When to Say What: Learning to Find
Condition-Message Inconsistencies

Islem Bouzenia
University of Stuttgart
Germany
fi_bouzenia@esi.dz

Abstract—Programs often emit natural language messages,
e.g., in logging statements or exceptions raised on unexpected
paths. To be meaningful to users and developers, the message,
i.e., what to say, must be consistent with the condition under
which it gets triggered, i.e., when to say it. However, checking for
inconsistencies between conditions and messages is challenging
because the conditions are expressed in the logic of the pro-
gramming language, while messages are informally expressed in
natural language. This paper presents CMI-Finder, an approach
for detecting condition-message inconsistencies. CMI-Finder is
based on a neural model that takes a condition and a message
as its input and then predicts whether the two are consistent.
To address the problem of obtaining realistic, diverse, and large-
scale training data, we present six techniques to generate large
numbers of inconsistent examples to learn from automatically.
Moreover, we describe and compare three neural models, which
are based on binary classification, triplet loss, and fine-tuning,
respectively. Our evaluation applies the approach to 300K
condition-message statements extracted from 42 million lines of
Python code. The best model achieves a precision of 78% at
a recall of 72% on a dataset of past bug fixes. Applying the
approach to the newest versions of popular open-source projects
reveals 50 previously unknown bugs, 19 of which have been
confirmed by the developers so far.

I. INTRODUCTION

Programs often emit natural language messages to inform
the user about a specific event or an error occurring during
the execution. These messages range from being purely in-
formational, e.g., when logging the state of the program, to
explaining why the entire execution gets terminated, e.g., when
raising an exception. Code that triggers a message is typically
guarded by some condition. To be meaningful to users and
developers, the condition must match the message emitted by
a program. In other words, what the program is saying should
be consistent with when the program is saying it.

Unfortunately, not all condition-message pairs are consis-
tent, which may harm the robustness of a program and make
debugging unnecessarily difficult. There are two main reasons
for condition-message inconsistencies. First, the condition may
not accurately reflect when the developer intends to print a
message or raise an exception. An incorrect condition may
cause some noteworthy state to remain unnoticed, or perhaps
even worse, cause an exception to be raised even though no
unexpected state was ever reached. For example, consider the
real-world example in Figure The condition is equivalent
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if len(bits) != 4 or len(bits) != 6 :
raise template.TemplateSyntaxError ("$r takes exactly
four or six arguments (second argument must be ’
as’)" % str(bits[0]))

(a) Inconsistency in the Pinax project due to an incorrect condition.

if n2 > nl :
raise ValueError (' Total internal reflection impossible
for nl > n2’)

(b) Inconsistency in the Sympy project due to an incorrect message.

Fig. 1: Real-world examples of condition-message inconsis-
tencies.

to not (len(bits) == 4 and len(bits) == 6), which
will always evaluate to True, while the message states that
the reason for the exception is that len (bits) is not among
the values (4, 6).

Second, the message may be incomplete, misleading, or
even outright wrong. In this case, a user or developer may
not understand the reason for a message or an exception, and
as a result, perhaps even modify the code or the input in a
way that introduces more bugs. Figure [Ib] shows a real-world
example of this scenario. The exception message incorrectly
claims the problem to be that n1 > n2, while the condition
actually is raised when n1 < n2.

To better understand the importance of conditional mes-
sages, we perform a preliminary study of seven popular open-
source projects written in Python. Analyzing the if-statements
in their code shows that 20% of them output a message.
In other words, there is a large number of conditions and
exceptions that developers intend to be consistent, motivating
a technique for automatically checking this property. We
further analyze commits in these project to search for fixes
of condition-message inconsistencies. The search results show
that the inconsistency problem affects even popular open-
source projects, such as scikit-learn (3 instances over 1,000
bug-fixing commits), Scrapy (2 instances over 1,000 bug-
fixing commits), and Sympy (4 instances over 1,000 bug-fixing
commits). In addition, 10% to 11% of the bug-fixing commits
where a change occurs in a condition-message statement are



fixes of condition-message inconsistencies.

Finding condition-message inconsistencies requires a se-
mantic understanding of both the condition and the message.
The problem is compounded by the fact that conditions are
expressed in the formal syntax of the programming language,
while the exception message is expressed in natural language,
possibly interspersed with code fragments. Thus, any approach
addressing this problem needs a semantic understanding of
code and natural language.

This paper presents CMI-Finder, a deep learning-based
approach for detecting condition-message inconsistencies. The
basic idea is to extract message-printing statements and the
conditions that guard them, and to feed them into a neural
model that predicts whether the two are consistent. Realizing
this idea leads to two main challenges. The first challenge is
the training data problem. While examples of likely consistent
condition-message pairs are amply available, obtaining large
amounts of inconsistent examples is non-trivial. We address
this challenge through six techniques to create a large and
diverse set of inconsistent examples from existing code bases.
The strategies range from classical mutation operators, over
pattern-based recombination of consistent pairs, to using a
large language model (Codex) to create realistic yet wrong
messages. The second challenge is designing an effective neu-
ral model for the prediction task. We present three orthogonal
formulations of this learning task—binary classification, a
distance-based model trained with triplet loss, and fine-tuning
a pre-trained model—and compare their effectiveness.

The most closely related prior work cross-checks natural
language comments against code [IL], [2], [3]], [4] and translates
comments to specifications [5], [6]. While code-comment
inconsistency may hamper maintenance and reuse, we target
inconsistencies that directly affect the runtime behavior. Other
prior work points out difficulties in correctly handling excep-
tions [7]], [8] and proposes techniques for detecting incorrect
error handling code [9], [10l], [L1], as well as predicting
error handling code [12[], [13]. While these approaches are
about handling exceptional messages, we here address the
problem of correctly reporting such messages. CMI-Finder
also relates to existing approaches on deep learning-based
bug detection [14]], [15], [L6], [17], [18], [L9]. Our approach
contributes by addressing a previously overlooked kind of
problem, by proposing a distance-based model trained with
triplet loss, which differs from the binary classification models
used in the past, and by addressing the training data problem
through six data generation strategies.

Our evaluation applies CMI-Finder to 42 million lines of
Python code from popular open-source projects. We find that
the approach effectively finds condition-message inconsisten-
cies, e.g., with a precision of 78% and a recall of 72%
when applied to a dataset of 66 examples extracted from
past, real-world bug fixes. Checking the newest versions of
widely used projects with CMI-Finder, about one out of three
warnings by CMI-Finder is a true positive, which allowed us
to detect 50 previously unknown real-world bugs, some of
which the developers have already confirmed. A comparison

with a popular linter and an existing neural model shows that
CMI-Finder complements and outperforms them by finding
otherwise missed problems.

In summary, this paper contributes the following:

e We are the first to address the problem of detecting
condition-message inconsistencies.

e We present six techniques for generating a large and
diverse set of likely inconsistent condition-message pairs
to be used as training data.

o We present three neural models that formulate the incon-
sistency detection problem in different ways and compare
their effectiveness.

« We provide empirical evidence that the approach success-
fully finds bugs fixed in the past and reveals previously
unknown bugs in widely used projects.

II. PROBLEM STATEMENT

Before describing our approach in detail, the following
defines the problem we are addressing and explains what is
challenging about it. CMI-Finder reasons about conditional
statements that throws a warning message, defined as follows:

Definition 1 (Condition-message pair). A condition-message
pair (¢, m) consists of
« a boolean expression c that represents the condition for
triggering a message, and
¢ a statement m that emits a message to the user when ¢
evaluates to true.

For example, consider the following code:

if condition:
// possibly some other code here
raise ExceptionType ("message")

The corresponding condition-message pair (¢, m) is:
(condition,ExceptionType("message"))

The goal of our approach is to check whether a condition-
message pair is consistent. Nevertheless, such statement can
be consistent, inconsistent or neutral.

Definition 2 (Inconsistency). A condition-message pair (c, m)
is inconsistent if and only if ¢ and the condition described by
m cannot be true at the same time, i.e., they contradict each
other.

We call an inconsistent pair (¢,m) a condition-message
inconsistency. Note that the above definition is rather strict
about what to consider an inconsistency. In particular, it does
not require that ¢ and m logically imply each other, but only
that they clearly contradict each other. The reason is that some
condition-message pairs in real-world code are only weakly
related, e.g., due to generic messages, such as “error”, or
strings printed to produce well-formatted output.

The goal of CMI-Finder is to automatically detect condition-
message inconsistencies. Once an inconsistency has been
identified, the developers can decide which part of the pairs to
change to improve the code. The key challenge for detecting
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Fig. 2: Overview of the approach.

inconsistent condition-message pairs (c,m) is that, while ¢ has
precise semantics defined by the programming language, m
typically contains a message formulated in natural language.
Given the inherent fuzziness of natural language, accurately
checking a condition and a message are logically contradictory
is practically impossible. Instead, CMI-Finder is based on
neural networks, which have been shown to be highly effective
at reasoning about fuzzy information, e.g., natural language,
associated with source code [20].

III. APPROACH

This section presents CMI-Finder, an automated, neural
network-based approach for detecting inconsistent condition-
message pairs. We start with an overview of our framework
and then describe each component in detail.

A. Overview

Figure [2| gives an overview of the four main steps of
our approach. As in most neural software analyses, there
is a training phase, during which we train a model, and a
prediction phase, during which the trained model is applied to
previously unseen code. Both phases share the first step, which
extracts all condition-message pairs from a given code cor-
pus (Section [III-B). During training, these condition-message
pairs serve as training data, whereas during prediction, the
approach tries to find inconsistencies in them. To effectively
train a model that distinguishes consistent from inconsistent
examples, we need large amounts of both kinds of examples.
Following the common assumption that most real-world code
is correct, the extracted condition-message pairs are considered
to be consistent during training. To obtain inconsistent exam-
ples, CMI-Finder generates likely incorrect condition-message
pairs by mutating and re-combining the pairs extracted from
the code corpus (Section [[lI-C). As the third step, the approach

preprocesses all pairs, e.g., by removing duplicates during
training, and then represents them as vectors suitable for
neural reasoning (Section [[II-D). Finally, the fourth step is a
neural model that learns to determine whether a condition and
an exception are consistent with each other (Section [III-E).
Once trained, CMI-Finder applies the model to condition-
message pairs extracted from previously unseen code, where it
predicts the probability that a pair is inconsistent. Those pairs
predicted as most likely inconsistent are then shown to a user
as warnings.

CMI-Finder is designed as a framework that supports
different variants of the overall approach. In particular, we
present six different ways of generating inconsistent examples.
Likewise, we present three different ways of formulating the
machine learning task, along with suitable neural models, and
compare their effectiveness.

B. Data Extraction

The first step of CMI-Finder is about extracting condition-
message pairs from the given code. The approach parses the
code into an abstract syntax tree and then identifies statements
that emit a message and that are guarded by an if-condition
within the same function. As message-emitting statements, we
consider statements that raise an exception and function calls
involving the name print or log, which we found to be
common in real-world Python code during initial experiments.
For each such statement, the approach extracts a pair (¢, m)
as described in Definition [T}

The extractor considers three types of condition-message
pairs:

o Simple conditional statements that consist of one condi-

tion and a body, e.g.,:
if condition:

// possibly some other code here
raise ExceptionType ("message")

o Multi-branch statements, which are a sequence of if,
elif, and else branches with their corresponding bod-
ies, e.g.,:
if cl:

// some code
elif c2:
log.warning("message")
else:
raise Exception2 ("message")

e Nested ifs, which are a sequence of if branches that are
nested inside another, e.g.,:
if cl:
// some code
if c2:
print ("message")

For each message-emitting statement, the extractor gathers
and combines all boolean expressions guarding it. For exam-
ple, for a message emitted in the else branch of a multi-
branch statements, the associated condition is the conjunction
of the negated conditions of all other branches preceding the
else branch.



We filter, simplify, and augment the extracted pairs in three
ways. First, we perform a cleaning step to exclude condition-
message pairs with an empty message Second, we logically
simplify conditions to make them easier to understand and to
also reduce their number of tokens. For example, the condition
not a == b will be simplified into a != b. Third, we inline
any strings literals stored in variables into the exception
message, if a string literal is assigned to the variable within
the scope of the if-statement.

C. Generation of Inconsistent Examples

The second step of CMI-Finder is to generate likely incon-
sistent condition-message pairs based on the likely consistent
pairs extracted from the training code corpus. This step is
crucial for the overall effectiveness of the approach, as the
data used to train a neural model determines what it will
be able to find. When generating inconsistent examples, we
pursue three goals: realism, diversity, and scalability. First, the
inconsistent examples should be realistic, in the sense that the
approach should create mistakes that developers might actually
make. Realism is important because we want the trained
model to ultimately detect real-world bugs, instead of learning
to distinguish between artificial and real condition-message
pairs. Second, the inconsistent examples should be diverse,
i.e., cover a wide range of different kinds of inconsistencies.
Diversity is important to enable the approach to find many
different kinds of problems. Third, our techniques to generate
inconsistent examples must be applicable at scale, i.e., yield
many thousands of examples with reasonable effort. Scalability
matters because training an effective neural model typically
requires a large-scale dataset.

Since a single technique for generating inconsistent ex-
amples is unlikely to meet all the above goals, we design
CMI-Finder as a framework that supports an extensible set
of generation techniques. The following described the six
currently supported techniques, roughly ordered by increasing
complexity. Table [I| illustrates them with examples.

1) Mutation of Operators: Inspired by code transformations
applied in mutation testing [21]], this technique modifies log-
ical, relational, and arithmetic operators in condition-message
pairs. We mutate such operators either in the condition or in
message, e.g., by replacing >= by <=, as shown in row 1
of Table [l All possible mutations are stored in pairs of the
form (opl,op2), which means that we can mutate opl to
op2 if opl is in the condition and vice-versa. The list of
all mutation pairs is as follows: (==,! =), (<, >=), (>, <=
), (all, any), (and, or), (not in,in), (is, is not), (not, .). The
approach randomly picks from all operators in a pair and
replaces one of them. In case there is no operator in the
entire condition-message pair, the technique performs a logical
negation by adding (or removing) the keyword not to (or
from) the condition, which corresponds to the last pair in the
list of mutations.

2) Mutation of Error Messages: Mistakes may not only
occur in the programming language fragments of an condition-
message pair, but also in its natural language fragments.

The following complements the above technique by mutating
strings used in the message. To mutate error messages, the
approach relies on two strategies. First, we gather a set
of commonly used natural language descriptions of logical,
relational, and arithmetic operators, such as “greater than”, and
map them to alternatives that modify the semantics, such as
“less than” or “equal”. Second, we use NLTK and its WordNet
interface to replace adjectives and verbs with their antonyms,
e.g., replacing “invalid” with “valid”, as in row 2 of Table [T}

3) Random Re-combination: Copying and pasting code is
a common cause of programming mistakes, and in particular,
may lead to inconsistent condition-message pairs. To create
such mistakes in the training dataset of CMI-Finder, we
randomly recombine condition-message pairs. To this end, the
approach picks two pairs, (¢1,m1) and (c2,m2), and then
recombines them into (¢1,m2) and (c2,m1). Row 3 of Tablell]
shows an example of an inconsistency generated by random
re-combination.

4) Pattern-based Mutation: This technique matches two
pairs that have a similar structure and then re-combines them.
The rationale is that structurally similar pairs may be easily
confused by developers. To identify two pairs as structurally
similar, CMI-Finder parses the code into an AST and then ab-
stracts specific tokens with an abstraction process. Specifically,
the approach abstracts tokens as follows: (i) All identifiers
are replaced with ID. (ii) All numeric, boolean, and string
literals are replaced with NUM, BOOL, and STR, respectively.
(iii) All comparison and negation operators are replaced with
OP. (iv) Special built-in functions of Python, such as len, are
replaced by SPECF. (v) Iterable literals, such as a tuple (12,
8) are replaced by EITR. All other tokens remain the way
they are. After the token abstraction, we call the resulting pair
a template. For example, consider the following condition-
message pair:
if index == -1:

raise forms.ValidationError (' Could not find the item

)

%$s’, % item)
The approach abstracts the example into this template:

if ID OP NUM:
raise ID.ID(STR, % ID)

After abstracting all condition-message pairs into templates,
the technique clusters all pairs that have the same condition
template, e.g., ID OP NUM, and then replaces the entire condi-
tion of one pair with another condition from the same cluster.
Likewise, the approach replaces the message expression of
one pair, e.g., raise ID.ID(STR, % ID), with an message
expression of the same template. Row 4 of Table [I] gives a
complete example.

Our pattern-based mutation technique relates to prior work
on creating bugs based on templates of token sequences [22],
[23] and on modifying code by replacing one code fragment
with another that has the same AST node type [24]. To the
best of our knowledge, we are the first to adapt these ideas
to the problem of creating training data for learning-based
inconsistency detection.



TABLE I: Examples of inconsistent condition-message pairs generated by our six techniques.

Id Generation
technique

Consistent example

Inconsistent example

1 Mutation of opera-
tors

if idx >= size:

2 Mutation of error jif result.status in (0, 3):

messages log.warning("Invalid status")
3 Random re- if self.is alive():
combination

4 Pattern-based muta-
tion

if index == -1:
the item %s’, % item)

5 Embedding-based
token replacement

if not isinstance(config,

! .format (config))
6 Language model- if x == 0:
based generation of

€Iror messages

raise ValueException("Index out of bounds")

print ("Thread still running when test done")

raise forms.ValidationError(’Could not find

(tuple, list)):
raise TypeError ('Unable to decode config: {}

raise ValueError (' x must not be zero’)

if idx <= size:
raise ValueException ("Index out of bounds")
if result.status in (0, 3):
log.warning("Valid status")

if self.is alive():
print (' subok=True not supported.’)
if ellipsis_start == 1:
raise forms.ValidationError(’Could not find

)

the item %s’, % item)
if not isinstance(config, (tuple, list)):
raise ValueError ('Unable to decode config:
{}’ .format (config))
if x 1= 0:
raise ValueError (x cannot be lower than 07)

5) Embedding-based Token Replacement: This technique
uses a pre-trained token embedding model to replace target to-
kens with semantically similar tokens, which mimics mistakes
caused by the common bug pattern [25] of accidentally using
a wrong token. Given a condition-message pair, the approach
starts by tokenizing both the condition and the message using
the standard Python tokenizer. Next, it identifies a set of
target tokens for replacement, which are all identifiers and
operators in the pair, all literals in the condition, and all string
literals in the message. We select these kinds of target tokens
based on condition-message bugs observed in open-source
projects. Given the set of candidates, the approach retrieves
an alternative token from the pre-trained embedding model by
querying for the ten nearest neighbors of the original token and
by randomly picking one of them. Row 5 in Table [I| shows an
example, where TypeError is replaced with the semantically
similar token ValueError. Because string literals in error
messages are typically composed of multiple words, often
including some that refer to a variable used in the condition,
the approach further tokenizes these strings and replaces words
that match an identifier in the condition with an alternative
suggested by the embedding model. For example, given the
consistent example in row 5 of Table |} the approach may
replace the string literal in the message with ’Unable to
decode settings: {}’, where “config” is replaced with
“settings”.

6) Language Model-based Generation of Error Messages:
Some semantic mutations of consistent condition-message
pairs are hard to achieve using pre-defined transformations
or even semantic token replacement. To complement the
above techniques with more complex semantic transforma-
tions, we present a technique based on a large-scale, pre-
trained language model, such as GPT-3 [26]. Trained on large
code corpora, such models perform various tasks, including
code completition. We here use the OpenAl Codex modeﬂ
a descendant of GPT-3 that powers GitHub’s Copilot auto-

Uhttps://openai.com/blog/openai-codex/

Algorithm 1 Language model-based generation of inconsis-
tent examples.

Input: condition-message pair (c,m), pre-trained language model
LM, Embedding-based token replacement generator T'RG
Output: Set of likely inconsistent pairs (¢, m')
> Create semantics-breaking variants of the condition:
1: C < mutate the condition ¢ using TRG

> Predict an error message for the modified conditions:
2 M+ 0
3: for each ¢’ € C do
4: m' < ask LM to complete the message expression for ¢’
5: Add m' to M
> Combine into likely inconsistent pairs:
6: return set of pairs (¢, m’') randomly sampled from C' x M

completion system. Specifically, we use the ability of Codex
to generate realistic error messages for a given condition.

Algorithm [I] summarizes how we use a language model to
generate likely inconsistent condition-message pairs. Given a
pair (¢, m), the algorithm first mutates the condition ¢ using
the “token replacement” technique described in Section [[I1I-C
Next, the algorithm queries the language model for each
mutated condition to obtain a corresponding message expres-
sion. In particular, the model will generate error messages
that fit the mutated condition, i.e., that likely do not fit the
original condition. Given the sets of mutation conditions C' and
language model-generated messages M, the algorithm finally
randomly combines them and returns the re-combined pairs.

An example of this generation technique is shown in Fig-
ure 3] Given a condition-message pair with condition x == 0,
the algorithm mutates the operator, e.g., into x > 0 and x !=
0. It then asks Codex to complete the message for each of the
mutated conditions, resulting in messages that are realistic and
that likely have mutually different semantics. Randomly com-
bining a mutated condition with a Codex-generated message
hence yields a likely inconsistent condition-message pair. For
our example, the algorithm picks the pair illustrated as row 6
in Table [l

Our language model-based technique relates to recent work


https://openai.com/blog/openai-codex/

if x ==0: raise

ValueError(
mutate mutate mutate
if x > 0: raise if x 1= 0: raise . if x < 0: raise
ValueError( ValueError( VaIueE_rror(

\
~N 7

Codex AutoCompletion

‘ Random'l Matching

/1 2 3\
"x cannot be Iowe[:r"'

"x should be lower " "
than or equal to 0") x should be 07) than0") .~

Random Matching™"

Fig. 3: Example of using Codex-based generation of inconsis-
tent pairs.

on using pre-trained language models for mutation testing [27]],
which masks one token at a time and ask the model to predict
it. In contrast to that work, our approach uses the language
model to generate the entire error message, which produces
more complex mutations. Moreover, we are the first to use
language model-based code mutation to generate training data
for training a neural bug detection model.

Each of the above techniques generates zero, one, or more
likely inconsistent examples for each given consistent exam-
ple. To produce a diverse training dataset, CMI-Finder first
generates all possible inconsistent examples for each consis-
tent example, and then samples a fixed number of inconsistent
examples from each technique.

D. Preprocessing and Embedding

a) Cleaning and Filtering of Examples: Given the dataset
of extracted and generated condition-message pairs, the next
step is to prepare the dataset for neural learning. The approach
performs several cleaning and filtering steps. First, we remove
all duplicate examples, as those would be detrimental for
training an effective model [28]. Duplicates may result from
the same code appearing in multiple projects and from our
generation of inconsistent examples, because some strategies
may produce the same example after mutating two differ-
ent examples. Second, we remove all syntactically incorrect
examples, which occasionally result, e.g., from the Codex-
based generated of error messages. Finally, we exclude all
condition-message pairs with a condition containing more
than two conjunctions, because we observe that very complex
conditions tend to be hard to reason about for the model.

b) Tokenization: After cleaning the dataset, the approach
represents each condition-message pair (¢,m) as two se-
quences (C, M) of tokens. Depending on the neural model
(Section [III-E), we use different kinds of tokenizers. For
models trained from scratch, the approach combines two

tokenizers, one for the Python programming language and one
for natural language. Specifically, we first tokenize both the
condition and the message using Python’s built-in tokenizelﬂ
and then further tokenize any string literal that appears in the
message using the default word tokenizer of NLTK. For our
third model, which fine-tunes the existing Code-T5 model, we
use the default tokenizer that comes with that model, which
is based on a pre-trained byte level tokenizer.

c¢) Embedding: Because neural models reason about nu-
meric vectors, we must embed each condition-message pair
into a fixed-size vector representation. Again, the embedding
used by CMI-Finder depends on the neural model. For the
models we train from scratch, CMI-Finder uses FastText
because it has been shown to outperform other context-free
token embedding models on code [29]], while being less com-
putationally demanding than contextual and structure-based
models. We pre-train FastText on a corpus of if-conditions in
Python code, which yields an embedding function that maps a
token into a fixed-size vector, and then use the embedding
function to map each token in (C, M) into a vector. For
the Code-T5 model, embedding tokens is part of the overlap
training process via an integrated embedding layer.

E. Neural Models

The fourth and final step of CMI-Finder is a neural model
that predicts whether a condition-message pair (¢, m) is con-
sistent or inconsistent. We present three fundamentally differ-
ent ways of formulating a learning task for this purpose. First,
we use binary classification, i.e., a model that directly predicts
whether a given condition ¢ and message m are consistent. On
a high level, this formulation is similar to existing learning-
based detectors of bugs [14] and vulnerabilities [16]. Second,
we use a distance-based approach trained with triplet loss.
Intuitively, this model embeds both conditions and messages
into the same vector space, so that the distance between an
inconsistent condition ¢ and message m is large. Third, we
use a text-to-text transformer model. Unlike the two previous
ones, this model is not trained from scratch but we build on
a pre-trained Code-TS model, which we fine-tune on the task
of generating a label for each pair.

1) Binary Classification Model: The upper part of Figure [4]
shows the components of the binary classification model. The
given condition-message pair (¢, m) is tokenized into two se-
quences (C, M) with C = tcy, ..., tcy, and E = tmy, ..., tmy.
The model than concatenates these two sequences and passes
them into a bi-directional, LSTM-based [30]] recurrent neural
module that encodes the token sequence into a vector v.c.
Next, a fully connected layer takes the summary vector v,
as its input and predicts the probability Dinconsistent that
they are inconsistent. We train the model with binary cross-
entropy, i.e., trying to nudge the model toward predicting
Dinconsistent = 0.0 for the pairs extracted as-is from the
code corpus and p;nconsistent = 1.0 for pairs created by our
generators of likely inconsistent examples.

Zhttps://docs.python.org/3/library/tokenize.html
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Fig. 4: Three neural models to identify inconsistencies.

2) Distance-based Approach Trained with Triplet Loss:
As an alternative to binary classification, the following de-
scribes a distance-based approach that maps both conditions
and messages into the same vector space. The goal of this
mapping is a representation where a condition is close to its
consistent message, whereas a condition and an message that
are inconsistent are far away from each other. In other words,
we want to minimize (maximize) the distance between the
condition and the message in a consistent (inconsistent) pair.

To train a model that encodes conditions and messages
in the desired way, we use contrastive learning with triplet
loss [31]]. The basic idea is to show three inputs at a time
to the model during training: (i) an anchor input an, (ii) a
“positive” input pos that should be close to the anchor, and
(iii) a “negative” input meg that should not be close to the
anchor. The model is then trained with triplet loss as the
loss function, which implies minimizing the anchor-positive
distance and maximizing the anchor-negative distance:

lossripier = maz(dist(an, pos) — dist(an, neg) + g, 0)

The parameter g is the margin by which the loss tries to
push the negative input away from the positive input. We
compute the distance dist as the squared Euclidean distance.
Furthermore, we normalize the distance between two points by
dividing by the average norm of the two points. For example,
to normalize dist(an,pos) we divide it by (norm(an)/2 +
norm(pos)/2).

To train the triplet-loss model, we use two kinds of triplets.
On the one hand, the training data contains triplets ¢, m,m’,
where (¢, m) is a consistent pair and ¢’ is a mutation of the
exception m produced by a generation technique that operates
on the exception. On the other hand, we train the model with
triplets ¢, m,c’, where (¢,m) is a consistent pair and ¢’ is

a mutation of the condition ¢ produced by a technique that
operates on the condition.

The middle part of Figure {] shows the different components
of the model. Before computing the triplet-loss, each compo-
nent of a triplet is mapped into a vector in the same way as in
the binary classifier, i.e., by applying a bi-directional LSTM-
based recurrent neural network to the tokenized code. Once
the model is trained with triplet-loss, the approach identifies
inconsistent pairs as those that have a distance above some
threshold. To this end, only two inputs — a condition ¢ and an
exception m — are passed into the model during prediction.
A distance layer then compares the vector representations v,
and v,,. If the distance dist(v.,v,,) is above a configurable
threshold, the approach reports the condition-message pair as
inconsistent.

3) Text-to-Text Transformer: Instead of training a model
from scratch, the third model builds on an already pre-trained
text-to-text transformer model [32], called Code-T5 [33].
The model is pre-trained for general code understanding and
generation tasks on the CodeSearchNet data set [34] and a
C/C# dataset collected from BigQuery E} To fine-tune Code-
TS5 for our inconsistency detection task, we construct a dataset
of pairs (¢ ® m,l), where ¢ ® m is the concatenation of a
condition and a message, and [ is the corresponding label,
namely “inconsistent” or “consistent”. We then fine-tune the
model in a supervised way to teach it to generate the expected
label for a given condition-message pair.

IV. IMPLEMENTATION

Our implementation uses LibCST to parse the code, extract
condition-message pairs, and create inconsistent pairs. We crop
the tokenized condition and message to 32 tokens each, which
covers more than 95% of the dataset. We pre-train FastText on
6.5 million if-statements (not necessarily an condition-message
pair) with the following parameters: vector size = 32, epochs
= 300, window = 10, min frequency = 3. The model is used
both for replacing tokens (Section and to embed the
token sequences (Section [[II-D). The language model-based
generation technique uses the Davinci Codex model from
OpenAl through their API, with a zero temperature and a
maximum number of tokens of 64. The neural models are
implemented with Keras and TensorFlow as the backend. The
binary classifier uses two layers of 64 biLSTM cells connected
to a fully connected layer of size 128, a ReLu activation
function, and a final sigmoid node to produce a probability.
The triplet model uses the same kind of encoder. Both models
use the Adam optimizer for training, with a learning rate of
0.0025 for the binary classifier and a decaying learning rate
scheduled every 20 epochs for the triplet-loss model. Finally,
we use Code-T5-small ﬂ which has 60M parameters. We run
all our experiments on a Linux machine with 250G of memory,
48 CPU cores, and a 16G NVIDIA GPU (Tesla P100).

3https:/console.cloud.google.com/marketplace/details/github/github-repos
4https://huggingface.co/Salesforce/codet5-small
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V. EVALUATION

To evaluate our approach, we address the following research
questions:

« RQI1: How effective is CMI-Finder at detecting condition-
message inconsistencies?

e RQ2: How does CMI-Finder compare to existing tech-
niques for finding coding issues?

+ RQ3: How efficient is CMI-Finder?

« RQ4: How do the hyperparameters of the models impact
effectiveness?

A. Experimental Setup

a) Training data: The extractor collects 310K condition-
message pairs from 40K Python projects on GitHub, of which
we keep 10K for testing. To create a balanced training data
set, we generate 300K inconsistent pairs, where each strategy
contributes 50K pairs. Moreover, we create a dataset of 620K
triplets from mixed data to train the triplet-based model.

b) Synthetic test data: We use the held-out 10K consis-
tent pairs to create a synthetic test dataset by applying our six
generation strategies.

c) Past bug fixes: As a realistic test dataset, we extract
fixes of condition-message inconsistencies from version histo-
ries. To this end, we select commits that change a condition-
message pair and then manually inspect the old and the new
version to identify changes that fix an inconsistent pair. More
specifically, we follow these steps:

1) Randomly sample popular Python projects.

2) For each project, select commits containing the key-
words “bug” or “fix”.

3) Keep only commits with a change in a condition-
message statement.

4) Inspect up to 1,000 randomly sampled commits per
project.

5) One author selects changes that fix an inconsistency.

6) Discuss the collected changes with another author and
keep only those agreed to be inconsistencies.

The resulting set of past bug fixes contains 33 pairs of
consistent and inconsistent condition-message pairs belonging
to 25 different projects, i.e., 66 condition-message pairs in
total. We make sure to exclude these projects from the training
data.

d) New projects: To evaluate the effectiveness of CMI-
Finder at finding previously unknown bugs, we collect seven
further Python projects from GitHub: TensorFlow, Azure,
Scipy, Scrapy, Sympy, Scikit-learn, and Django. The seven
repositories have 520K LoC in total, from which we extract
9,913 condition-message pairs.

B. RQI: Effectiveness of the Approach

After training the models, we measure their effectiveness on
the synthetic test data, the past bug fixes, and the previously
unseen real-world projects. For the first two sets (synthetic and
past bug fixes), we compute the Receiver Operating Charac-
teristic (ROC) curve, which visualizes the tradeoff between
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Fig. 5: ROC curves of the three models on synthetic data.

false positive rate (x-axis) and true positive rate (y-axis) for
different classification thresholds. The area under the ROC
curve (AUC) summarizes the ROC curve in one score, where 1
means a perfect model and 0.5 shows that the model is similar
to a random predictor. The threshold values are between 0
and 1. Since the triplet model outputs the distance between
two points, which is not necessarily between 0 and 1, we use
quantiles to ensure that the thresholds of both models are on
the same scale. Each threshold is 1/T quantile of the highest
value scored by instances of the test set, where T=1000 is
the number of thresholds. For the Code-T5 model, we use the
probability of the output token as a score between 0 and 1.

a) Effectiveness on Synthetic Data: The ROC curve, in
Figure [5 shows that the fine-tuned Code-T5 with an AUC of
0.91 outperforms the two other models, which have an AUC
of 0.78 and 0.77, respectively. At a false positive rate (FPR)
of 0.2, the Code-T5-based model reaches an Fl-score of 0.83,
with 0.86 precision and 0.81 recall.

b) Effectiveness on Past Bug Fixes: After evaluating
our model on synthetic data, we perform a complementary
evaluation on the dataset of 66 examples extracted from past
fixes of real-world bugs. Figure [f] illustrates the ROC curve
obtained by the models. Again, the Code-TS5 model performs
better than the BILSTM and triplet-based models (AUC of
0.82 vs. 0.55 and 0.53). Moreover, the AUC of the Code-T5
on this test set is closer to its AUC on the synthetic data,
demonstrating that the model generalizes better to real data.
In contrast, the AUC of the BILSTM and triplet models drops
considerably, from 0.78 on synthetic data to 0.55 and 0.53 on
real data. At an FPR of 0.2, the Code-T5 model achieves an
F1 score of 0.75, corresponding to 0.78 precision and 0.72
recall.

c) Effectiveness on Real-World Projects: Next, we apply
our approach to all condition-message pairs in the previously
unseen projects. As a result, we get a prediction score for each
pair, and sort the pairs by their predicted inconsistency. To get
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Fig. 6: ROC curves of the three models on past bug fixes.

an estimate of the true positive rate on real-world projects, we
systematically inspect the top-ranked warnings and label them
as true positives and false positives according to Definition [2]
To reduce potential bias, the two authors discuss classification
until they reach a consensus. Finally, for each true positive, we
localize the problem (i.e., condition or message) and suggest
a fix by submitting a pull request to the project.

Because the ratio of inconsistent to consistent pairs is likely
imbalanced and much smaller then the 50:50 ratio in the
dataset of past bug fixes, it is expected to see more false
positives in this setup. We sample a total of 70 warnings by
sampling the top-50 warnings in exception raising statements,
the top-10 warnings in print statements, and the top-10 warn-
ings in log statements, as reported by the Code-T5 model
across the seven projects. The 50-10-10 sampling roughly
matches the distribution of condition-message pairs across
the three kinds of message-emitting statements the approach
extracts (Section . Our manual checking includes, if
necessary, consulting the source code to understand the context
and then deciding the pair’s consistency. On average, we take
less than 20 seconds to check pairs that do not require context
and up to one minute to check context-requiring pairs.

Among the 70 inspected pairs, we find a total of 21 true
positives, i.e., about one out of three warnings reported by
CMI-Finder is relevant to developers. Among the 21 true
positives, 16 inconsistencies are in raise statements, two in
print statements, and three in log statements.

Throughout different experiments with variants of the mod-
els, including the inspection of the 70 pairs described above,
we found a total of 50 previously unknown condition-message
inconsistencies. In 45 statements, the inconsistency is due to
a wrong message, and in the other five it is due to a wrong
condition. So far, we reported 40 of them to the developers, of
which 19 have already been confirmed as bugs. Table [[I} shows
representative examples of the warnings reported by CMI-
Finder. The first example combines two common causes for

inconsistencies, namely a message that clearly does not match
the condition and an incorrect exception type. The second
example is representative for another common pattern, namely
a message that describes a part of the condition, but fails to
cover all reasons why a message gets triggered. The third
example is another case of a message that seems unrelated
to the condition. Finally, the last example is a false positive
causes by the fact that the approach does not reason about data-
flow relationships between variables. Providing more non-local
information to the model could help avoid such false positives
in the future.

Finding 1: The approach reveals a total of 50 previously
unknown bugs in widely used projects, has an Fl-score
of 0.75 on a balanced dataset of past bug fixes, and a true
positive rate of one out of three when being applied to
real-world projects.

C. RQ2: Comparison with Baselines

We compare CMI-Finder to two existing techniques for
detecting coding issues. First, we compare with flake8, which
is a pattern-based linter popular among Python developersﬂ
Applying flake8 to the dataset of past bug fixes used in RQ1 re-
veals none of the inconsistent pairs, confirming our hypothesis
that CMI-Finder addresses a problem that is difficult to address
with a pattern-based approach. Second, we compare with a
GPT3 [26]-based neural model for detecting bugs in Pythmﬂ
The model is fine-tuned by OpenAl on detecting and fixing
bugs in Python code. Applied to the dataset of past bug fixes,
GPT3 achieves an Fl-score of 62%, which is clearly worse
than the 75% achieved by CMI-Finder. Moreover, GPT3 fails
to reveal any of previously unknown inconsistencies detected
by CMI-Finder. We conclude from these results that training
a neural model for a specific kind of bug is beneficial.

Finding 2: Compared to a widely used linter and a
neural model for detecting bugs in Python, CMI-Finder
is clearly more effective at finding condition-message
inconsistencies.

D. RQ3: Efficiency in Training and Prediction

We evaluate the time taken for training the models in CMI-
Finder and for predicting inconsistencies once a model has
been trained. Since the models differ in size and architecture,
their efficiency also differs. For training, the BILSTM model
(165K parameters) takes 58 seconds per epoch with a batch
size of 512, the triplet-based model (192K parameters) takes
42 seconds per epoch with a batch size of 1,024, and the
Code-T5 model (60M parameters) takes 3 hours and 25
minutes per epoch with a batch size of 32. The size of the
training data is the same in the three setups. The batch size
differs based on the data our GPU can load and operate on

Shttps://flake8.pycqa.org
Ohttps://beta.openai.com/playground/p/default-fix- python-bugs
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TABLE II: Real-world problems identified by CMI-Finder (RQ3).

Id Instance Project Status Comment
1 if not isinstance(p2, PolyElement) : Simpy Confirmed The message is claiming the problem to be pl and
raise ValueError (’pl and p2 must have the same p2 not having the same ring, however the condition
ring’) is testing if p2 is a polynomial. The accepted fix was
“p2 must be a polynomial”. Also the exception type

is wrong.

2 if not (os.path.isdir(tf source_path) and os.path. TensorFlow Confirmed The message reflects the first part of the condition
isfile(syslibs configure path) and os.path. only, and hence, does not imply the entire condition.
isfile (workspace(_path)) :

raise ValueError ('’ The path to the TensorFlow
source must be passed as the first argument’)

3 if len(index keys) > 1: TensorFlow To be re- Message does not reflect any part of the condition.

tf_logging.warning ("SparseFeature is a ported
complicated feature config and should only be
used after careful consideration of
VarLenFeature.")
4 if self. name is None and self. values is not None: TensorFlow False The model reports a warning because the con-

raise ValueError ("At least one of name (%s) and
default_name (%s) must be provided."% (self.
_name, self._default name))

dition checks name but the message refers to
default_name. However, the statement is correct
because in another method default_name gets
assigned to name if name is None.

positive

simultaneously. Once the one-time effort of training a model is
done, prediction is much faster. The BILSTM model performs
3,000 predictions per second when run on the GPU and
600 predictions per second on the CPU. The triplet model
performs 1,500 predictions per second on the GPU and 500
predictions per second on the CPU. Finally, Code-T5 performs
40 predictions per second on the GPU and 16 predictions per
second on the CPU. Compared to the other two models, Code-
TS is less efficient, but as it clearly provides the best results
and has prediction times that are fast enough for practical use,
we consider it to be the default model of CMI-Finder.

Finding 3: Depending on the model, training takes be-
tween several minutes and several hours. Once a model is
trained, tens to thousands of predictions can be performed
within a second.

E. RQ4: Impact of Hyperparameters

To understand how our results depend on hyperparameters
of the neural models, we experiment with several configura-
tions. For CodeT5, we use the defaults of the model, except
for the number of epochs and the batch size during fine-
tuning. Our default CodeT5 model is trained for two epochs.
However, experiments show that training for another epoch
helps increase the AUC score on past bug fixes from 0.82 to
0.84, whereas training for only one epoch lowers the AUC
score to 0.78, as shown in Figure

For the BiILSTM model, we vary the number of layers, the
size of each layer, and the dropout value. Our default model
has two BiLSTM layers of size 64, each followed by a feed-
forward layer of 128 nodes. To investigate the sensitivity of
the model to these parameters, we vary each of the three
parameters while keeping the others at their default value.
Specifically, we vary the number of BiLSTM layers (variants
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called 64_64_64 and 64), the size of the BiLSTM layers
(variants called 128_128 and 32_32), and the size of the feed-
forward layer (variants called dense_64 and dense_256). Fig-
ure 8| summarizes the results of these experiments. The figure
shows that changing the given parameters has a relatively little
effect on the AUC score (less than 0.08). Our default model
is the best in terms of AUC on past bug fixes.

We also investigate the triplet model’s sensitivity to hyper-
parameters. Specifically, we vary the distance metric between
squared Euclidean (default), Euclidean distance, and Manhat-
tan distance. We also vary the parameters of the loss formula
(default: Ay = Xy =g =1):

lossirip = maz(A; * dist(an, pos)—Az * dist(an, neg)+g,0)

Figure 0] summarizes the results of our experiments. The figure
shows that changing the given parameters has a relatively small
effect on the AUC score (less than 0.03 of difference). Our
default model is the best in terms of AUC on past bug fixes.

Finding 4: The effectiveness of the models is relatively
stable w.r.t. changes of their hyperparameters.

VI1. THREATS TO VALIDITY

We implement CMI-Finder for Python, and even though the
problem of condition-message inconsistencies is not Python-
specific, our results may not generalize to other languages. Our
approach for generating and labeling training data assumes
that the condition-message pairs extracted from open-source
projects are consistent, which may not always hold. As a result,
we cannot guarantee that the generated inconsistent pairs are
indeed all inconsistent. To avoid biasing our evaluation toward
synthetically generated examples, we also evaluate on past bug
fixes and previously unseen projects, which has been shown to
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both synthetic data and past-bug fixes.

be important [[17]. Our implementation focuses on condition-
message statements with up to two conjunctions (e.g., if x
and y and z), which covers 91% of all conditions in our
dataset. Finally, we collect the dataset of past bug fixes by
hand, which poses a risk of potential bias, which we try to
mitigate by discussing all examples among the authors until
reaching an agreement.

VII. RELATED WORK

Natural language vs. code: Our work is part of a larger
stream of work on cross-checking natural language against
code. Prior work compares natural language comments against
method-level code fragments [11], [2]], [3], [4] and translates
comments to formal specifications [35], [5], [6]. A unique
property of condition-message inconsistencies is to directly
affect the execution behavior of a program.

Exception handling: Exceptions thrown by third-party
APIs and exception handling code have been found to be
a common cause of bugs [7]], [8]. Several approaches for
detecting exception-related bugs have been proposed [36], [9],
[LO], [L1]. Another line of work predicts what code to surround
with a try-block and what the exception handling code should
be [12]], [13]. CMI-Finder complements prior work, as we are
the first to address condition-message inconsistencies.

Missing conditions: One cause for condition-message
inconsistencies are missing conditions. Chang et al. [37]
address this problem by mining program dependency graphs
to find conditions that should be checked. In a similar vein,
frequent itemset mining can also be used to find missing
conditions [38]]. These approaches use data mining and focus
on conditions to check before API calls, instead of using deep
learning to check conditions that guard messages.

Learning-based bug detection: CMI-Finder is an instance
of learning-based bug detection, which has received significant
attention in recent years. Existing approaches check for name-
related bugs [14], variable misuse bugs [15], security vulner-
abilities [16], [17], [18], and misleading variable names [19]].

on both synthetic data and past bug fixes.
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ants on synthetic data and past bug fixes.

All of these approaches are based on binary classification.
CMI-Finder contributes to the state of the art by addressing a
kind of bug not considered by previous work, by providing six
techniques for generating buggy examples, and by comparing
three different ways of formulating the learning task.

Neural models of code: An recurring question in neural
software analysis [20] is how to embed code into a vector
representation, and approaches based on AST paths [39],
control flow graphs [40], ASTs [41]], and a combination of
token sequences and graphs [42]] have been proposed. Our
models build on a token sequence-based encoding because
both the conditions and the exceptions are relatively short frag-
ments of code. Problems addressed by neural models of code
include making predictions about code changes [43], [44],
program repair [45], [46], code completion [47], [48]], [49],
code search [50], [51], and type prediction [52], [53[], [541,
[55]. Similar to our distance-based model, a type prediction
model by Allamanis et al. [S6] also uses triplet loss, in their
case to bring symbols that have the same type close to each
other in an embedding space.

VIII. CONCLUSION

This paper presents a framework for learning to find
condition-message inconsistencies. Powered by six data gener-
ation techniques and three neural models, the approach learns
to warn about inconsistent statements. Evaluating the approach
on Python shows that it is effective at finding bugs developers
have fixed in the past, and even finds 50 previously unknown
problems in real-world projects.
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