
CrystalBLEU: Precisely and Efficiently Measuring the Similarity
of Code

Aryaz Eghbali
University of Stuttgart

Stuttgart, Germany

aryaz.eghbali@iste.uni-stuttgart.de

Michael Pradel
University of Stuttgart

Stuttgart, Germany

michael@binaervarianz.de

ABSTRACT

Recent work has focused on using machine learning to automate

software engineering processes, such as code completion, code mi-

gration, and generating code from natural language description.

One of the challenges faced in these tasks is evaluating the qual-

ity of the predictions, which is usually done by comparing the

prediction to a reference solution. BLEU score has been adopted

for programming languages as it can be easily computed for any

programming language and even incomplete source code, while

enabling fast automated evaluation. However, programming lan-

guages are more verbose and have strict syntax when compared

to natural languages. This feature causes BLEU to find common

n-grams in unrelated programs, which makes distinguishing similar

pairs of programs from dissimilar pairs hard. This work presents

CrystalBLEU, an evaluation metric based on BLEU, that mitigates

the distinguishability problem. Our metric maintains the desirable

properties of BLEU, such as handling partial code, applicability to all

programming languages, high correlation with human judgement,

and efficiency, in addition to reducing the effects of the trivially

matched n-grams. We evaluate CrystalBLEU on two datasets from

previous work and a new dataset of human-written code. Our re-

sults show that CrystalBLEU differentiates similar and unrelated

programs better than the original BLEU score and also a variant

designed specifically for source code, CodeBLEU.

ACM Reference Format:

Aryaz Eghbali and Michael Pradel. 2022. CrystalBLEU: Precisely and Ef-

ficiently Measuring the Similarity of Code. In 44th International Confer-

ence on Software Engineering Companion (ICSE ’22 Companion), May 21–

29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 2 pages. https:

//doi.org/10.1145/3510454.3528648

1 INTRODUCTION

Machine learning models are being used for a variety of program-

ming languages ranging from VHDL [3] to more conventional

languages like Java [10] and Python [7]. Moreover, models have

been developed to predict a variety of code sizes such as right-

hand side of assignment [3], single line of code [2], sequence of

API calls [8], block of code [10], full method [4], and full class [7].

Therefore, an ideal metric should be language-agnostic and be able

to handle incomplete source code. Furthermore, the running time

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-6654-9598-1/22/05.
https://doi.org/10.1145/3510454.3528648

performance of a metric is an important factor as the metric might

be used as an online metric [1]. Hence, the BLEU score [5] has been

the dominating metric that provides all of these features.

Nevertheless, BLEU suffers from the problem of ignoring a prop-

erty in programming languages that is not present in natural lan-

guages. This issue, that we call trivially shared n-grams, comes from

the grammar and syntactic rules of programming languages along-

side the coding conventions used by programmers. Some examples

of trivially shared n-grams are “for (” in for loops, “) {” in many

control flow statements followed by a code block, the main function

definition in languages like C++ and Java, and commonly used APIs

like “console.log(”. The trivially shared n-grams appear in source

code regardless of the semantics of the program, which means they

increase the BLEU score without any implications on the similarity

of two code pieces. In this work we quantify the magnitude of

this problem using a novel meta-metric, called distinguishability.

Distinguishability assigns a positive number to a metric, which

shows how much the metric differentiates between similar pairs of

programs and dissimilar pairs. Higher distinguishability is desirable

in code similarity metrics, because the goal of these metrics is to

detect semantic similarity.

To mitigate the problem of trivially shared n-grams and to in-

crease distinguishability, we present a new metric, called Crys-

talBLEU. Our metric is language agnostic, works on partial and

incomplete code, runs as fast as BLEU, correlates highly with hu-

man judgement, and achieves higher distinguishability than BLEU

and CodeBLEU [6].

2 APPROACH

By analyzing two commonly used natural language1 and source

code2 corpora, we observe that there exists a disparity within the

frequency of the top occurring n-grams between natural and pro-

gramming languages. Specifically, the most occurring n-grams in

programming languages appear more frequently than the most

occurring n-grams in natural languages, but the least occurring

n-grams in programming languages appear fewer times than the

least occurring n-grams in natural languages. This means that given

a pair of random source code pieces in the same language, it is more

likely to find more common n-grams than a pair of random English

language texts. These results confirm our hypothesis about the

existence of trivially shared n-grams.

Distinguishability. The first step for mitigating against the prob-

lem of trivially shared n-grams is to define a meta-metric for mea-

suring the effects of the noise caused by these n-grams on the

output of the evaluation metric. We define the distinguishability

meta-metric based on the problem we observe when using BLEU

1Brown dataset, http://www.nltk.org/nltk_data/
2Java small dataset, https://github.com/tech-srl/code2seq/#datasets

341

2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)
20

22
 IE

EE
/A

C
M

 4
4t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 S
of

tw
ar

e
En

gi
ne

er
in

g:
 C

om
pa

ni
on

 P
ro

ce
ed

in
gs

 (I
C

SE
-C

om
pa

ni
on

) |
 9

78
-1

-6
65

4-
95

98
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
SE

-C
om

pa
ni

on
55

29
7.

20
22

.9
79

37
47

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on June 23,2022 at 14:05:44 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22 Companion, May 21–29, 2022, Pittsburgh, PA, USA Aryaz Eghbali and Michael Pradel

on source code. Given a dataset of source code pieces that are par-

titioned into equivalent classes, we can calculate the inter-class

and intra-class similarities from a given metric. The meta-metric

should assign higher scores for metric that achieve high intra-class

similarity and low inter-class similarity. Therefore, we define the

distinguishability of similarity metric𝑚 as the ratio of intra-class to

inter-class similarity scores from𝑚. Since calculating the inter-class

and intra-class similarities for all possible combinations of solution

and references pairs is practically expensive, a sample of these com-

binations can be used to calculate distinguishability. In our analyses

we use same-sized samples from each equivalency class and the

same number of pairs for inter- and intra-class pairs of solution and

references. This is done to cancel the effects of imbalanced class

sizes and larger number of pairs in the inter-class combinations. We

calculate distinguishability of CrystalBLEU, BLEU, and CodeBLEU

using a dataset from the set of programming challenges and their

solutions, which are tested using several test cases. All submissions

that pass all of the test cases for a particular task are considered to

be semantically equivalent in our work.

CrystalBLEU. We propose a surprisingly simple, yet effective,

two-phase algorithm to calculate similarity of a source code piece

to one or more reference code pieces, which we call CrystalBLEU.

First, in the preprocessing phase, based on the observation that

trivially shared n-grams are not informative enough, we gather

a set, 𝑆 , of the most frequent n-grams from a code corpus in the

same domain. For example, when applying CrystalBLEU to the code

pieces from the Nexgen [10] dataset, which consists of catch blocks

in Java, we use a corpus of Java catch blocks. Since the elements in

𝑆 are the most frequent n-grams of the domain of interest, they are
shared between many unrelated code pieces, and therefore can be

considered as being the trivially shared n-grams. The second phase

is the calculation of the CrystalBLEU score for a prediction against a

set of references. In this phase we execute the BLEU score algorithm,

except when the algorithm extracts the n-grams from the prediction

and references, we remove all n-grams that are in 𝑆 . For instance,
if set 𝑆 contains “catch (”, our algorithm assumes that no such 2-

gram exists in the prediction or the references. Hence, the modified

precision computed for the n-grams only considers the precision of

non-trivial shared n-grams. Another possible approach is to assign

lower weights to the n-grams in set 𝑆 , but for two reasons we do not
use this approach. The first and main reason is that removing the

n-grams in 𝑆 makes the algorithm simple, while resulting in high

distinguishability, and it does not add additional parameters that

require tuning. The second reason is that removing them makes

the calculations faster, which is of considerable importance.

3 EVALUATION

CrystalBLEU is as scalable as BLEU, with similar or even faster

running times for calculating the metric. It only requires a one-time

preprocessing phase over a typical corpus from the task’s domain.

In our experiments it runs in less than 20 seconds on a regular

laptop over 1.8m tokens.

RQ1: Distinguishability of CrystalBLEU. Table 1 shows the inter-

and intra-class similarity scores achieved by BLEU, CodeBLEU,

and CrystalBLEU on the Java programs in the ShareCode dataset,

alongside the respective distinguishabilities. For the C++ programs,

we are not able to calculate CodeBLEU, as it does not support the

Table 1: Similarity scores for ShareCode Java programs.

BLEU CodeBLEU CrystalBLEU

Intra-class 0.79 0.52 0.65

Inter-class 0.32 0.36 0.10

Distinguishability 2.47 1.44 6.50

language. However, for the C++ programs BLEU achieves 2.82 in

distinguishability, while CrystalBLEU achieves 8.29.

RQ2: Correlation with human judgment. We conduct a small hu-

man study to show that the increased distinguishability of Crys-

talBLEU does not cost the correlation with human judgment. In

the human study we present two code pieces to the subject and

ask to give a similarity score from 0 to 5, based on the human

study done by Tran et al. [9]. The code pieces are selected from

the Nexgen dataset and the code-to-code translation tasks of the

CodeXGLUE dataset. In our experiment CrystalBLEU achieves 0.85

in Spearman’s rank correlation in the Nexgen dataset, compared to

0.77 for CodeBLEU and 0.84 for BLEU. In the same experiment both

CrystalBLEU and BLEU have 0.93 in Pearson correlation, compared

to 0.86 for CodeBLEU. For the CodeXGLUE dataset, both Crystal-

BLEU and BLEU achieve 0.96 in Spearman’s rank correlation (0.98

Pearson correlation), compared to 0.88 for CodeBLEU (0.93 Pearson

correlation).

4 CONCLUSION

CrystalBLEU is a scalable metric, that provides the benefits of BLEU

score, in addition to higher distinguishability. This means that

using CrystalBLEU to evaluate code-generating models can better

differentiate poor quality predictions from the higher quality ones.

5 ACKNOWLEDGMENTS

This work was supported by the European Research Council (ERC,

grant agreement 851895), and by the German Research Foundation

within the ConcSys and Perf4JS projects.

REFERENCES
[1] Saikat Chakraborty, Miltiadis Allamanis, and Baishakhi Ray. 2018. Tree2Tree

Neural Translation Model for Learning Source Code Changes. http://arxiv.org/
abs/1810.00314

[2] Yangruibo Ding, Baishakhi Ray, Premkumar Devanbu, and Vincent J Hellendoorn.
2020. Patching as Translation: the Data and the Metaphor. arXiv:2008.10707.

[3] Jaeseong Lee, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. 2020. On the
Naturalness of Hardware Descriptions. In ESEC/FSE. 530–542.

[4] Anh Tuan Nguyen, Trong Duc Nguyen, Hung Dang Phan, and Tien N. Nguyen.
2018. A Deep Neural Network Language Model with Contexts for Source Code.
In SANER.

[5] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: a
method for automatic evaluation of machine translation. In ACL. 311–318.

[6] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. 2020. CodeBLEU: a Method for Automatic
Evaluation of Code Synthesis. arXiv:2009.10297 (2020).

[7] Zeyu Sun, Qihao Zhu, Lili Mou, Yingfei Xiong, Ge Li, and Lu Zhang. 2019. A
Grammar-Based Structural CNN Decoder for Code Generation. In AAAI. 7055–
7062. https://doi.org/10.1609/aaai.v33i01.33017055

[8] Yanfei Tian, XuWang, Hailong Sun, Yi Zhao, Chunbo Guo, and Xudong Liu. 2018.
Automatically Generating API Usage Patterns from Natural Language Queries.
In APSEC. IEEE, 59–68.

[9] Ngoc M. Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen. 2019.
Does BLEU score work for code migration?. In ICPC 2019. IEEE / ACM, 165–176.
https://doi.org/10.1109/ICPC.2019.00034

[10] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Yanjun Pu, and Xudong Liu.
2020. Learning to Handle Exceptions. In ASE.

342

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on June 23,2022 at 14:05:44 UTC from IEEE Xplore. Restrictions apply.

