at generating a long sequence of
tokens as it needs to generate the tokens one by one iteratively.

Pre-trained CodeT5 model allows for understanding

10

1 static int rt5514_dsp_voice_wake_up_put(struct snd_kcontrol *kcontrol,
2 struct snd_ctl_elem_value *ucontrol)

3 1

4 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
5 struct rt5514 _priv *rt5514 = snd_soc_component_get_drvdata(component);
6 const struct firmware *fw = NULL;

7 u8 buf[8];

8 if (ucontrol->value.integer.value[@] == rt5514->dsp_enabled)

9 return 0;

10 // The whole if statement below is deleted by Getafix

11 if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF)
12 {

13 rt5514->dsp_enabled = ucontrol->value.integer.value[@];

14 if (rt5514->dsp_enabled)

15

16 if (rt5514->pdata.dsp_calib_clk_name &&

17 !TS_ERR(rt5514->dsp_calib_clk))

18 {

19 /*.x/

20 // The line below is deleted by VulGen

21 memset(buf, 0, sizeof(buf));

22 rt5514->p113_cal_value = buf[@] | buf[1] << 8

23 | buf[2] << 16 | buf[3] << 24;
24 rt5514_calibration(rt5514, false);

25 clk_disable_unprepare(rt5514->dsp_calib_clk);

26 }

27 /*.x/

28 }

29 /*.x/

30)

31 /*.*/

32}

Fig. 5. An example of VULGEN’s merits over the pattern-based approach.

code semantically. Figure 4] shows an example that VULGEN
successfully injects a vulnerability but the GNN-based ap-
proach Graph2Edit does not. Again, the not-commented code
is the normal function before edited. VULGEN successfully
generates the ground-truth vulnerable function. It correctly lo-
cates the statement at line 6 which initializes a structure pointer
and uses its pattern to delete the statement to inject a use
of uninitialized variable vulnerability, based on the semantic
of the statement and the context code. However, Graph2Edit
locates to line 13 and uses its sequence of edits to remove
the second condition in the while loop. While removing the
conditions in while loops may inject vulnerabilities in other
cases (e.g., writing bytes one by one to a buffer), this just
injects a bug that makes the date on the calendar incorrect.

The failure of Graph2Edit indicates that it may not have
enough capability to understand code semanticsThe main
reason of the failure may be the lack of training data (<10K).
The DL model of Graph2Edit is not well trained to deal with
different code edit scenarios. Thus, fine-tuning a pre-trained
code-semantic-aware model is a better way. Previous studies
have shown that using pre-trained models like CodeBERT [45]]
and CodeT?5 [32] can improve the DL models for code relevant
tasks significantly, although the training datasets may not be
very large [[10], [37]. VULGEN takes the advantage of the pre-
trained model CodeT5 for localization and thus outperforms
Graph2Edit for vulnerability injection.

DL-based model allows changing the task for code easily.
Figure [5] shows an example that VULGEN correctly locates
and deletes the statement at line 21 to inject a vulnerability
but Getafix does not. Since we do not have an external static
analyzer for localization, once Getafix ranks the top edit
patterns to use, it could only randomly select a location to
apply the pattern. In Figure 5] Getafix simply matches and
deletes an if statement where the condition is an equality
expression, without other localization information used. Thus,
Getafix completely breaks the functionality of the function but

does not inject any vulnerability.

The reason that we cannot use static analyzers for vul-
nerability injection is that they are mostly rule-based code
analyzers. Those rules are defined by human experts based
on their experience and knowledge. For example, the static
analyzers for bug localization have been studied and developed
for many years [46]-[50] and can be directly used for bug
localization in the original Getafix. However, the rules are de-
fined by humans and cannot be transferred to our vulnerability
injection localization task. In contrast, the DL-based model
can be trained for different tasks in the same domain once the
model is designed and the training data is ready. The CodeT5
pre-trained model can be fine-tuned for different code relevant
tasks such as code summarization, clone detection, and code
translation [32]]. Thus, we fine-tune it for our vulnerability
injection localization task and it makes VULGEN outperforms
Getafix for vulnerability injection.

VII. THREATS TO VALIDITY

Internal validity. As the source code of Getafix [25] is
not available, the major threat to internal validity lies in
the implementation of the pattern mining and vulnerability
injection phases, which might differ from the one in the
original Getafix tool. To mitigate this problem, we do unit
testing and integration testing on the pattern mining and
vulnerability injection phases to ensure they work correctly.

Another threat to validity lies on the hyperparameter setting
for training the injection localization model, other baseline
models, as well as the DL-based vulnerability detection mod-
els. As hyperparamter tuning for these models are expensive,
we use the default setting for all the DL models used as they
have the best performance in their original evaluation.

External validity. The main threat to the external validity
lies in the datasets we used for evaluation. Although the
vulnerability fixes in the datasets we include are labeled or
confirmed by humans, they cannot be ensured to be precise.
Also, many real-world vulnerability fixing examples not only
involve the fixing themselves, but also involve other edits
not relevant to the vulnerabilities. Thus, the edit patterns
we extract and the injection localization training data may
have noise. To mitigate this, we only select one-statement-edit
vulnerability fixing examples for our evaluation dataset.

VIII. ETHICAL IMPLICATIONS

As highlighted earlier (§I), we aim to address the data
needs for large-scale benchmarking and deep-learning(DL)-
based technique development, rather than benefiting/support-
ing attackers. We expect no ethical concerns because: (1)
the generated vulnerable samples are not real-world software
and will not be deployed; (2) after being used for training
DL-models, these samples will not be disclosed to users—
only the trained models are deployed/shared; (3) even if the
samples become accessible to attackers who may leverage
the vulnerabilities therein against real-world software, such
vulnerabilities would be readily detectable by models trained
on such samples—and no exploits are provided.

11

IX. RELATED WORK

Many efforts on building vulnerability datasets exist.
SARD [20] and SATE IV [21] are popular datasets which
contain over 60,000 vulnerability samples, but the samples
are synthetic. BigVul [17] and CVEFixes [19] develop scripts
to automatically collect the real-world vulnerability fixing
examples based on the reports in the CVE/NVD database [16],
but the total numbers of available fixes are still small (e.g,
<5,000 fixes for C language). Some other works [22]-[24]]
develop techniques to automatically detect vulnerability fixes
in real-world projects, but the accuracy is low (<60%).

There are also techniques that automatically generate
bug/vulnerability data. Zhang et al. [28] develop a framework
to automatically generate null-pointer-dereference vulnerabil-
ity samples, but only one type of vulnerability samples can
be generated. FixReverter [26] reverts known bug-fix patterns
to inject bugs for benchmarking fuzzers. SemSeed [27] is a
technique that seeds realistic bugs semantically using word
embedding model, but it can only seed one-line bugs.

Other learning-based techniques that edit code for different
purposes exist. Many of them edit code for bugs/vulnerability
repair. Getafix [25] is a pattern-based code editor which
automatically suggests human-like bug fixes to the developers.
VulRepair [[10] automatically fixes real-world vulnerabilities
using a fine-tuned CodeT5 model [32]]. CURE [29] automati-
cally fixes bugs using a code-aware neural machine translation
model. However, as vulnerability injection is different from
bug/vulnerability repair, these techniques cannot be directly
used for vulnerability injection.

In comparison, VULGEN automatically generates vulnera-
bility samples based on the widely available normal samples
and the generated samples can be directly used for training
vulnerability analysis models without further cleaning.

X. CONCLUSION

To generate large-scale vulnerability datasets for training or
benchmarking vulnerability analysis techniques, we propose
VULGEN, the first injection-based vulnerability-generation
technique not being limited to one vulnerability class. VUL-
GEN combines the strengths of deterministic (pattern-based)
and probabilistic (DL-based) approaches to achieve realis-
tic vulnerability injection. Our evaluation results show that
VULGEN significantly outperforms state-of-the-art potential
peer techniques for vulnerability injection, and the promising
usefulness of the generated samples.

XI. DATA AVAILABILITY

Our source code, datasets, and experimental results are all
available in our publicly accessible artifact.

ACKNOWLEDGMENT

We thank the reviewers for their constructive comments
which helped us improve our original manuscript. This re-
search was supported by the Army Research Office (ARO,
grant number W911NF-21-1-0027), the European Research
Council (ERC, grant agreement 851895), and the German Re-
search Foundation within the ConcSys and DeMoCo projects.

https://zenodo.org/record/7569854

[1]

[3]

[4]

[5]

[6]

[7]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

F. Civaner, “Real-life software security vulnerabilities and what you
can do to stay safe,” https://hackernoon.com/how-software-security-
vulnerabilities- work-and- what- you-can-do-to- stay-safe-c9596d993581.
Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in Neural Information Processing
Systems (NeurIPS), vol. 32, 2019.

X. Zhou and R. M. Verma, “Vulnerability detection via multimodal
learning: Datasets and analysis,” in Proceedings of the 2022 ACM on
Asia Conference on Computer and Communications Security (AsiaCCS),
2022, pp. 1225-1227.

T. H. M. Le and M. A. Babar, “On the use of fine-grained vulnerable
code statements for software vulnerability assessment models,” in 2022
IEEE/ACM 19th International Conference on Mining Software Reposi-
tories (MSR), 2022, pp. 621-633.

D. Hin, A. Kan, H. Chen, and M. A. Babar, “LineVD: statement-level
vulnerability detection using graph neural networks,” in Proceedings
of the 19th International Conference on Mining Software Repositories
(MSR), 2022, pp. 596-607.

X. Fu and H. Cai, “FlowDist:multi-staged refinement-based dynamic
information flow analysis for distributed software systems,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2093—
2110.

W. Li, J. Ming, X. Luo, and H. Cai, “{PolyCruise}: A {Cross-
Language} dynamic information flow analysis,” in 31st USENIX Se-
curity Symposium (USENIX Security 22), 2022, pp. 2513-2530.

W. Li, J. Ruan, G. Yi, L. Cheng, X. Luo, and H. Cai, “PolyFuzz: Holistic
greybox fuzzing of multi-language systems,” in 32nd USENIX Security
Symposium (USENIX Security 23), 2023.

Z. Chen, S. Kommrusch, and M. Monperrus, “Neural transfer learn-
ing for repairing security vulnerabilities in c¢ code,” arXiv preprint
arXiv:2104.08308, 2021.

M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and D. Phung, “VulRe-
pair: a t5-based automated software vulnerability repair,” in Proceedings
of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2022, pp. 935-947.

S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet,” IEEE Transactions on
Software Engineering (TSE), 2021.

Y. Nong, H. Cai, P. Ye, L. Li, and F. Chen, “Evaluating and comparing
memory error vulnerability detectors,” Information and Software Tech-
nology, vol. 137, p. 106614, 2021.

Y. Nong and H. Cai, “A preliminary study on open-source memory
vulnerability detectors,” in 2020 IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering (SANER). 1EEE,
2020, pp. 557-561.

Y. Nong, R. Sharma, A. Hamou-Lhadj, X. Luo, and H. Cai, “Open
science in software engineering: A study on deep learning-based vul-
nerability detection,” IEEE Transactions on Software Engineering (TSE),
2022.

Y. Nong, Y. Ou, M. Pradel, F. Chen, and H. Cai, “Generating realistic
vulnerabilities via neural code editing: an empirical study,” in Proceed-
ings of the 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2022, pp.
1097-1109.

H. Booth, D. Rike, G. A. Witte et al., “The national vulnerability
database (NVD): Overview,” 2013.

J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A c/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the

12

(18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

(33]

17th International Conference on Mining Software Repositories (MSR),
2020, pp. 508-512.

X. Wang, S. Wang, P. Feng, K. Sun, and S. Jajodia, “Patchdb: A
large-scale security patch dataset,” in 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
2021, pp. 149-160.

G. Bhandari, A. Naseer, and L. Moonen, “CVEfixes: automated col-
lection of vulnerabilities and their fixes from open-source software,” in
Proceedings of the 17th International Conference on Predictive Models
and Data Analytics in Software Engineering (PROMISE), 2021, pp. 30—
39.

P. E. Black et al., “SARD: A software assurance reference dataset,” in
Anonymous Cybersecurity Innovation Forum.(), 2017.

V. Okun, A. Delaitre, P. E. Black et al., “Report on the static analysis
tool exposition (sate) iv,” NIST Special Publication, vol. 500, p. 297,
2013.

Y. Zheng, S. Pujar, B. Lewis, L. Buratti, E. Epstein, B. Yang, J. Laredo,
A. Morari, and Z. Su, “D2A: A dataset built for ai-based vulnerability
detection methods using differential analysis,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP), 2021, pp. 111-120.

W. Li, L. Li, and H. Cai, “Polyfax: a toolkit for characterizing multi-
language software,” in Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE-Demo), 2022, pp. 1662—1666.

T. Fehrer, R. C. Lozoya, A. Sabetta, D. Di Nucci, and D. A. Tamburri,
“Detecting security fixes in open-source repositories using static code
analyzers,” arXiv preprint arXiv:2105.03346, 2021.

J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
to fix bugs automatically,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1-27, 2019.

Z. Zhang, Z. Patterson, M. Hicks, and S. Wei, “FIXREVERTER: A
realistic bug injection methodology for benchmarking fuzz testing,” in
31st USENIX Security Symposium (USENIX Security 22), 2022, pp.
3699-3715.

J. Patra and M. Pradel, “Semantic bug seeding: a learning-based ap-
proach for creating realistic bugs,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE), 2021, pp.
906-918.

S. Zhang, “A framework of vulnerable code dataset generation by open-
source injection,” in 2021 IEEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA), 2021, pp. 1099-
1103.

N. Jiang, T. Lutellier, and L. Tan, “CURE: Code-aware neural machine
translation for automatic program repair,” in 202/ [EEE/ACM 43rd
International Conference on Software Engineering (ICSE), 2021, pp.
1161-1173.

C. S. Xia and L. Zhang, “Less training, more repairing please: revisiting
automated program repair via zero-shot learning,” in Proceedings of
the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE),
2022, pp. 959-971.

Z. Yao, F. F. Xu, P. Yin, H. Sun, and G. Neubig, “Learning
structural edits via incremental tree transformations,” arXiv preprint
arXiv:2101.12087, 2021.

Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” arXiv preprint arXiv:2109.00859, 2021.

B. Berabi, J. He, V. Raychev, and M. Vechev, “Tfix: Learning to fix cod-
ing errors with a text-to-text transformer,” in International Conference
on Machine Learning. PMLR, 2021, pp. 780-791.

https://hackernoon.com/how-software-security-vulnerabilities-work-and-what-you-can-do-to-stay-safe-c9596d993581
https://hackernoon.com/how-software-security-vulnerabilities-work-and-what-you-can-do-to-stay-safe-c9596d993581

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

C. Niu, C. Li, V. Ng, J. Ge, L. Huang, and B. Luo, “SPT-code: sequence-
to-sequence pre-training for learning source code representations,” in
Proceedings of the 44th International Conference on Software Engi-
neering (ICSE), 2022, pp. 2006-2018.

M. L. Collard, M. J. Decker, and J. I. Maletic, “srcML: An infrastructure
for the exploration, analysis, and manipulation of source code: A tool
demonstration,” in 2013 IEEE International Conference on Software
Maintenance, 2013, pp. 516-519.

J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in Proceedings
of the 29th ACM/IEEE international conference on Automated software
engineering (ASE), 2014, pp. 313-324.

M. Fu and C. Tantithamthavorn, “LineVul: a transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories (MSR), 2022, pp. 608-620.
R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.
P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative
position representations,” in Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (NAACL-HLT), Volume 2
(Short Papers), 2018, pp. 464—468.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
Neural Information Processing Systems (NeurIPS), vol. 30, 2017.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz et al., “Huggingface’s trans-
formers: State-of-the-art natural language processing,” arXiv preprint
arXiv:1910.03771, 2019.

S. Christey, J. Kenderdine, J. Mazella, and B. Miles, “Common weakness

13

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

enumeration,” Mitre Corporation, 2013.

G. Lin, W. Xiao, J. Zhang, and Y. Xiang, “Deep learning-based vulner-
able function detection: A benchmark,” in International Conference on
Information and Communications Security. ~Springer, 2019, pp. 219—
232.

W. Li, H. Cai, Y. Sui, and D. Manz, “PCA: memory leak detection
using partial call-path analysis,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE-Demo), 2020,
pp. 1621-1625.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang et al., “Codebert: A pre-trained model for programming
and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

E. Aftandilian, R. Sauciuc, S. Priya, and S. Krishnan, “Building useful
program analysis tools using an extensible Java compiler,” in 2012 IEEE
12th International Working Conference on Source Code Analysis and
Manipulation (SCAM), 2012, pp. 14-23.

C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. O’Hearn, 1. Papakonstantinou, J. Purbrick, and D. Rodriguez, “Moving
fast with software verification,” in NASA Formal Methods Symposium.
Springer, 2015, pp. 3-11.

D. Hovemeyer and W. Pugh, “Finding bugs is easy,” in Companion
to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications (OOPSLA), 2004,
pp. 132-136.

D. Kroening and M. Tautschnig, “CBMC-c bounded model checker,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 2014, pp. 389-391.

D. Marjamiki, “Cppcheck: a tool for static c/c++ code analysis,” https:
/lcppcheck.sourceforge.io/, 2013.

https://cppcheck.sourceforge.io/
https://cppcheck.sourceforge.io/

	Introduction
	Motivation and Background
	Motivation Examples and Challenges
	Existing Peer Techniques and Limitations
	Getafix
	Transformer-based Code Edit Model

	Overview
	Approach
	Pattern Mining
	localization Learning
	Vulnerability Injection

	Evaluation
	Tool Implementation
	Dataset
	RQ1: Effectiveness in Generating Vulnerabilities
	RQ2: Comparison with Transformer-based Approach
	RQ3: Comparison with Pattern-based Approach (Getafix)
	RQ4: Comparison to GNN-based Approach (Graph2Edit)
	RQ5: Usefulness of VulGen
	RQ6: Efficiency

	Discussion
	Threats to Validity
	Ethical Implications
	Related Work
	Conclusion
	Data Availability
	References

