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Abstract

The competitive performance of neural machine translation
(NMT) critically relies on large amounts of training data.
However, acquiring high-quality translation pairs requires ex-
pert knowledge and is costly. Therefore, how to best utilize
a given dataset of samples with diverse quality and charac-
teristics becomes an important yet understudied question in
NMT. Curriculum learning methods have been introduced to
NMT to optimize a model’s performance by prescribing the
data input order, based on heuristics such as the assessment of
noise and difficulty levels. However, existing methods require
training from scratch, while in practice most NMT models
are pre-trained on big data already. Moreover, as heuristics,
they do not generalize well. In this paper, we aim to learn
a curriculum for improving a pre-trained NMT model by
re-selecting influential data samples from the original train-
ing set and formulate this task as a reinforcement learning
problem. Specifically, we propose a data selection framework
based on Deterministic Actor-Critic, in which a critic network
predicts the expected change of model performance due to a
certain sample, while an actor network learns to select the
best sample out of a random batch of samples presented to
it. Experiments on several translation datasets show that our
method can further improve the performance of NMT when
original batch training reaches its ceiling, without using addi-
tional new training data, and significantly outperforms several
strong baseline methods.

1 INTRODUCTION
Curriculum learning, as pioneered by (Bengio et al. 2009),
aims to improve the training of machine learning models by
choosing what examples to present and in which order to
present them to the learning algorithm. Curriculum learn-
ing was originally inspired by the learning experience of hu-
mans (Skinner 1958) (Peterson 2004) (Krueger and Dayan
2009)—humans tend to learn better and faster when they are
first introduced to simpler concepts and exploit previously
learned concepts and skills to ease the learning of new ab-
stractions. This phenomenon is widely observed in, e.g., mu-
sic and sports training, academic training and pet shaping.
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Example 1
zh xianzai ta zheng kaolv zhe huijia.
zh-gloss Now he is thinking about going home.
en He is thinking about going home now.

Example 2
zh wo yao chi niupai.
zh-gloss I want eat steak
en I want a steak. Get me a coke.

Table 1: Examples with accurate/inaccurate translations.

Without surprise, curriculum learning is found most help-
ful in end-to-end neural network architectures (Bengio et al.
2009), since the performance that an artificial neural net-
work can achieve critically depends on the quality of train-
ing data presented to it.

Neural Machine Translation (Kalchbrenner and Blunsom
2013) (Sutskever, Vinyals, and Le 2014) (NMT) translates
text from a source language to a target language in an end-
to-end fashion with a single neural network. It has not only
achieved state-of-the-art machine translation results, but also
eliminated hand-crafted features and rules that are otherwise
required by statistical machine translation. The performance
of NMT has been improved significantly in recent years, as
the NMT architectures evolved from the initial RNN-based
models (Sutskever, Vinyals, and Le 2014) to convolutional
seq2seq models (Gehring et al. 2017) and further to Trans-
former models (Vaswani et al. 2017).

However, since obtaining accurately labeled training sam-
ples in machine translation is often time-consuming and re-
quires expert knowledge, an important question in NMT is
how to best utilize a limited number of available training
samples, perhaps with different lengths, qualities, and noise
levels. Recently, the application of curriculum learning is
also studied for NMT. (Platanios et al. 2019) propose to feed
data to an NMT model in an easy-to-difficult order and char-
acterize the “difficulty” of a training example by the sen-
tence length and the rarity of words that appear in it. Other
than using the straightforward difficulty or complexity as a
criterion for curriculum design, (Wang et al. 2018) propose
a method to calculate the noise level of a training example
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Figure 1: Illustration of the curriculum learning process. The
RL policy µ is used to select samples DS from the training
set DT . The selected data DS is used to update a pre-trained
NMT model pθ(y|x).

with the help of an additional trusted clean dataset and train
an NMT model in a noise-annealing curriculum.

A limitation of the existing curriculum learning methods
for NMT is that they only address the batch selection issue in
a “learn-from-scratch” scenario. Unfortunately, training an
NMT model is a time-consuming task and sometimes could
take up to several weeks (van der Wees, Bisazza, and Monz
2017), depending on the amount of data available. In most
practical and commercial cases, a pre-trained model often
already exists, while re-training it from scratch with a new
ordering of batches is a waste of time and resources. In this
paper, we study curriculum learning for NMT from a new
perspective, that is given a pre-trained model and the dataset
used to train it, to re-select a subset of useful samples from
the existing dataset to further improve the model. Unlike
the easy-to-difficult insights in traditional curriculum learn-
ing (Bengio et al. 2009), (Platanios et al. 2019), our idea is
analogous to classroom training where a student first attends
classes to learn general subjects with equal weights and then
carefully reviews a subset of selected subjects to strengthen
his/her weak aspects or to elevate ability in a field of interest.

Furthermore, while all the samples participate in batch
training for the same number of epochs, it is unlikely that all
data contribute equally to a best-performing model. Table 1
shows an example of two data samples from the dataset used
in this paper, where Example 1 is accurately translated and
can potentially improve the model better, while Example 2
is poorly translated (with unexpected words in target sen-
tence) and may even cause performance degradation when
fed to the model. The objective of our curriculum design
is to identify examples from the existing dataset that may
further contribute to model improvement and present them
again to the NMT learning system. An overview of our pro-
posed task is given in Figure 1, where useful data can be
selected and fed to the system repeatedly to strengthen the
model iteratively.

We formulate the data re-selection task as a reinforce-
ment learning problem where the state is the features of b
randomly sampled training examples, the action is choos-

ing one of them, and the reward is the perplexity differ-
ence on a validation set after the pre-trained model is up-
dated with the selected sample. Thus, the primary goal of
the learning problem becomes searching for a data selection
policy to maximize the reward. Reinforcement learning is
known to be unstable or even to diverge when the action-
value function is represented by a nonlinear function, e.g.,
a neural network. For the sake of alleviating instability, our
proposed RL framework is built based on the Determinis-
tic Actor-Critic algorithm (Silver et al. 2014). It consists of
two networks, an actor network which learns a data selec-
tion policy, and a critic network which evaluates the action
value of choosing each training sample while providing in-
formation to guide the training of the actor network. Be-
sides introducing the framework, we also carefully design
the state space by choosing a wide range of features to char-
acterize each sample in multiple dimensions, including the
sentence length, sentence-level log-likelihood, n-gram rar-
ity, and POS and NER tagging.

Experiments on multiple translation datasets demonstrate
that our method can achieve a significant performance boost,
when normal batch learning cannot improve the model fur-
ther, by only re-selecting influential samples from the origi-
nal dataset. Furthermore, the proposed scheme outperforms
a number of other curriculum learning baseline methods, in-
cluding the denoising scheme based on the use of additional
trusted data (Wang et al. 2018).

2 PROBLEM DEFINITION
In this section, we provide a brief background of NMT and
formulate the curriculum learning task on pre-trained NMT
models as a reinforcement learning problem.

Machine Translation can be considered a one-to-one map-
ping from a source sentence x to a target sentence y. In
neural machine translation, a model parameterized by θ is
searched for to maximize the conditional probability pθ(y|x)
over the training samples. Modern NMT models adopt an
encoder-decoder architecture where an encoder encodes the
source sentence x into a hidden representation h and a de-
coder predicts the next target word yi given the hidden vec-
tor h and all previously predicted words {y1, ..., yi−1}. Thus
the conditional probability is decomposed as

log pθ(y|x) =
L∑
i=1

log pθ(yi|y<i, h), (1)

where L is the number of tokens in each target sentence.
Given a training corpus DT , the training objective of an
NMT model is to minimize

J(θ) =
∑

(x,y)∈DT

− log pθ(y|x). (2)

We consider curriculum learning on a pre-trained NMT
model, where the goal is to improve an existing model
pθ(y|x) by selecting a subset DS from the training dataset
DT that led to pθ(y|x). As compared to training from
scratch, we take advantage of both the versatility of normal
batch learning in the initial pre-training stage and a care-
fully selected curriculum for targeted model improvements.



Specifically, our objective is to find an optimal policy µφ to
select DS from DT and update pθ(y|x) with DS such that
the performance of the updated model is maximized, i.e.,

max
φ

perf
(
pθ′(y|x, φ)

)
,

s.t. pθ′(y|x, φ) = train
(
pθ(y|x), DS(φ)

)
,

DS(φ) = µφ(DT ),

(3)

where DS(φ) is a subset selected from DT using policy µφ,
pθ′(y|x, φ) is an updated model after training pθ(y|x) with
DS(φ), and perf indicates the performance of a model, e.g.,
measured by BLEU or Perplexity.

The main challenge is to identify and select the most ben-
eficial data samples from DT . A naive way is to evaluate
the BLEU improvement on a validation set brought by ev-
ery single data sample in the training set and select the ones
that improve the BLEU the most. However, this method is
extremely costly and is not scalable to large datasets.

To obtain a generalizable data selection policy, we formu-
late the task as a reinforcement learning problem in which
the environment is composed of both the dataset DT and
the model pθ(y|x). The RL agent aims to learn a policy µφ
which decides which sample to select when presented with
a random batch of samples. In our framework, a state s cor-
responds to the representation of both a data batch to select
from and the NMT model, a refers to the action of selecting
the best data sample from the batch, and r is the performance
improvement of the NMT model on validation set after be-
ing updated with the selected sample.

The RL agent is trained through interacting with the en-
vironment by repeatedly performing the following: 1) re-
ceiving a state s containing a random batch of samples, 2)
providing an action a back to the environment according to
its trained policy, and 3) updating the policy using a feed-
back reward r given by the environment. Once the policy is
trained, it can be used to select data from an arbitrarily large
dataset and is scalable.

3 METHODS
In this section, we describe our Deterministic Actor-Critic
framework for curriculum learning, as well as the design of
the state, action, and reward in detail.

3.1 Model Overview
For the model design of the RL agent, we choose the Deter-
ministic Actor-Critic algorithm.

Actor-critic (Konda and Tsitsiklis 2000) is a widely used
method in reinforcement learning combining both an actor
network µφ that outputs an action a = µφ(s) given a state
s to maximize the reward, and a critic network Qw that pre-
dicts the action value Qw(s, a) of a state-action pair (s, a).
The actor learns a near-optimal policy via policy gradient,
while the critic estimates the action-value guiding the up-
date direction of the actor. Compared with actor-only meth-
ods like REINFORCE (Williams 1992), the existence of the
critic reduces the update variance and accelerates conver-
gence.
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Figure 2: The proposed RL framework.

As our reward calculation involves evaluating the updated
NMT model on a validation set and is thus expensive, we ex-
ploit a memory replay buffer to increase sample efficiency.
Furthermore, we choose a deterministic policy setting as op-
posed to stochastic policy due to the fact that the determin-
istic policy gradient can be calculated much more efficiently
as shown in (Silver et al. 2014).

The update of the framework is illustrated in Figure 2.
The critic network Qw takes a state-action pair (s, a), eval-
uates the action value, and outputs a predicted reward r̃ =
Qw(s, a), and updates the parameters supervised by the ac-
tual reward r from the environment. Note that the critic net-
work provides an immediate reward per iteration. As a re-
sult, we do not need to employ additional techniques, e.g.,
Temporal-Difference (TD) (Tesauro 1992), to approximate
the long-term reward. The objective of the critic network is
thus to minimize the squared error of δ between the pre-
dicted reward and the actual reward, given by

δt = rt − r̃t = rt −Qw(st, at). (4)

The update of parameters w is achieved through gradient
descent as follows:

wt+1 = wt + αwδt∇wQw(st, at). (5)

where αw corresponds to the learning rate of parameters w.
The actor network µφ takes in a state s from the environ-

ment, applies the learned policy, and outputs a correspond-
ing action a. The objective of the actor network is to learn an
optimal policy generating the proper action to maximize the
predicted reward Qw(s, a). Policy gradient is used to update
the parameters φ, i.e.,

φt+1 = φt + αφ∇φQw(st, at)|a=µφ(s)
= φt + αφ∇φµφ(st)∇aQw(st, at)|a=µφ(s).

(6)

Algorithm 1 summarizes the overall learning process of
the proposed framework. In each round of data selection



Algorithm 1: The Proposed Method
Input: Training set DT and an NMT model pθ0(y|x)
Output: A better performing NMT model pθK (y|x)

1 for t = 0, . . . ,K − 1 do
2 for number of RL training iterations do
3 Sample b examples from DT and form state s
4 Generate action a = µφ(s)
5 Compute predicted reward r̃ = Qw(s, a)
6 Update pθk(y|x) with selected sample to get

pθ′k(y|x)
7 Calculate the perplexity difference on

validation set between pθk(y|x) and
pθ′k(y|x) as reward r

8 Update Qw using Eq. (5)
9 Update µφ using in Eq. (6)

10 Select data DS from DT using µφ
11 Update pθk(y|x) with DS to get pθk+1

(y|x)

(with K rounds in total), we first train the RL agent for an
adequate number of iterations. In each iteration, we derive
a state, an action, and a reward in lines 4–7 and update the
actor network and the critic network in line 8 and line 9, re-
spectively. After the RL agent is fully trained, we apply the
learned policy to select a subset DS and use DS to update
the NMT model pθk(y|x) and move to the next round. Usu-
ally one or two rounds are sufficient.

Figure 3 demonstrates the network structure of the RL
agent. A feature network is shared between the Actor Net-
work µφ and the Critic Network Qw. It takes in the raw
features of the sampled batch of b examples, where each
feature of each sample goes through an independent single-
layer MLP. The concatenation of the outputs constitutes the
state representation s. Note that different examples in the
sampled batch share the same network weights.

The Actor Network µφ is composed of a two-layer MLP
and computes a score for each example in the sampled batch
of b examples based on the input state s, and outputs the ac-
tion a as a probability vector representing the probability of
each example being selected, by taking a softmax operation
over the computed scores of b examples.

The Critic NetworkQw also has two layers and calculates
the action value of a given state-action pair (s, a), where the
action a is the output of the Actor Network, i.e., a = µφ(s),
and is concatenated to the second layer of the critic network.

Note that although the feature network is shared between
both the actor network µφ and the critic network Qw, we
only update it with the critic network to reduce training in-
stability.

3.2 State
The state s is meant to be a full summarization of the envi-
ronment including a data batch of b examples to select from
and information about the pre-trained model. However, the
number of parameters in the pre-trained model is too large
to be included in the state directly at each time step. Thus,
we need to find a representation that can represent both the
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Figure 3: The network structure of the RL agent, where the
depth represents a batch (of 3 samples in this illustration).

samples to be selected and the existing model using a limited
number of parameters. In our state design, we focus on three
different dimensions, namely informativeness, uncertainty,
and diversity. We use the sentence length as a measure for
informativeness, the sentence-level log-likelihood for uncer-
tainty, and the n-gram rarity together with NER and POS
taggings for diversity.

The most intuitive representation feature of a parallel sen-
tence is the sentence length, i.e. the number of tokens in a
sentence. This simple scalar roughly measures the amount
of information involved in a sentence and is also used in
(Platanios et al. 2019) as a “difficulty” estimate.

Following the intuition that examples yielding large un-
certainty can benefit the model performance (Li and Sethi
2006), another feature we use is the sentence-level log-
likelihood Lpθ(y|x) calculated by the pre-trained model
pθ(y|x) by summing up the log probability of each word
yi of the target sentence:

Lpθ(y|x) = log pθ(y|x) =
∑
yi∈Y

log pθ(yi|x). (7)

(Yang et al. 2015) and (Sener and Savarese 2018) suggest
that selecting samples that are farthest away from the ex-
isting dataset can benefit model training. Incorporating this
idea, we further utilize two other feature vectors, n-gram rar-
ity and taggings, to represent the similarity between a given
sample and the entire training set.

For n-gram rarity, we use n = {1, 2, 3, 4}. Given all
the sentences in DT , we define the relative frequency for
a unique n-gram g

(n)
j in DT as

f (n)(g
(n)
j ) ,

1

N (n)

∑
sk∈DT

∑
g
(n)
i ∈g

(n)

(sk)

1
g
(n)
i =g

(n)
j
, (8)



where j = 1, ...,#{unique n-grams}, sk is a sentence from
DT , g(n)(sk)

is all n-grams in sk, and N (n) is the total number
of n-grams in DT . For n-gram representation of a sentence
sk, we form all the n-gram frequencies into a vector:

F (n)(sk) = {f(g(n)1 ), ..., f(g
(n)
L )|g(n)l ∈ g(n)(sk)

}. (9)

In this paper, we use n = {1, 2, 3, 4} and calculate the n-
gram vectors for both the source and target sentences.

For taggings, we use Named Entity Recognition (NER)
and Parts of Speech (POS) and apply ideas similar to our
n-gram design. As the tagging of a word is dependent of
the sentence that the word lies in, a same word may be
tagged differently in various sentences. To give an exam-
ple in POS tagging, the word “Book” can either be tagged as
“NOUN” or “VERB” depending on its meaning in the sen-
tence. If most occurrences of the word “Book” are tagged
as “NOUN” in the training set, the model may not be able
to correctly learn the second meaning of it. Therefore, the
model should be fed more with samples in which “Book” is
tagged as “VERB”. In order to reflect this phenomenon, we
define a tagging value for a word w and its current tag t as

v(w, t) ,
1

Nw
Ntag(w)=t, (10)

where Nw is the number of times the word w has appeared
in the training set and Ntag(w)=t is the number of times the
word w is tagged with tag t among all its occurrences. Simi-
larly, for both NER and POS taggings, the tagging values of
words form a vector representation of a sentence:

V (sk) =
{
v
(
w1, t1

)
, ..., v

(
wL, tL

)
|wl ∈ sk

}
. (11)

3.3 Action and Reward
In the task of curriculum learning, an action represents the
process of data selection. (Fang, Li, and Cohn 2017) assume
a stream-based setting where data examples come one by
one in a stream, and design their action as making a decision
on whether or not a single incoming data example should be
selected. We argue that our problem setting is actually pool-
based instead of stream-based, where a pool of data exists
for selection and deciding on the selection of each individual
sample per step would be inefficient. In (Kumar et al. 2019),
a dataset is split into several bins according to a noise mea-
sure of data samples, and the action determines from which
bin the next batch of training data should be selected. How-
ever, this method highly depends on an effective heuristic
criterion for bin formation and is thus hard to generalize.

Therefore, we propose our action design which samples
a batch of b data examples from DT , computes a score for
each example according to the trained policy, and choose the
one with the highest score. Correspondingly, in our design,
we can easily control the size of DS by varying the batch
size b, i.e., |DS | = |DT |/b, since we choose one out of b
samples for each batch.

For the choice of reward signal, we use the performance
improvement of the NMT model evaluated on the valida-
tion set after it is updated with the selected sample. Perplex-
ity is used as the performance metric instead of BLEU as it

Table 2: Description of evaluation datasets.

Dataset Train Val Test Src-Len Tgt-Len

MTD 1, 000, 000 1, 892 1, 892 19.55 21.06
CASICTB 994, 248 2, 002 2, 001 22.61 23.95
CASIA2015 1, 049, 988 2, 002 2, 001 23.89 25.19
NEU 1, 999, 946 2, 002 2, 001 16.95 18.54

is shown to be more consistent and less noisy (So, Le, and
Liang 2019). We assign a reward of 0 to unselected samples.

4 EXPERIMENTS
In this section, we will first describe the datasets used in
our evaluation and provide the implementation details along
with the performance results.

4.1 Datasets & Metrics
To compare our proposed method with other curriculum
learning methods on NMT task, we conduct comprehensive
empirical analysis on several zh-en translation datasets:

• MTD is an internal news translation dataset with 1M sam-
ples in the training set and 1,892 samples in both the val-
idation set and the test set. The average length of source
sentences is 19.55 and the average length of target sen-
tences is 21.06.

• CASICTB, CASIA2015, NEU are three independent
datasets with 1M, 2M, and 2M examples from differ-
ent data sources in WMT18 which is a public transla-
tion dataset in news area with more than 20M samples.
We only use a part of data from WMT18 to evaluate our
method. All three datasets share the same validation set
newsdev2017 and the test set newstest2017 both com-
posed of 2k samples.

Table 2 summarizes the details of the experimental
datasets. The columns titled “Train”, “Val”, and “Test” cor-
respond to the number of examples in training, validation,
and test sets. “Src-Len” and “Tgt-Len” correspond to the
average sentence length of source language and target lan-
guage respectively.

For evaluation metrics, we use Perplexity for the reward
calculation in RL agent training, and report BLEU (Papineni
et al. 2002) for the final performance of the NMT models.

4.2 Experimental Settings
We implement our models in PyTorch 1.1.0 (Paszke et al.
2017) and train the model with a single Tesla P40. We utilize
NLTK (Bird, Klein, and Loper 2009) to perform POS and
NER taggings.

For the NMT model, we use the OpenNMT implementa-
tion (Klein et al. 2017) of Transformer (Vaswani et al. 2017).
It consists of a 6-layer encoder and decoder, with 8 atten-
tion heads, and 2,048 units for the feed-forward layers. The
multi-head attention model dimension and the word embed-
ding size are both set to 512. During training, we use Adam
optimizer (Kingma and Ba 2015) with a learning rate of
2.0 decaying with a noam scheduler and a warm-up steps
of 8,000. Each training batch contains 4,096 tokens and is



selected with bucketing (Kocmi and Bojar 2017). During in-
ference, we employ beam search with a beam size of 5.

For the RL agent, we use an Deterministic Actor-Critic ar-
chitecture and build our system based on (Shangtong 2018).
In our framework, we use several tricks proven to be effec-
tive to RL training including a memory replay buffer of size
2,500, a warm-up phase of 500 steps, and a target network
which is updated by mixing weights with the on-line net-
work with a mix factor of 0.1. For calculating rewards, we
train the NMT model with the single selected sample using
SGD and a learning rate of 1e-4.

The feature network maps data features of sentence
length, sentence-level log-likelihood, taggings, and n-gram
rarity to vectors of size 1, 8, 16, and 32 respectively with a
FC layer, and concatenates them together as a shared state
representation. The actor network is composed of two FC
layers with hidden sizes of 300 and 400. The critic network
is designed the same as the actor network except that the
output action from actor network is concatenated to the sec-
ond layer. Relu is used as the activation function in each FC
layer in this network.

In experiments, we conduct two rounds of RL agent train-
ing and data selection. In each round, the RL agent is trained
for 20k steps and the best model with the highest sum of re-
wards during the last 1,000 steps is used for data selection.
The RL agent keeps selecting data given randomly sampled
batches from the training set DT and feed the selected data
to the NMT model until no performance improvement is ob-
served. For the training process on selected data, we keep
the NMT model’s optimizer and learning rate setting un-
changed.

We use different batch sizes of the sampled batch b for
the two rounds of training and selection with b1 = 16 and
b2 = 128 indicating in the first round we select 1 sample
from 16 and in the second round, from 128 samples we se-
lect the best one. This is because we think in order to achieve
improvement further on the basis of the first round, a stricter
data selection criterion must be applied.

4.3 Baselines
To make comparisons with other existing curriculum meth-
ods, we have conducted several baseline experiments.

We take the core ideas of existing curriculum learning
methods of training on data samples with gradually increas-
ing difficulty (Platanios et al. 2019) and gradually decreas-
ing noise (Wang et al. 2018) and apply them to our setting
with pre-trained models. We evaluate the following three
baseline methods along with our proposed method.

• Denoising is a curriculum learning method of training an
NMT model in a noise-annealing fashion (Wang et al.
2018). They propose to measure NMT data noise with
the help of a trusted dataset which contains generally
cleaner data compared to the training dataset. (Kumar et
al. 2019) also utilize data noise in their curriculum design
and achieve similar performance as (Wang et al. 2018).
For the choice of the trusted dataset, we choose a subset
of 500 sentences from the validation set newsdev2017 of
CASICTB, CASIA2015 and NEU.

• Sentence Length is an intuitive difficulty measure used
in (Platanios et al. 2019), since longer sentences tend to
contain more information and more complicated sentence
structure.

• Word Rarity is another metric for measuring the sam-
ple difficulty, as rare words appear less frequently in the
training process and should be presented to the learning
system more. The formula for calculating the word rarity
of a sentence can be found in (Platanios et al. 2019).

For baseline experiments, the pre-trained NMT model is
further trained on 20% of the original data, which are se-
lected by the above criteria, i.e., the least noisy, the longest,
and the highest word rarity, respectively.

4.4 Main Results
Table 3 compares the performance of our method with
other baseline methods on different datasets evaluated using
BLEU. The result shows that our proposed method signifi-
cantly out-performs other baseline methods by a great mar-
gin. We conduct two rounds of training and update in our
experiments. While the result of the first round surpasses
almost all the baseline methods, our second round further
improves the performance and achieves a final BLEU im-
provement of +0.90, +0.60, +0.59, and +0.71 on MTD,
CASICTB, CASIA2015, and NEU respectively over the pre-
trained model.

The reason of our success is due to our utilization of an
RL framework to proactively select data samples that are
potentially beneficial to the training of the NMT model.
First, we formulate the task of curriculum learning on pre-
trained NMT models as a reinforcement learning problem.
Second, we construct an effective design of state, action and
reward. Our state representation includes features of differ-
ent dimensions of informativeness, uncertainty and diversity.
Third, we propose a Deterministic Actor-Critic framework
that learns a policy to select the best samples from the train-
ing set to improve the pre-trained model. By incorporating
all these designs together, our proposed framework is able to
achieve a significant performance enhancement on the pre-
trained NMT model.

4.5 Analysis
We evaluate the impact of different modules and methods by
ablation test on MTD dataset. Table 4 list the performance
of our model variants with different features included.

We incrementally accommodate different features of ex-
amples to the state by first starting from sentence length
and sentence-level log-likelihood as they are both scalars.
The performance increased slightly by 0.26 BLEU com-
pared with the pre-trained base model. Then we further ac-
commodate n-gram rarity and POS and NER taggings to the
state vectors, and observe a larger increase of performance
of 0.42 and 0.60 respectively. Finally, we incorporate the
second round of RL agent training and data selection on the
basis of the result of first round, and achieve the best per-
formance with a 0.90 BLEU increase. Note that a stricter
selection policy is applied to the second round (128 choose
1) compared with the first round (16 choose 1).



Table 3: Performance comparison of our proposed method with other baseline methods
using BLEU on different datasets.

Method MTD CASICTB CASIA2015 NEU

Base 18.21 (+0.00) 13.43 (+0.00) 18.65 (+0.00) 20.06 (+0.00)
Sentence Length 18.34 (+0.13) 13.52 (+0.09) 18.75 (+0.10) 20.21 (+0.15)
Word Rarity 18.35 (+0.14) 13.49 (+0.06) 18.72 (+0.07) 20.17 (+0.11)
Denoising 18.42 (+0.21) 13.55 (+0.12) 18.86 (+0.21) 20.44 (+0.38)
Ours-1 Round 18.81 (+0.60) 13.60 (+0.17) 18.91 (+0.26) 20.38 (+0.32)

Ours-2 Rounds 19.11 (+0.90) 14.03 (+0.60) 19.24 (+0.59) 20.79 (+0.73)

Table 4: Ablation analysis on differ-
ent features of our proposed frame-
work on MTD.

Method MTD

Base 18.21 (+0.00)
Senlen + Logp 18.47 (+0.26)
+ N-gram 18.63 (+0.42)
+ Tagging 18.81 (+0.60)
+ 2nd Round 19.11 (+0.90)

5 RELATED WORK
High-quality machine translation corpus is costly and dif-
ficult to collect, thus it is necessary to make the best use
of the corpus at hand. A straightforward method to achieve
this goal is to remove the noisy samples in the training data,
and train an new model with the clean ones. Unfortunately,
it is hard to estimate the quality of a parallel sentence in
the absence of golden reference (Fan et al. 2019). Moreover,
(Wang et al. 2018) find that some of the noisy samples may
yield some benefits to the model performance. Then they
define a new method of computing noise level of a data ex-
ample with the help of an extra trusted dataset and propose
to train an NMT model in a noise-annealing curriculum.

Curriculum learning aims to organize the training process
in a meaningful way by feeding certain samples to the model
in certain training stage such that the model can learn better
and faster (Bengio et al. 2009). They propose a simple strat-
egy which organizes all training samples into bins of similar
complexity and starts training from the easiest bin to include
more complexed bins until all bins are covered. (Kocmi and
Bojar 2017) apply this idea to NMT by binning according
to simple features like sentence length and word frequency,
and improve this strategy by restricting that each sample can
only be trained once during an epoch. (Zhang et al. 2018)
conduct empirical studies on several hand-crafted curricu-
lum and adopt a probabilistic view of curriculum learning.
(Platanios et al. 2019) further propose a competence func-
tion c(t) with respect to training time step t as the indicator
of learning progress and select samples based on both dif-
ficulty and competence. However, these heuristic-based ap-
proaches highly depend on hand-crafted curriculum and are
hard to generalize.

Compared with heuristic-based approaches, RL-based
policy learning models are trained end-to-end and do not

rely on hand-crafted strategies. (Tsvetkov et al. 2016) use
Bayesian optimization to learn a linear model for ranking
examples in a work-embedding task. (Graves et al. 2017)
explore bandit optimization for scheduling tasks in a multi-
task problem.(Wu, Li, and Wang 2018) select examples in a
co-trained classifier using RL. (Kumar et al. 2019) organize
the dataset into bins based on the data noise proposed by
(Wang et al. 2018) and utilize a DQN to learn a data selec-
tion policy deciding from which bin to select the next batch.

Different from the existing curriculum learning meth-
ods, our work focuses on learning a training curriculum
with reinforcement learning for an existing pre-trained NMT
model. We argue that existing curriculum learning meth-
ods are only applicable on train-from-scratch scenarios, and
learning from an existing model can save training time.

Active learning (Settles 2009) is another related area
which focuses on selectively obtaining labels for unlabeled
data in order to improve the model with least labeling cost.
(Haffari, Roy, and Sarkar 2009) (Bloodgood and Callison-
Burch 2010) study active learning for Statistical Machine
Translation using some hard-coded heuristics. (Fang, Li, and
Cohn 2017) design an active learning algorithm based on a
deep Q-network, in which the action corresponds to binary
annotation decisions applied to a stream of data. (Liu, Bun-
tine, and Haffari 2018) make use of imitation learning to
train a data selection policy.

6 CONCLUSION

In this paper, we study curriculum learning for NMT from a
new perspective, to re-select a subset of useful samples from
the existing dataset to further improve a pre-trained model,
and formulate this task as a reinforcement learning problem.
Compared with existing curriculum methods only applica-
ble on train-from-scratch scenarios, our setting saves train-
ing time by better utilizing the existing pre-trained models.
Our proposed framework is built based on the deterministic
actor-critic algorithm, and learns a policy to select exam-
ples that can improve the model the most. We conduct ex-
periments on several zh-en translation datasets and compare
our method with other baseline methods including the easy-
to-difficult curriculum and the denoising scheme. Through
rounds of training and data selection, our method achieves a
significant performance boost on the pre-trained model, and
out-performs all baselines methods by a great margin.
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