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Abstract. The large majority of sign language recognition systems based
on deep learning adopt a word model approach. Here we present a sys-
tem that works with subunits, rather than word models. We propose a
pipelined approach to deep learning that uses a factorisation algorithm
to derive hand motion features, embedded within a low-rank trajectory
space. Recurrent neural networks are then trained on these embedded
features for subunit recognition, followed by a second-stage neural net-
work for sign recognition. Our evaluation shows that our proposed so-
lution compares well in accuracy against the state of the art, providing
added benefits of better interpretability and phonologically-meaningful
subunits that can operate across different signers and sign languages.

Keywords: Sign language recognition, gesture recognition, deep learn-
ing, assistive technology, human computer interaction.

1 Introduction

It is estimated that over 5% (466 million people) of the global population are
deaf. When deaf people are surrounded by hearing people, including their imme-
diate families, with little to no knowledge of sign language, it creates a situation
where the deaf struggle to establish effective communication. This creates com-
munication barriers, that can lead to problems in early language acquisition, the
development of language skills, and also affecting cognitive development in the
long run [49, 55].

Automated sign language recognition (ASLR) is one tool, from a set of sign
language related technologies [28, 18], that can provide some help in ‘bridging
the gap’ between the deaf and the hearing world. ASLR converts a sign language
utterance performed by a deaf person, into its textual representation or spoken
language equivalent. The current state of the art in the field of ASLR is still
limited in terms of accuracy and sign language support [15, 13, 60]. This is mainly
due to the challenging nature of signing, both in terms of vision-based perception,
as well as due to the complexities of the sign languages themselves. Compared
to speech recognition, the current state of the art in terms of word error rate
(WER) for ASLR is ~26% [34], while for speech, the best WER stands at ~4%
[38] — this equates to roughly 1 in 4 mis-classified signs, versus 1 in 25 words
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for speech®. So having a fully-fledged, robust, and generic sign language-to-
text/speech conversion tool, is still at the moment not feasible. Notwithstanding
this, advancements in ASLR are progressing at a steady and encouraging pace,
especially in recent years with the advent of deep learning (DL) [60].

2 Related Work

From the literature we can identify two broad approaches to performing ASLR.
The first approach consists of a traditional pipeline of computer vision compo-
nents, followed by a sign recognition module. The vision components typically
perform body-part detection and tracking, such as the signer’s hands and face
[9,1,58,44,12]. Depending upon the number and choice of modalities, a set of
hand-crafted features are extracted from the video stream, and these are then fed
to the recognition module, typically based on hidden Markov models (HMMs)
[31,48].

A common trend for these systems is the adoption of a sub-word model for
sign recognition, in which signs are constructed from a concatenation of subunits
(SUs), and recognition models, such as HMMs, trained for each SU [6,9, 56, 5,
42,48, 47, 20].

This traditional computer vision approach has seen extensive use in ASLR,
with much effort dedicated to investigating different algorithms for body-part
tracking, and feature selection and representation. The major challenges faced by
systems adopting this approach are: dealing with the visual perception problems,
as well as performing sign recognition with all the linguistic complexities that
sign languages bring with them.

A more recent approach is that adopted by the DL-based systems, which
have made strong inroads into the field of ASLR. DL-based systems are typi-
cally trained in an end-to-end fashion, with the input consisting of the raw image
data [19, 10, 34,17, 4,46, 25]. The input is sometimes pre-processed to emphasise
particular characteristics of the data (for example, frame differencing to high-
light motion), or cropped to focus attention on the hand areas [45, 10, 30, 26]. In
these systems, features are extracted automatically by the networks rather than
engineered by hand.

DL-based systems tend to outperform traditional computer vision approaches:
by working holistically over the entire image, and via automatic feature learning,
they are able to capture spatiotemporal context that is too complex to engineer
into traditional systems [43,60]. But some drawbacks include the lack of inter-
pretability of the model parameters (“black-box” nature of DL systems), as well
as their general reliance on a word model approach to recognition instead of
working with SUs.

! The value for speech is taken from a website which tracks the current state of the
art in speech recognition on a number of standard benchmark datasets: http://
github.com/syhw/wer_are_we. While the reported value for ASLR is obtained on
one of the currently most challenging ‘real-life’ signing datasets available: http:
//wuw-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX/.
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A few recent ASLR works [22, 41] have adopted a hybrid DL-based approach:
they combine deep neural networks with traditional computer vision or sign
recognition elements. These systems do away with an end-to-end architecture
in favour of a more pipelined approach. For example DL methods are used to
determine the signer’s pose in terms of body keypoints (or skeleton models),
and then these are used as input ‘features’ for upstream recognition components
(which could consist of DL-based or traditional recognition algorithms) [41]. In
this way, DL is leveraged to tackle the perception-related challenges, which is
something it excels at, and at the same time, some form of control is maintained
on the type of ‘features’ used by the system rather than relying completely on
fully automated feature extraction of end-to-end systems. Only limited work has
been done so far using this hybrid approach.

Like Gattupalli et al. [22] and Metaxas et al. [41], we adopt a pipelined DL
approach, rather than opt for an end-to-end architecture. But in contrast to
these two works, our proposed system can use DL for both the visual perception
part and the sign recognition part of the system. A main reason for adopting a
pipelined DL approach is to increase the interpretability of the system.

As described earlier, practically all DL-based systems work with word models
rather than with SUs. To the best of our knowledge, the only exceptions are the
works of Camgoz et al. [10], and Metaxas et al. [41].

Like them, we adopt a SU based approach. But unlike these works, which
only generate an implicit set of SUs, our novel SUs are explicitly defined, and
we show that they are also phonologically meaningful.

Adopting a SU approach offers a number of advantages: since the set of
SUs is much smaller than the number of words, less training data is needed.
This is of particular relevance to deep networks that require large training sets,
without which they can easily overfit. Other advantages include better scaling
to larger lexica, more robustness to out-of-vocabulary (OOV) signs, and that
more complex sign language understanding (for example, decoding the layered
meanings of inflected signs, or handling classifier constructions) would not be
possible with word-level DL systems.

In the rest of this paper we describe our contributions: (1) novel use of a
structure from motion (SfM) factorisation technique to derive hand motion fea-
tures for use within our pipelined DL system. When these hand motion features
are embedded within a trajectory space, we show that semantic meaning is
preserved. (2) a novel choice of SUs for use within our DL-based system. We
demonstrate that these SUs are phonologically meaningful.

3 Owur Approach

In this section, we describe our proposed ASLR system, which is illustrated
in Figures 1 and 2. We adopt a SU-based approach to recognition, unlike the
majority of DI-based systems that work with word models. We also employ a non
end-to-end learning approach, and instead utilise hand features embedded within
a trajectory space, since we find that this endows our SUs with phonological
meaning, making them both data driven as well as semantically meaningful.
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Fig.1: Our SU RNN-based recognition system. As input, our system can utilise
hand features obtained either via a traditional computer vision pipeline, or hand
features obtained via a DL-based system. Regardless of the choice of input fea-
tures, hand motion and handshape descriptors are extracted, and the hand mo-
tion descriptors are embedded in a trajectory space via trajectory-space factori-
sation [3]. These are then fed to the corresponding SU recurrent neural net-
work (RNN). Finally, connectionist temporal classification (CTC) layers provide
phonologically-meaningful SU labels.

Figure 1 depicts the four SU networks running in parallel and taking as
input the chosen hand features and outputting sequences of SU symbols de-
scribing the motions and handshapes of the two hands of the signer. We adopt
a parallel approach in order to better handle the multi-modal and concurrent
characteristics prevalent in signing activity [21]. Once successfully trained, these
four SU networks are then combined together with a second-level network for
sign recognition, as shown in Figure 2.

To the best of our knowledge, the only other DL-based works that focus on
SUs are those of Camgoz et al. [10], and Metaxas et al. [41]. Camgdz et al. [10]
make use of two SU-based networks, trained in an end-to-end fashion. They use
whole image frames and pre-cropped hand patches (fixed-size sub-images centred
on the hands) respectively as input to their SU networks: the first network
learns an implicit intermediate representation (the ‘full frame SUS’), while the
second network learns handshape SUs. Once trained, their two SU networks are
combined together, and then the resulting system is trained for sign recognition.

Similar to Camg6z et al. [10], our system learns handshape SUs and hand
motion SUs. But unlike their work, we do not perform end-to-end training of
the network, instead using hand features embedded within a trajectory space
as input. As a result our SUs carry phonological information, while those of
Camgoz et al. [10] are data-driven (video sequence specific), intrinsic, and lack
interpretability (particularly for the case of the full-frame network).

Our SUs resemble in principle Metaxas et al.’s [41] choice of linguistically-
motivated input features. They estimate the 3D body pose using convolutional
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Fig. 2: Extending our SU RNN-based system (of Figure 1) for sign recognition.
The output of the SU RNNs are concatenated together and fed to a second-level
RNN for sign recognition.

pose machines, and from the pose they derive hand-crafted features such as an
indicator of whether a sign is 1-handed or 2-handed, as well as ‘contact’ flags
indicating if a hand is visually close to or touching a key body part (e.g. chin,
shoulders, etc.). But then unlike our RNN-based system, Metaxas et al. [41]
use a classical method for recognition, a conditional random field (CRF), and
reserve the DL techniques solely for the extraction of the pose and pose-related
features. And a limitation of their approach is that it works only for isolated
sign recognition.

3.1 Hand Features

In our ASLR system, the input features can come from either a traditional
computer vision pipeline, or from a DL-based system.

For the former case, we employ a face detector [59] for signer localisation and
signing space determination. This is followed by hand region detection within
the signing space area based on skin colour and motion cues, obtained using an
adaptive skin colour model [57] and multi-frame differencing [27] respectively.
Kanade-Lucas-Tomasi (KLT) features [50] are then extracted from the hand
regions, grouped together based on motion similarity [14], and tracked in time via
the use of the multiple hypothesis tracking (MHT) algorithm [7]. The resulting
hand features thus consist of two sets of KLT feature points, one set for each
hand of the signer, and their corresponding image-plane trajectories as they are
tracked in time [8].

For the alternative DL-based approach, we utilise OpenPose [11] to get 20
hand keypoints for each of the signer’s hands. These are then tracked in time to
get the corresponding image-plane trajectories.

‘We consider this choice of input hand features, whether DL or non-DL based,
as highlighting one versatile aspect of our non end-to-end learning approach.
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3.2 Trajectory Space Factorisation

The image-plane trajectories of the hand features (whether KLT or OpenPose
keypoints) exhibit complex motion patterns that are the result of various under-
lying factors entangled together: such factors can include camera motion, gross
body movements of the signer, semantically-meaningful motions of the hands,
as well as other non-meaningful hand movements caused by natural variations
in articulation, inter-signer variations, dialects, disfluencies and noise.

To separate the real hand motions from the camera and whole body move-
ments of the signer, we propose to use a non-rigid structure from motion (NRSfM)
technique based on the factorisation method [54]. Furthermore, we interpret the
motion patterns of the hands themselves during signing as constituting ‘defor-
mations’ of the visible shape of the signer.

The 2D image plane trajectories of the features of hand h;, over a temporal
window of length At, are centred on the signer’s torso, and arranged into the
matrix W € R?At%F wwhere P is the number of hand features. Then a trajectory
space factorisation algorithm [3] is used to separate W into a product of 3 sub-
matrices:

W =RS =ROA (1)

where matrix R describes the camera and the signer’s whole body movements
(rotations), while matrix S describes the 3D shape of the signer, in this case the
varying 3D shape and orientation of the hands with respect to the centroid of
the signer’s torso over the time window.

As given in Equation 1, the deformable shape S can be represented as a
weighted linear combination of a trajectory basis in a low-rank trajectory space,
with © being the trajectory basis, while A contains the weight coefficients. As
suggested by Akhter et al. [3], we choose the discrete cosine transform (DCT)
basis for ®, because it is ideal for representing smooth motions and because of
its energy compaction properties. Thus for a single hand feature 7, we have:

Si=% aj:6; 0; R a5, €R (2)

where S; is the 3D trajectory of the i*" hand feature, 6; is the j®® DCT basis,
K is the rank of the DCT basis, and a;; is the corresponding weight coefficient
of basis §; and hand feature 1.

Traditionally factorisation algorithms run in batch mode, with matrix W
set to the full duration of a video sequence. We adapt the trajectory space
factorisation algorithm of Akhter et al. [3] to run in an online mode. We do this
by adopting a sliding window approach and setting the window length At to 0.5
seconds, determined to being roughly the shortest duration for a single sign. For
the sliding window at time ¢, any missing entries in matrix W (t) (for example,
caused by tracking failures, hand occlusion, or missed hand keypoint detection),
are filled via the column space fitting (CSF) matrix completion algorithm [53].

And since the shape and motion recovered by the factorisation method are
unique up to a scale and a rotation [3], we align matrices R(¢) with R(¢t — 1)
and S(t) with S(¢t — 1) for each successive sliding window using the Procrustes
superimposition method [2].
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3.3 Trajectory Space Embedding of the Hand Motion Descriptors

Given the recovered motion patterns of the hand features of the signer via the
factorisation method, we now use their embedding in the trajectory space as
a basis for our choice of SUs. The embedding in trajectory space is given by
the DCT coefficients a;,; of Equation 2 (or as grouped together in matrix A of
Equation 1).

Further analysis of these DCT coefficients across different signers and sign
languages reveal that similar motion patterns of the hands exhibit consistent and
unique patterns in trajectory space leading us to conclude that this trajectory
space embedding of the hand features preserves semantic meaning. This is also
corroborated by 2D visualisations of the trajectory space coefficients obtained
via the t-distributed stochastic neighbour embedding (t-SNE) algorithm [39],
like the one shown in Figure 3.

We generate five number summary (FNS) statistics for the DCT coefficients
of the hand features and use these hand motion descriptors as input vectors to
our hand motion trajectory RNNs (see Figure 1).

our label  Stokoe notation
mul
%, cm SIG-14
oo cem SIG-14
o ofon mu SIG-1
cem osmspee md siG-2
o e uEe, L) | E
v . P e o~ ok ml SIG-5
cem  ge 2 = Y -
204 H 2 N H .. mur SIG-1 + SIG-4
-} o ~ - mdr SIG-2 + SIG-4
J o, mul SIG-1 + SIG-5
3 mr S 3 o mdl SIG-2 + SIG-5
w—ealle o, mr “emr =
T AR
o g I % mdr S ] L
-, o % -~ ool mur s
e B . %~ . mur o one d
S HP Y N s TS e
o : L . Foue - mur S
wfmu * e = 2 o
"o 3 o, RSy
cm mude . & %e % g - -
om cm i v-,.}.' A H B .
——— LSl mmdl el el iL
Py = : s *mdl o i
cm < €. -, C = \ <
pr | I
RlE_°© p y L4 % d
20 oo, :
. oo° - -~ & ™
T g S . em =
I ) S g md
o2 1 =50 " =
o’ . * hd ml
. tee mi
% mi

20 o 20

Fig.3: 2D visualisation (t-SNE) of the trajectory space coefficients and their
corresponding SU labels, performed across different signers and sign languages
(German sign language (DGS) utterances from the RWTH-Phoenix Weather
dataset [35] and Dutch sign language (NGT) utterances from the ECHO NGT
dataset [16]). Transitional movements are not labelled. The SU labels follow the
Stokoe phonological model [52].

3.4 Handshape Descriptors

We derive the 2D handshape descriptors directly from the hand features of §3.1
on a per-frame basis. The same set of descriptors are used for both the tra-
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ditional computer vision pipeline as well as for the OpenPose module. These
consist of the bounding box, best-fit ellipse, major axis orientation, aspect ratio,
circularity, and convexity measures. For the OpenPose module, we also concate-
nate the normalised hand keypoints themselves to the handshape descriptors,
since these represent salient hand features, in contrast to the arbitrariness of the
KLT features of the traditional computer vision pipeline.

3.5 Subunit RNNs

The hand motion and handshape descriptors of the previous sections serve as
the inputs to our SU-level RNNs. We use separate networks for the hands of the
signer, and for the handshape and hand motion SUs.

We select gated RNNs for our networks, and evaluate the use of both long
short-term memorys (LSTMs) and gated recurrent units (GRUs) in our experi-
ments. We employ stacked bidirectional versions of these RNNs, combining the
output of the constituent forward and backward layers via vector concatena-
tion. Bidirectional RNNs prove to be better at modelling the temporal nature
of our SUs. We use dropout within the RNNs, as this is an essential element
for preventing overfitting, especially when training the networks with small to
medium-sized datasets. We finish off our system by adding a CTC framework
[24] for the temporal sequence learning of the SUs, as shown in Figure 1. And
we adopt Stokoe’s phonological model [52] for the SU class labels.

3.6 The Connectionist Temporal Classification (CTC) framework

We add a CTC framework to our system in order to handle the temporal se-
quence labelling problem: while an RNN performs framewise classification, the
RNN’s output has no clear one-to-one mapping with the target sequence (the SU
sequence), the two sequences are often not of the same length, and the mapping
itself is often ambiguous in nature [23, §2].

A number of ASLR works use a combination of RNNs and HMMs as an alter-
native to the CTC framework [37, 34, 36]: while an RNN provides the framewise
class labels, the HMM learns the long-range mappings between the framewise
labels and the target labels, since its states can by design “absorb” multiple
inputs. But since this method relies on a two-step approach that is iterated
several times, it can be sensitive to starting conditions, with accuracy prone to
oscillating between iterations.

In contrast, the CTC framework combines the temporal sequence labelling
problem directly with the RNN’s recognition problem, by defining a CTC loss
function that can be incorporated directly within the training mechanism of the
RNN, and back-propagated through the network via backpropagation through
time (BPTT). In this way, the RNN receives an error for misaligned sequences,
even when it predicts the correct labels, and it can learn how to correct for it.

The CTC framework has been used successfully by a number of ASLR works
[17,10,46], and we follow their lead and employ CTC within our networks.
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3.7 Sign-level RNN

So far, our proposed ASLR system consists of four separate RNNs, trained to
recognise hand motion and handshape SUs. In order to perform sign recogni-
tion, we now combine the networks into one system as shown in Figure 2. This
approach is similar in idea to the one employed by Camgéz et al. [10].

We remove the CTC and softmax layers of the trained SU RNNs, freeze their
weights, and add a new bidirectional stacked RNN that takes as its input the
following feature vector:

finput = frh,motion,su D flh,motion,su 3] frh,handshapCSu S flh,handshapc,su (3)

where @ represents the concatenation operation of vectors. This new RNN to-
gether with an associated CTC framework is used to perform sign recognition,
producing a sequence of sign glosses as output.

3.8 Training Strategy for our ASLR System

When training our system, we face the challenge that framewise groundtruth
labels at SU level is lacking, a common occurrence in the field of ASLR. In the
absence of proper groundtruth, we adopt a weakly supervised learning strategy
for our RNNGs, utilising the limited data available to guide the training process.

We utilise simple SU classifiers based on gradient boosting machines (GBMs)
[8] that can be trained quickly and with a fraction of the data needed for deep
networks. These serve as a source of weakly labelled data, thus providing us with
the SU labels and their temporal order. Equipped with such data, weakly super-
vised training of our networks can proceed via the use of the CTC framework,
which allows them to learn to recognise SUs, while at the same time learning to
align the input data with the weak labels.

A number of works [33,34,17] employ weakly supervised learning for sign
recognition. Of these works, the training method of Cui et al. [17] is the most
similar to ours. They adopt a three-stage training strategy for their convolutional
neural network (CNN)-LSTM based system: first performing end-to-end training
of the whole system using weak labels, followed by fine-tuning of the CNN feature
extractor on its own, and finally fine-tuning of the LSTM via CTC. Since Cui
et al. [17] have only access to an ordered list of signs as groundtruth, with no
alignment information, they initialise their training using a “flat start” approach
— the input data is partitioned into equal-sized segments corresponding to the
list of groundtruth signs.

We adopt a similar multi-stage training strategy. But in contrast to Cui et
al. [17], we do not initialise our training with a “flat start” approach. Since we
also have access to “rough” segmentation from the simple SU classifiers, we use
this as alignment data to initialise the training.

Figure 4 illustrates our training strategy: we first perform supervised learn-
ing of the RNN layers (without the CTC layer), using the weak framewise labels
generated by the simple SU classifiers. We use early stopping with a high thresh-
old during this training stage, so that the RNN is close to but does not converge
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Fig.4: Our two-stage training strategy. (A) During the first stage, alignment
data is used to train the system in supervised mode. The alignment data is
subject to segmentation errors (boundary uncertainty indicated by the broad
dashed regions), but framewise labels can still be derived from it. (B) Weakly
supervised training is performed in stage 2 to refine the RNN weights.

fully. We observe that this stage helps the system to achieve a better initialisation
of the layer weights, when compared to a “flat start” approach.

We then add back the CTC layer and continue with weakly supervised train-
ing using the SU labels and their temporal order (but with no alignment data).
During this stage, the CTC framework helps to fine-tune the weights, improving
upon the SU recognition and alignments obtained in the first stage. Training in
this stage continues till the network is fully converged.

4 Experiments

We now describe the experiments performed to evaluate our proposed ASLR
system. Figure 5 shows the implemented network that we use. The RNN gate
type, number of layers, and hidden units are determined via ablation studies,
the results of which are not included here due to space limitations. For the CTC
part of the network in Figure 5, the CTC loss and analysis layers are only used
during training and evaluation of the validation loss, and ignored otherwise. The
CTC decoding layer is configured to use beam search decoding, with the beam
width set to 100.

We initialise the RNN model weights using He normal initialisation [29].
Training for both the strongly supervised and weakly supervised stages operate
with roughly the same configuration: we use mini-batch stochastic gradient de-
scent (SGD) with Adam as the optimisation algorithm [32]. For configuring the
mini-batch size and the learning rate, we employ a training schedule inspired
by the findings and recommendations of Masters and Luschi [40], and Smith et
al. [51]. Training of the RNNs proceeds for 500 epochs, with early stopping if
there is no further improvement in the loss function over 10 consecutive epochs.
The loss function employed depends on whether we are doing weakly supervised
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Fig. 5: Implementation of our RNN sign recognition system. In the above figure,
K is the number of trajectory bases, while L represents the vocabulary size. The
timesteps parameter of the RNNs is set to 12; thus the input to the network is
T xV =12 x V, where V is the size of the input feature vector.

training (CTC loss is selected), or whether doing strongly supervised training
(cross-entropy loss selected).

The datasets available for training the networks at both SU level and sign
level, are not balanced in terms of class instances. This is especially true for
the handshape SUs and for signs of the RWTH-Phoenix Weather dataset [35].
For example, the ratio of the rarest handshape to the most frequent handshape
is of around 0.0007. Because of this strong imbalance, we opted not rely on
data augmentation or class re-balancing techniques. Instead, we apply weight
corrections to the gradient updates of the SGD algorithm, to compensate for class
imbalance — this mechanism adjusts the contribution of each update depending
on the how frequent training examples of that particular class are.

5 Results

This section presents the results for the sign recognition experiments, starting
with the results of an investigation into the contributions of the hand motion
and handshape modalities, for the setup given in Figure 2. The RWTH-Phoenix
Weather dataset [35] is used in these experiments, because its large lexicon pro-
vides for a realistic evaluation (1230 unique signs), it is multi-signer (9 signers),
and has become a standard benchmarking dataset. WER and word accuracy are
used as evaluation metrics.

Table 1: Sign recognition results for different modalities.
Modality ‘ WER | Accuracy 1 ‘ Accuracy difference
0.446 55.4% —-16.5%

RH + LH motion trajectory SU RNNs only
RH + LH handshape SU RNNs only
All four SU RNNs

0.703 29.7% —42.2%
0.281 71.9% —
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Table 2: Sign recognition results with different hand features as input.
Input hand features ‘ Ins Del Sub ‘ WER | Accuracy 1

Computer vision pipeline (KLT features) | 439 387 1763 | 0.398 60.2 %
DL-based module (OpenPose keypoints) | 221 655 953 | 0.281 71.9%

Table 1 shows that both hand motion and handshape modalities are impor-
tant for sign recognition, with the hand motion SU RNNs contributing the most,
compared to handshape RNNs — leaving out the hand motion RNNs, results in
a reduction of 42.2 % in accuracy, while removing the handshape RNNs, reduces
accuracy by a smaller margin of 16.5 %. While a majority of signs can be discrim-
inated solely based on the gross hand motion trajectory, there are a number of
signs (minimal pairs) whose appearances differ only by their handshapes. Hence
while handshape on its own is a poor discriminator, in conjunction with hand
motion, it allows the sign-level RNN to achieve a better recognition rate than
with hand motion alone.

Table 2 gives the results when using different types of hand features as input.

Figure 6 presents some qualitative results. Sign alignments are included for
illustration purposes only, and are not evaluated since we lack groundtruth —
these alignments are extracted directly from the softmax output layer (see Fig-
ure 5). Sign evaluation is performed via the CTC analysis layer and reported in
terms of insertions, deletions and substitutions.

Each example of Figure 6 (A) to (E) is performed by a different signer. For ex-
ample in (C), the sign ‘REGEN’ is mistaken for a different sign. This is mainly due
to sign variations that do not appear within the training set, e.g., hands moving
out of sync with each other in this particular case. Figure 7 shows more examples
for sign ‘REGEN’ which are classified correctly, and others which are misclassi-
fied. The canonical sign consists of the two hands moving in unison downwards
once or multiple times, and exhibiting handshape DEZ-5. Sign variations include:
one-handed versions, out-of-sync movements, shortened movements, and varying
hand orientations. Despite all these variations, the RNN does a relatively good
job at learning the variations, with some exceptions — WER for this sign is 0.85
(25 substitutions, 18 deletions, 0 insertions, out of a total of 290 instances in the
test fold).

We now compare our sign recognition results against the state of the art —
this is given in Table 3. The RWTH-Phoenix Weather dataset comes with the
training, validation, and test folds pre-defined, thus ensuring a fair comparison.

We can observe that our system outperforms many of the recent DL-based
systems, except for the work of Koller et al. [34]. The difference in accuracy
between their work and ours is of 1.3%. And the difference between our work
and the rest of the systems is of 10.2 %.

While Koller et al.’s system [34] does better than ours, it is trained in an
end-to-end fashion. It takes the full video frame as input, and uses a CNN for
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OpenPose keypoints + RNN
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11December_2010_Saturday.tagesschau_default

Input images

KLT hand features + RNN [ | : H B
OpenPose keypoints + RNN | N N | | B Bl |
grounderuch | I I 1 1 0 |7 1 ||
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the-same like Tuesday  but East  then snow Wednesday ~ be the-same minus nine to minus one degree
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B

24November. 2009 Tuesday.tagesschay._defaulti2

Input images
KLT hand features + RNN
OpenPose keypoints + RNN

groundtruth
(e) SCHOTTLAND REGION UND  SUD EUROPA SUD REGION DAZWISCHEN MORGEN LUFT MILD KOMMEN
Scotland region and  south Europe south region  between-them morning air mild come
Fig. 6: Qualitative sign recognition results. Groundtruth is depicted in blue, sub-
stitution errors in red, insertion errors in orange, and deletions in dark gray.

Fig. 7: Examples of correct matches (outlined in green) and mismatches (in red)
for DGS sign “REGEN” (English, ‘rain’). Each pair of images depicts the start
and end frame of the sign.
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Table 3: Comparison of our proposed system (highlighted in blue) against the
state of the art (PHOENIX Weather dataset).

Method Ins Del Sub WER |  Accuracy T
‘ % % % ‘ (test fold)
CNN + HMM + expectation maximisation (EM) (Deep hand) [33] | 0.04  0.19  0.22 0.451 54.9%
CNN + LSTM + CTC (SubUNets) [10] 004 015 022 | 0407 59.3%
CNN + HMM (Deep Sign) [37] 005 013 021 | 0.388 61.2%
CNN + LSTM + CTC [17] 0.08 0.12  0.19 0.387 61.3%
Hierarchical attention networks [30] - - - 0.383 61.7%
Our DL-based system 0.03. 010 0.15 0.281 71.9%
(221)" (655) (953)
CNN + RNN method (Re-Sign) [34] - - - 0.268 73.2%

T Numbers in brackets specify the numbers of insertions, deletions, and substitutions. We convert
these to percentage values for the purpose of comparison with other works.

automatic feature extraction. In contrast, our system makes use of trajectory
space SUs that are phonologically meaningful, and our RNN-based system is
trained on these SUs.

We thus argue that our approach provides a number of benefits, including
that of better interpretability, albeit at a relatively small cost in accuracy reduc-
tion.

6 Conclusions

In this paper we have described a two-stage DL-based ASLR system. Our system
takes as input hand features derived from either a traditional computer vision
pipeline or a from hand keypoints obtained via OpenPose. A trajectory space
factorisation method is then applied to extract the hand motions and these
are embedded within a low-rank trajectory space. We demonstrated how this
trajectory space embedding preserves semantic meaning, allowing us to base
our choice of SUs on descriptors derived from the embedding coefficients. These
descriptors are then fed to our SU RNNs for training, utilising a CTC framework
to handle the temporal sequence labelling problem. Once the SU RNNs are
trained, a second-level RNN is added for sign recognition.

We performed a number of investigations, first to choose between various
design options for the RNNs, and then to evaluate the sign recognition accuracy
of our system. We compared the results with the state of the art, where we found
that our system surpasses (> 10.2 %) many of the recent works that employ DL
in ASLR. Only one recent work performs marginally better (1.3 %) than our
proposed system. But we argue that our system offers other benefits, such as
phonologically-meaningful SUs and better interpretability.

Future work will look at extending the SU RNNs to handle other modalities,
including non-manual signals such as facial expressions and mouthings. We will
also investigate how our choice of phonologically meaningful SUs operate across
different signers and different sign languages.
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