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OF DIGITAL ANTENNA ARRA YS WITH NONIDENTICAL CHANNELS 

' 

V. I. Slyusar 

Central Research Institute of Armaments 
and Military Equipment of the Armed Forces of Ukraine 

The paper describes new matrix operations for(lom~act net.ation of responses in radio eqgineering __ 
systems, which use the technology of digital formation of radiation patterns of antenna arrays in the 
case of nonidentical reception channels. 

An intemet search made it possible to discover a number of foreign dissertations and materials of international 
conferences dated 1996-200 1, in which the authors suggest using the Khatri-Rao matrix product for signal processing in 
digital antenna arrays (DAA) [ 1 ]. Independently of the authors of[2], this mathematical apparatus was first applied by the 
author of[3] to the problems of many-coordinate radar measurements, who, like Khatri and Rao, decided to use this matrix 

f . 

operation and called it the transposed face-splitting product. 
Based on the principle of symmetry, in [3] the operation of face-product was also introduced, which, as distinguished 

from the Khatri-Rao procedure, permitted row-by-row Kronecker multiplication of matrices with equal numbers of rows, 
and the main properties of this procedure were investigated. This innovation was ahead of the initiative ofProf. Fortiana of 
the University of Barcelona in mathematics, who, independently of [3, 4], also suggested the operation of face-splitting 
product of matrices and called it the semi-Hadamard product [5]. In the course of email communications, Mr. Fortiana 
appreciated the results described in [3, 4] and confitmed their priority. The time elapsed since the publication of [3, 4] 
proved the validity of this approach, and the increased number of its followers among foreign specialists points to the 
inconsistency of a skeptical attitude to this sphere of research. 

This paper develops the theory of face-products of matrices as applied to treatment of the problems of radar and 
communication based on DAA applications. 

It is well known that when considering many-coordinate information and measurement systems with digital shaping 
of the radiation pattern in the case of nonidentical channels of antenna arrays, there arises a problem of compact matrix 
fonnalization of the reception ·channel responses. To resolve this problem, we propose a family of new versions of 
face-products based on the penetrating face-multiplication ·of matrices of different size [ 6], and on generalized operations 
of face-products and block face-products [7]. 

The essence of the penetrating face-multiplication [6] is that for the rows in which the many-dimensional right-hand 
matrix is to be "split", we consider those rows or columns of numbers, which are arranged in the dimension complementary 
with respect to the left-hand matrix. By the penetrating face-product of a pxg-matrix A= [ay.] and ann-dimensional 
matrix B (n ~ 3), deployed into the block row or block column with pxg-blocks (B = [B,]), we mean a matrix (with 
dimension B) of the type 

(1) 
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where the product A oB r is the Hadamard-typ~. and for the matrix B represented as a block-row or a block-column, 
respectively, ' 

A {Q]8 = [A o B 1 : A o 8 2 : .. ·: A o 8, : .. ·] . ' 

A !:!8 = [A T 0 BIT : A T 0 8 J : 

where "T" denotes transposition. 
In the case of a p-vector C and of a two-dimensional matrix B matched to it in the number of rows, we obtain the 

identity C J B = C ~ B [6]. For the p-row eT and a tw<>:-dimensional matrix B, which are matched in their number of 
columns, the relation eT+ B = C T ~8 is valid. Among other properties of the penetrating face-multiplication, we must 
mention its commutativity (A~B = 81Q1A), but, for convenience, we. assume in what follows that the matrix of1esser 

k . 

dimension is situated to the left. 
A peculiar feature of the penetrating face-product is "infiltration" of the two-dimensional matrix into the 

three-dimensional one, so that dimension of the latter remains unchanged. The operation introduced. by (I) !J1akes it 
possible to formalize the process of infiltration of discrete sets through sets of a larger dimension. Mathematical simulation 
of this procedure is often required in analysis of radio engineering systems. For example, for a three-coordinate Doppler 
radar system with a planar digital antenna array (DAA), in which the radiation patterns of its antenna elements cannot be 
factored, for the single-signal case expression ( 1) permits us to describe the noiseless analytical model of signals at the 
outputs of R frequency filters, where this model can take the AFR discrepancies of the reception channels into account [7]: 

V = a· ( Q~F) =a · ( Q o F1 : Q o F 2: · · ·: Q o F, : · · -) . (2) 

Here a is the signal complex amplitude, 
. • • 

QJJ(x,y) QJ2 (x, y) • • • QIR (x, y) 

Q= 
• • • • 
• • • • • • • • 

• • • 

QRI (X, y) QR2 (x, y) ... QRR (x, y) 

is the matrix of complex characteristics of directivity of antenna elements of the planar DAA, 

Ftn( m) ... F!Rt( m) f112( m) ... FJR2( ro) Fj w( ro) ... FIRN( ro) 
• 

F= • • • • • • • • • • • 
• • • • • • • ... • • • • 
• • • • • • • • • • • 

FRtt( ro) ... FRRt( ro) FR12( ro) . .. FRR2( ro) FRw( ro) ... FRRN( ro) 

is the block matrix of complex-valued frequency responses of digital filters Frmn { ro) at the signal frequency ro for RxR 

reception channels of the DAA (each rmth channelis.characterized by a particular AFR ofthe nth frequency filterF,mn(ro), 
' . ' 

and the ordinal number n of the block cmrespondS'to the numbers ofthe Doppler filters while the first two numbers in the 
indices of rm elements of every block are identical to ordinal numbers of indices of the matrix Q and to the number of the 
respective reception channel). 

Thus, every nth block of the product Q~Fcan be written as 
• • • • • • 

Q 11(x, y)· Fttn( ro) Q t2(x, y)· F12n( ro) ... Q JR(X, y)· F1Rn( ro) 
QoFn= 

• • • • 
• • • • 
• • • • • 

• • . . • . 

Q RI (x, y)· F Rtn( ro) Q R2(x, y) · F R2n( m) ... Q RR(x, y) · F RRn( ro) 

When solving the problem of range measurement and direction finding, in a pulse radar system with the planar DAA 
the nonidentitites of reception channels can be considered integrally in the whole reception band. This is done by the 
respective description of the pulses' envelope in each channel of the array. The appropriate model of responses of a 
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three-coordinate pulse radar system to a single source can also be written with the use of the penetrating face-product in 

the form [7] 

• • • 

Q 11 (X, y )- S tl g ( Z) Q12 (x,y)·St2g(z) ··· Q1R(x,y)·S 1Rg(z) 

where 
• 
• 
• 

• 
• 
• 

• 
• • 

• • • are the blocks of Hadamard 
• • 

Q Rz (x, y )· S R~ ( z) . . ' Q RR (X, Y)' S RRg ( Z) 

products, and Snmg(z) is the response of the gth strobe of range in the nmth reception channel. 
It should be noted that, depending on the variant of processing, for Snmg(z) we may consider not only the results of 

additional gating of ADC samples, but the discrete envelope of the pulse signal in the sample having the zth ordinal 

number. This fact must be taken into account, because, for brevity, we will indicate only the first of the possible 

interpretations of the above function of the parameter z. 
In order to fm malize the model of a 4 coordinate radar system with a planar DAA, when we simultaneously estimate 

the range, frequency, and angular coordinates of targets, in the case ofnonidentity of channels it is convenient to use the 
generalized face-product (GFP) [7]. This type of multiplication is intended exclusively for block matrices whose blocks 
have equal dimensions, and may be defined as follows: 

The generalized face-product of block matrices A= [Ay·] and B = [B;g] with a matched partition into blocks of equal 
-

dimensions and with the same number ofblock-rows is the matrix A 0 8, in which every ith block-row represents a totality 

of penetrating face-products of all blocks A !I ofthe ith block-row of the left-hand matrix by the block-row B; = [ Bn··· Bi2 ... 
B;a], with the corresponding number of the right-hand matrix B: 

(3) 

w nere ~denotes the penetrating face-product. 
Having compared the face-product with matrix operation (3), it can be easily seen that the GFP represents, in essence, 

its counterpart, but at a higher level of generalization. Here the role of matrix elements acting in the previous 
face-multiplication is now played by the matrix blocks. In addition, instead of the ordinary product, in GFP we use the 
Hadamard product (see the definition of the penetrating face-multiplication (I)). 

The methodological significance of the new type of matrix product per m its us to consider it as a promising tool for 
systems analysis and synthesis. 

Having established the necessary tenninology and the features of the matrix apparatus used, we consider the sought 
mathematical model of a four-coordinate radar with a DAA. In the case of a solitary signal, whose source can be called 
pointwise, the array of output (noiseless for simplicity) voltages of the reception channels of a digital pattern-shaping 
network, after additional gating of the ADC samples in range and fmmation of frequency filters, can be written as 

-V= Q~ S°F ·a =Q~[St COJF:S 2 [0)F: ... :sriQJF]·a, (4) 

• • • 

Qll (x, y) QJ2 (x,y) . .. . QJR (x, y) 

where Q= • • • • 
is the matrix of complex-valued directivity characteristics of the • • • • • • • • 

• • • 

QRJ (x, y) QR2 (x, y) ••• QRR (x, y) 

antenna elements in the planar DAA, 

Sut {z) ••• StRt (z): Stt2(z) • • • StR2(z): :s JIG (z) ••• StRG(z) 
s =[St s2 ... sG ]= • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • • • • • 

SRtt(z) • • • S RRl (z): S Rl2(z) • • • SRR2(z): :SRtG(z) ••• S RRG(z) 
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is the block matrix of responses of G range strobes from RxR reception channels, whose different AFR lead to different 
envelopes ofthe pulse signals (each rmth channel in the gth range strobe will have its own, quite peculiar, envelope of the 
pulse signal S,1(z)), and F is the block matrix of characteristics of N frequency filters, which is similar to that considered 
in (2). 

In a more sophisticated multiposition case, when all the positions represent 4-coordinate radar stations with DAA ( 4), 
the general analytical model of the multistatic system, when resolving the range- bearing problem for a single source, can 
be fonnalized withthe aid ofGFP (3): 

-.. ....... - ..._,.. - -... 
• ·a . (5) U = QD sop .. 

' 

,...., ,.., ,...,., ,..._, 

Here the block matrice(s V, Q, S, and F have the same meaning as in (4), but differ from the latter in that they have an 

additional index in the block matrix elements corresponding to the positional number of the multiposition system: 

• • • 

Qlll' (x, y} Qt~t ~x. y). ••• Q1Rt (x, y) 
• • • • • . .. • • • • 

• • • - QRll (x,y) QR2l (x, y) QRRl (x,y) 
Q, • • • 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • --
Q= Q2 • • - • • - • • ' • • 

• . ................................................ ,, ..... -
Qp • • • 

QltP (x, y) Qt2P (x, Y} ... QIRP (X, y) 
• • • 
• • • •• • 
• • • 

• • • 

QRIP (X, y) QR2P (X, y) ••• QRRP (X, y) 

- - -s 11 sl2 ••• Sw -S= • • • 
• • • • • • --• • • - - -S Pl Sp2 ••• Spa 

Sun (z) ... StRu(z) S1112(z) ... Stilt2(z) Stna {z) . .. StRta{z) • 

• • • • • • • • • • • • • • • • . .. • • •• • 
• • • • • • 

SRJil(z) • • • • S RRtl (z) SRtt2(z) • • • S RRt2(z) S Rlla(z) ... S RRta(z) 
. .. 

' 
.SttPt(z) ••• StRPt (z) SuP2(z) ••• SLRP2(z) SIIPG(z) • • • S lRPa (z) 

• • • • • • • ... • • ... • . .. • ••• • 
• • • • • • 

SRtPt(z) . .. S RRPt (z) S RlP2 {z) ... S RRP2(z) S RtPG(z) ••• S JtRPG(z) 

while the matrix F turns into the matrix S if we replace the symbols Sand z in it by symbols F and ro, respectively. 
With the use ofblock-type notations, relationships ( 5) can be represented in a more detailed fonn based on definition (3): 

- - -Q, s 11 sl2 ••• -
• • • U= • • • 

• 0 • • • • • - -. -Qp S Pl S P2 • • • 

- -Sta Ftt -• • 
• 0 • 
• • - -Spa Fp, 

. 12 

-
Ft2 

• • • ·-Fp2 

-... F,N 

• •• 
• 
• • 

• ·a= 



• 

• 
• 
• 

• 
• 
• ••• 

• 
• 
• 

... 

••• 

FIN l] 
• a, 

FpN J] 
-where each pgnth block of the resulting matrix U is defined by Hadamard' s product of the respective blocks <2f matrices Q, 

- -S,F: 
-

' 

..... -il·Qup (x,y)·S 11 pg (z)·Filpn (ro) ... a·QlRp (x,y)·SIRpg (z)·F1Rpn (ID) 

-- ... ••• ••• • 

- - c 

a·QRlp (x,y)·SRlpg (z)·FRlpn (ro) ... a·QRRp (x,y)·SRRpg (z)·FRRpn (ro) 

If we have to estimate simultaneously the angular coordinates attd ranges of M sources, and the characteristics of 
n:ception channels ofDAA are nonidentical, the solution of this measurement problem requires introduction of the concept 
of block generalized face-product (BGFP) of matrices [7]. The operation reduces to implementation of the 
block-by-block procedure of generalized face-product applied to the blocks of the same hierarchical level. 

By the block generalized fac~product oftrdbpxngs matrixlf == [A·6g}tin and a dbpxnks matrix lJ:;lBbk]dlf{consisting 
of equal numbers (dxn) of super-blocks with dimensions bxg and bxk, respectively, formed by b bl~k-rows each, and -comprising g (the matrix A) and k (the matrix B) pxs blocks, is meant the m~trix A@ B, each dnth super-block of which 

represents the generalized face-product of the .respective super-blocks of the initial matrices: 

• 

dn 

·Based on this definition, consider now a single-position radar system, which resolves the range-bearing problem with 
.\1 signal sources. The voltages of its output pulse mixture, without noise taken into account, can be represented by the 
operation of the block GFP in the fot m 

whereQ= 

-U = (Q@ S )(A ® I R ® 10 ~ 

• • 
Qu (xJ , Yt ) ·.. QlR (x., Y1 ) 

• • • • • • 
• • 

• • • 

QRI (x., Y1 ) ... QRR (x., Yt ) 

... 
• • 

Qll (XM ,yM) ... QIR (XM ,yM) 
• • • . .. 

• • 

• • 
• 

QRI (xM ,yM) ... QRR (XM ,yM) 
. 

San(zm} ... SIRt(zm) 

S = : m . ... 
SRu(zm) ... 

• • • • • • 
• • 
• .. . • • • 

(6) 

• 

A= [ a1 a2 ••. ilm ]T is the vector of complex amplitudes of M signals, IR artd la are identity matrices with their dimensions 
M 

RxR and GxG,respectively, while the block-matrix u with its entries u krt = L am. s nrg (Zm )· Qkr (Xm' Ym) has the 
m= I • 

fonn 
• u.u ... • 

UIRG 
• • 

UIRI UIIG ... 
• U= : ... .. . • • •• • 

• • • ... • • • 
• • 0 

URRI URIG ... URRG 

13 
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In the process of 4 coordinate measurements, the model (6), supplemented with frequency selection, is transformed 
into the following matrix expression: ' 

- -
U = (Q@S ©F)(A ® lR ®le® IN 1 (7) 

where, as distinct from (6), the block-matrix U is supplemented with new blocks, whose indices correspond to ordinal 
numbers of the frequency filters: 

and 

U= 

• 

U1111 · · · 

• 

• • • • • • 

U Rill ... 

M 

• • 

VIR II ullel 
• • 
• • • • • 
• • 

• • 

URRII URIGI 

• 

. .. UIRGI 

• • • 

• • 

• • • 

... U RRGI 

. .. 
• • 

UlleN .. . UtRGN 
• • 
• 

. .. 
• • 

• 
• 
• 

U RIGN ... U RRGN 

(Jkrgn =Lam ·Sicrg (zm)·Qkr (xm,Ym)·Fkrn(O>m1F=[Ft F2"'FM ], 
m= I ..... ' 

F1 RI { O>m) 

Fm = : ·· · • 
• 
• 

F RI I { O>m) .. · FRRI ( O>m) 

" .. " 

F11 N ( O>m) 
• 

• • • • 
• 

FRI N ( O>m) 
• • • 

• 
• 
• ' 

' 

and 10 is the GxG identity matrix. 
For the multi-position case, (6) and (7) can be generalized as follows: 

U = (Q @ S )(A ® I R ® le 1 U = (Q@ S@ F)( A ® I R ® IG ® IN 1 

where 
• • 

Qll I (Xt 'Yt ) ••• QIRI (Xt,YI) 
• • 
• • • • • • • • • • 

• • 

QRII (xlt Y1 ) ... QRRt (x, , Yt ) -Q= • • . .. 
• • • 

QllP (Xt tYI) • • • QIRP (Xt 'Yt ) 
• • 
• ... • ... 
• • 

• • 

QRIP (Xt 'Yt ) ... QRRP (Xt , Yt ) 

- - -s 11 S12 • • • SIM -S= • • • 
• • • • • • 
• • • ' - - -

S PI SP2 . .. SpM 

while 

Sllpl (zm) • • • S IRpl (zm) -s = • • • ... • pm • • 

S Rlpl (zm) ... S RRpl (zm) 

F11 pi { O>m} ••• F1 Rpl { O>m) -Fpm= 
• • 
• • • • • • • 

FRlpl { O>m) • • • F RRpl.( O>m) 

• 

Qlll (X M 'Y M ) 
• • 
• 

• 

QRII (XM ,yM) 

• 
QlJp (XM ,yM) 

• • • 
• 

QRJp(XM,YM) 

- -
Ft I F12 -F= • • • • 

• • - -Fpt Fp2 

sllpG(zm) 
• ... • 
• 

SRtpG(zm) 

F11 pN ( O>m) 
• 

• • • • • 

FRlpN (rom) 

• •• 

••• 

••• 
• • • ... 

• •• 

• • • 

••• 

• •• 

• • • 

... 
• •• 

... 

. .. 
• •• 

••• 

• 
QIRI (XM ,yM) 

• • • 
• 

QRRI (XM ,yM) 

• 
QIRP (xM tYM) 

• • • • 
• 

QRRP (X M , Y M ) 

-
FIM 

• 
• 
• ' -FpM 

StRpG(zm) 
• 
• • 

SRRpG(zm) 

• • 

' 

• • 

(8) 

, 

It can be easily seen that the peculiar feature of the above many-signal models is representation of the amplitude 
cofactor as the Kronecker product ofthe vector of amplitudes by the identity matrices. In order to reduce the number of the 
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latter, it is expedient to use formalization of the radar many-signal models based on the operations of transposed GFP and 
. . 

BGFP [7]. By analogy with the concepts considered above, we shall give the following definitions of these operations. 
The transposed generalized face-product (TGFP) of block-matrices A = [Aij] and B = [Bg;], with the matched 

decomposition into blocks of equa:l dimensions and with the same number ofblock-columns, represents a matrix A i 8, in 

which every jth block~olumn is a set of the penetrating face-products of all blocks A!i of the jth block~olumn of the 

left-hand matrix by the respective (inter ms of ordinal number) block-column B 1 =[ B (
1 

... B ~ ] T of the right-hand matrix 

B: 
BtJ 

..... 
A :. !Ql 

• 
(9) A•B = • 

I) • 

Bel 

where !Ql denotes the penetrating face-product. 

By the transposed block generalized face-product (TBGFP) of a dbpxngs matrix A= [Abg]dn and a dkpxngs matrix 

B = [Bkg]dm consisting of equal numbers (dxn) of super-blocks with dimensions bxg and kxg, respectively, formed by g 
. ..... 

block~olumns each, and comprising b (the matrix A) and k (the matrix B) pxs blocks, is meant the dbkpxngs matrix A ®B, 

where each of its dnth super-blocks represents the transposed generalized face-product of the respective super-blocks of -the initial matrices, i.e., A ®B = [A bg ii B kg ]d,. 

In order to preserve the continuity in the system of matrix notations, which was used earlier for description of the 
direction-finding characteristics of DAA of Doppler's filter AFR and responses of the procedures including the range 

gating, let us supplement the above theory with a description of the operation of block-rotation of matrices [7]. 
The block-rotation of a matrix A, each block Aij of which represents a block-row or a block-column, is an operation 

consisting of non-transposed rotation of the indicated block-rows (block-columns) of the sought matrix about their first 
blocks in the clockwise direction (in the counter~lockwise direction, respectively), so that the block-rows turn into 
block~olumns, and vice versa. Inside the blocks comprising the block-rows (block-columns), no changes occur, and the 

structure of the matrix A also remains unchanged at the level of the blocks A!i. To denote this operation by analogy with 
transposition, we shall use for the superscript in the block matrices, the letter R corresponding to rotation. 

In the MatLab 5.0 package and in its subsequent versions there is a built-in variant of the rotation procedure rot(A), 

which differs considerably from that suggested in this paper. Unfortunately, the standard conception, if applied to block 
matrices, leads to a result unsuitable for applications to our problem. . 

Based on the set of new concepts, we come to alternative (with respect to (6)-(8)) models of many-signal radar 
measurers for simultaneous estimation of range, angles, and frequency of several point signal sources: 

v = (Q@sR )(A® tR 1 v = (Q®(sR@pR >)<A® 1R 1 

v = <Q®sR ><A® 1R 1 v = (Q®<sR@jR >)<A® 1R 1 (10) 

Here the matrices Q, Q, lR, and the vector A have their former meaning, while sR ,SR ,FR ,FR are the block matrices - ..... 
S, S , F, F having undergone rotation and interpreted like relations ( 6)-(8), and 

SR =[SR SR ···SR] pR =[FR pR ... pR] 
I 2 M' I 2 M' 

Sul(zm) ••• SIRl(zm) F111 ( rom) ... @ FtRl { rom) 
• • • • 
• • • • • • • •• • 
• • • • 

SRu(zm) ••• S RRl (zm) FRll { rom) • •• FRRt ( (l)m) 
sR = • FR= • 

• • • m • ' m • ' S JIG ( zm) StRG (zm) F11 N ( (l)m) FtRN ( rom) • • • • •• 

• • • • 
• • • • • • ••• • 
• • • • 

S RIG (zm) • • • S RRG(zm) FRI N ( rom) • • • FRRN (rom) 
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-R -R -R s 11 s 12 
• • • si M 

'§R = • • • 
• • • • • • 
• • • 

-R -R -R 
S Pi S P2 • • • SPM 

Stlpt(zm) ... SIRpt(zm) 
• • 
• • • • • 
• • 

SRlpt(zm) .. . SRRpt(zm) 
SR = • 

• 
• pm 

SllpG(zm) SIRpG(zm) • • • 

• • 
• . .. • 
• • 

SRlpG(zm) . .. SRRpG(zm) 

-R -R -R 
F" Fl2 ••• FIM 

FR= • • • 
• • • •• • 

' • • • ' -R -R -R 
FPI FP2 ••• FPM 

fi Jpt( rom) ... FIRpl( rom) 
• • 
• .. . • 
• • 

FRlpl( oom) ••• FRRpt( rom) 
-R- • 

' Fpm- • 
• • 

fi lpN( OOm) fiRpN( OOm) • • • 

• • 
• . .. • 
• • 

FRlpN( rom) ... F RRpN( (J)m) 

It is noteworthy that in all relations ( l 0) we can find the same amplitude factor A ® 1 R· The further reduction of its 
dimensionality consisting in its interpretation by the vector of amplitudes, is based on the so-called block vectorization, 
whic~ as distinct from the known vec-operators, is applicable not to the whole matrix but to individual blocks. 

The operation of block vectorization of a blockwise dpxsc-matrix A represents its block-by-block transfotmation 
with the aid of the vec-operator, i.e., 

bvec pc A= bvec pc [Actr] = [ vec[a pc 1Ls· {ll) 

The double subscript pc at the operator bvecpc defines the dimensions of the blocks subject to the vec-operator. 
Generation ofthese blocks is performed beginning from the left-hand upper corner of the transformed matrix, with account 
for the fact that the index p denotes the number of rows while the index c the number of columns in the block. 

· Having applied the procedure of( 11 ), we can derive from ( 1 0) the following analytical expressions of the pulse signal 
voltages in a 3- and 4-coordinate radar system with DAA: 

u = bvecpc (Q®sR) A, u = bvecpc Q®( sR @pR) A, 

U = bvec pc ( Q@ S R ) A, V = bvec pc Q ®( S R@ F R ) A. 

The subsequent use of the generated models of responses of the radar systems with DAA is identical to the variants of 
resolving the measurement problems described in [4], and to the procedures of analysis of potential accuracy and 
estimation of maximum attainable resolving capacity of many-coordinate measurements as applied to identical channels 
of the antenna array. The concrete mechanism of application of the above models may vary substantially depending on the 
problem to be solved. With the availability of this powerful matrix apparatus, researchers must only make their choice and 

• 

select the most convenient variant of formalization of the matrix model of DAA response from those considered above. 
Then, based on the unified approach, we ~an perfonn the · further analysis of the potentialities of a particular 
radio-engineering system or synthesis of the coordinate measurement methods corresponding to the system structure, 
particularly, simultaneous estimation of coordinates in a many-signal situation. The development of these lines of research 
was hampered because of imperfection of the traditional matrix algebra. In the theory of radar, communication, and 
systems analysis there are other problems, whose solution may be facilitated by the use of the approach suggested. 
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