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1

Well-Known Constants

1.1 Pythagoras’ Constant,
√

2

The diagonal of a unit square has length
√

2 = 1.4142135623 . . . . A theory, proposed
by the Pythagorean school of philosophy, maintained that all geometric magnitudes
could be expressed by rational numbers. The sides of a square were expected to be
commensurable with its diagonals, in the sense that certain integer multiples of one
would be equivalent to integer multiples of the other. This theory was shattered by the
discovery that

√
2 is irrational [1–4].

Here are two proofs of the irrationality of
√

2, the first based on divisibility properties
of the integers and the second using well ordering.

• If
√

2 were rational, then the equation p2 = 2q2 would be solvable in integers p and
q , which are assumed to be in lowest terms. Since p2 is even, p itself must be even
and so has the form p = 2r . This leads to 2q2 = 4r2 and thus q must also be even.
But this contradicts the assumption that p and q were in lowest terms.

• If
√

2 were rational, then there would be a least positive integer s such that s
√

2 is an
integer. Since 1 < 2, it follows that 1 <

√
2 and thus t = s · (

√
2 − 1) is a positive

integer. Also t
√

2 = s · (
√

2 − 1)
√

2 = 2s − s
√

2 is an integer and clearly t < s.
But this contradicts the assumption that s was the smallest such integer.

Newton’s method for solving equations gives rise to the following first-order recur-
rence, which is very fast and often implemented:

x0 = 1, xk = xk−1

2
+ 1

xk−1
for k ≥ 1, lim

k→∞
xk = √

2.

Another first-order recurrence [5] yields the reciprocal of
√

2:

y0 = 1

2
, yk = yk−1

(
3

2
− y2

k−1

)
for k ≥ 1, lim

k→∞
yk = 1√

2
.

1
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2 1 Well-Known Constants

The binomial series, also due to Newton, provides two interesting summations [6]:

1 +
∞∑

n=1

(−1)n−1

22n(2n − 1)

(
2n

n

)
= 1 + 1

2
− 1

2 · 4
+ 1 · 3

2 · 4 · 6
− + · · · =

√
2,

1 +
∞∑

n=1

(−1)n

22n

(
2n

n

)
= 1 − 1

2
+ 1 · 3

2 · 4
− 1 · 3 · 5

2 · 4 · 6
+ − · · · = 1√

2
.

The latter is extended in [1.5.4]. We mention two beautiful infinite products [5, 7, 8]

∞∏
n=1

(
1 + (−1)n+1

2n − 1

)
=

(
1 + 1

1

) (
1 − 1

3

) (
1 + 1

5

) (
1 − 1

7

)
· · · =

√
2,

∞∏
n=1

(
1 − 1

4(2n − 1)2

)
= 1 · 3

2 · 2
· 5 · 7

6 · 6
· 9 · 11

10 · 10
· 13 · 15

14 · 14
· · · = 1√

2

and the regular continued fraction [9]

2 + 1

2 + 1

2 + 1

2 + · · ·

= 2 + 1|
|2 + 1|

|2 + 1|
|2 + · · · = 1 +

√
2 = (−1 +

√
2)−1,

which is related to Pell’s sequence

a0 = 0, a1 = 1, an = 2an−1 + an−2 for n ≥ 2

via the limiting formula

lim
n→∞

an+1

an
= 1 +

√
2.

This is completely analogous to the famous connection between the Golden mean ϕ

and Fibonacci’s sequence [1.2]. See also Figure 1.1.
Viète’s remarkable product for Archimedes’ constant π [1.4.2] involves only the

number 2 and repeated square-root extractions. Another expression connecting π and
radicals appears in [1.4.5].

1

1

√2

1

1

ϕ

Figure 1.1. The diagonal of a regular unit pentagon, connecting any two nonadjacent corners,
has length given by the Golden mean ϕ (rather than by Pythagoras’ constant).
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1.1 Pythagoras’ Constant,
√

2 3

We return finally to irrationality issues: There obviously exist rationals x and y such
that x y is irrational (just take x = 2 and y = 1/2). Do there exist irrationals x and y
such that x y is rational? The answer to this is very striking. Let

z =
√

2
√

2
.

If z is rational, then take x = y = √
2. If z is irrational, then take x = z and y = √

2,

and clearly x y = 2. Thus we have answered the question (“yes”) without addressing the
actual arithmetical nature of z. In fact, z is transcendental by the Gel’fond–Schneider
theorem [10], proved in 1934, and hence is irrational. There are many unsolved prob-
lems in this area of mathematics; for example, we do not know whether

√
2

z =
√

2
√

2
√

2

is irrational (let alone transcendental).

1.1.1 Generalized Continued Fractions

It is well known that any quadratic irrational possesses a periodic regular continued
fraction expansion and vice versa. Comparatively few people have examined the gen-
eralized continued fraction [11–17]

w(p, q) = q +

p + 1

q + p + · · ·
q + · · ·

q +
p + 1 + · · ·

q + · · ·
q + p + · · ·

q + · · ·

,

which exhibits a fractal-like construction. Each new term in a particular generation
(i.e., in a partial convergent) is replaced according to the rules

p → p + 1

q
, q → q + p

q

in the next generation. Clearly

w = q +
p + 1

w

w
; that is, w3 − qw2 − pw − 1 = 0.

In the special case p = q = 3, the higher-order continued fraction converges to (−1 +
3
√

2)−1. It is conjectured that regular continued fractions for cubic irrationals behave like
those for almost all real numbers [18–21], and no patterns are evident. The ordinary
replacement rule

r → r + 1

r
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4 1 Well-Known Constants

is sufficient for the study of quadratic irrationals, but requires extension for broader
classes of algebraic numbers.

Two alternative representations of 3
√

2 are as follows [22]:

3
√

2 = 1 + 1

3 + 3

a
+ 1

b

, where a = 3 + 3

a
+ 1

b
, b = 12 + 10

a
+ 3

b

and [23]

3
√

2 = 1 + 1|
|3 + 2|

|2 + 4|
|9 + 5|

|2 + 7|
|15

+ 8|
|2 + 10|

|21
+ 11|

|2 + · · · .

Other usages of the phrase “generalized continued fractions” include those in [24], with
application to simultaneous Diophantine approximation, and in [25], with a geometric
interpretation involving the boundaries of convex hulls.

1.1.2 Radical Denestings

We mention two striking radical denestings due to Ramanujan:

3
√

3
√

2 − 1 = 3

√
1

9
− 3

√
2

9
+ 3

√
4

9
,

2
√

3
√

5 − 3
√

4 = 1
3

(
3
√

2 + 3
√

20 − 3
√

25
)

.

Such simplifications are an important part of computer algebra systems [26].
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1.2 The Golden Mean, ϕ

Consider a line segment:

What is the most “pleasing” division of this line segment into two parts? Some people
might say at the halfway point:

•
Others might say at the one-quarter or three-quarters point. The “correct answer” is,
however, none of these, and is supposedly found in Western art from the ancient Greeks
onward (aestheticians speak of it as the principle of “dynamic symmetry”):

•
If the right-hand portion is of length v = 1, then the left-hand portion is of length
u = 1.618 . . . . A line segment partitioned as such is said to be divided in Golden or
Divine section. What is the justification for endowing this particular division with such
elevated status? The length u, as drawn, is to the whole length u + v, as the length v is
to u:

u

u + v
= v

u
.

Letting ϕ = u/v, solve for ϕ via the observation that

1 + 1

ϕ
= 1 + v

u
= u + v

u
= u

v
= ϕ.
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The positive root of the resulting quadratic equation ϕ2 − ϕ − 1 = 0 is

ϕ = 1 + √
5

2
= 1.6180339887 . . . ,

which is called the Golden mean or Divine proportion [1, 2].
The constant ϕ is intricately related to Fibonacci’s sequence

f0 = 0, f1 = 1, fn = fn−1 + fn−2 for n ≥ 2.

This sequence models (in a naive way) the growth of a rabbit population. Rabbits are
assumed to start having bunnies once a month after they are two months old; they
always give birth to twins (one male bunny and one female bunny), they never die, and
they never stop propagating. The number of rabbit pairs after n months is fn .

What can ϕ possibly have in common with { fn}? This is one of the most remarkable
ideas in all of mathematics. The partial convergents leading up to the regular continued
fraction representation of ϕ,

ϕ = 1 + 1

1 + 1

1 + 1

1 + · · ·

= 1 + 1|
|1 + 1|

|1 + 1|
|1 + · · · ,

are all ratios of successive Fibonacci numbers; hence

lim
n→∞

fn+1

fn
= ϕ.

This result is also true for arbitrary sequences satisfying the same recursion fn =
fn−1 + fn−2, assuming that the initial terms f0 and f1 are distinct [3, 4].

The rich geometric connection between the Golden mean and Fibonacci’s sequence
is seen in Figure 1.2. Starting with a single Golden rectangle (of length ϕ and width
1), there is a natural sequence of nested Golden rectangles obtained by removing the
leftmost square from the first rectangle, the topmost square from the second rectangle,
etc. The length and width of the nth Golden rectangle can be written as linear expres-
sions a + bϕ, where the coefficients a and b are always Fibonacci numbers. These
Golden rectangles can be inscribed in a logarithmic spiral as pictured. Assume that
the lower left corner of the first rectangle is the origin of an xy-coordinate system.

1

ϕ − 1

5 − 3ϕ
5ϕ − 8

2 − ϕ

2ϕ − 3

Figure 1.2. The Golden spiral circumscribes the sequence of Golden rectangles.
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The accumulation point for the spiral can be proved to be ( 1
5 (1 + 3ϕ), 1

5 (3 − ϕ)). Such
logarithmic spirals are “equiangular” in the sense that every line through (x∞, y∞)
cuts across the spiral at a constant angle ξ . In this way, logarithmic spirals generalize
ordinary circles (for which ξ = 90◦). The logarithmic spiral pictured gives rise to the
constant angle ξ = arccot( 2

π
ln(ϕ)) = 72.968 . . .◦ . Logarithmic spirals are evidently

found throughout nature; for example, the shell of a chambered nautilus, the tusks of
an elephant, and patterns in sunflowers and pine cones [4–6].

Another geometric application of the Golden mean arises when inscribing a regular
pentagon within a given circle by ruler and compass. This is related to the fact that

2 cos
(π

5

)
= ϕ, 2 sin

(π

5

)
= √

3 − ϕ.

The Golden mean, just as it has a simple regular continued fraction expansion, also has
a simple radical expansion [7]

ϕ =

√√√√
1 +

√
1 +

√
1 +

√
1 + √

1 + · · · .

The manner in which this expansion converges toϕ is discussed in [1.2.1]. Like Pythago-
ras’ constant [1.1], the Golden mean is irrational and simple proofs are given in [8, 9].

Here is a series [10] involving ϕ:

2
√

5

5
ln(ϕ) =

(
1 − 1

2
− 1

3
+ 1

4

)
+

(
1

6
− 1

7
− 1

8
+ 1

9

)

+
(

1

11
− 1

12
− 1

13
+ 1

14

)
+ · · · ,

which reminds us of certain series connected with Archimedes’ constant [1.4.1]. A
direct expression for ϕ as a sum can be obtained from the Taylor series for the square
root function, expanded about 4. The Fibonacci numbers appear in yet another repre-
sentation [11] of ϕ:

4 − ϕ =
∞∑

n=0

1

f2n
= 1

f1
+ 1

f2
+ 1

f4
+ 1

f8
+ · · · .

Among many other possible formulas involving ϕ, we mention the four Rogers–
Ramanujan continued fractions

1

α − ϕ
exp

(
−2π

5

)
= 1 + e−2π

∣∣
|1 + e−4π

∣∣
|1 + e−6π

∣∣
|1 + e−8π

∣∣
|1 + · · · ,

1

β − ϕ
exp

(
− 2π√

5

)
= 1 +

e−2π
√

5
∣∣∣

|1 +
e−4π

√
5
∣∣∣

|1 +
e−6π

√
5
∣∣∣

|1 +
e−8π

√
5
∣∣∣

|1 + · · · ,

1

κ − (ϕ − 1)
exp

(
−π

5

)
= 1 − e−π

∣∣
|1 + e−2π

∣∣
|1 − e−3π

∣∣
|1 + e−4π

∣∣
|1 − + · · · ,

1

λ − (ϕ − 1)
exp

(
− π√

5

)
= 1 −

e−π
√

5
∣∣∣

|1 +
e−2π

√
5
∣∣∣

|1 −
e−3π

√
5
∣∣∣

|1 +
e−4π

√
5
∣∣∣

|1 − + · · · ,
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where

α =
(
ϕ
√

5
) 1

2
, α′ = 1√

5

(
(ϕ − 1)

√
5
) 5

2
, β =

√
5

1 + 5
√

α′ − 1
,

κ =
(

(ϕ − 1)
√

5
) 1

2
, κ ′ = 1√

5

(
ϕ
√

5
) 5

2
, λ =

√
5

1 + 5
√

κ ′ − 1
.

The fourth evaluation is due to Ramanathan [9, 12–16].

1.2.1 Analysis of a Radical Expansion

The radical expansion [1.2] for ϕ can be rewritten as a sequence {ϕn}:
ϕ1 = 1, ϕn = √

1 + ϕn−1 for n ≥ 2.

Paris [17] proved that the rate in which ϕn approaches the limit ϕ is given by

ϕ − ϕn ∼ 2C

(2ϕ)n
as n → ∞,

where C = 1.0986419643 . . . is a new constant. Here is an exact characterization of
C . Let F(x) be the analytic solution of the functional equation

F(x) = 2ϕF(ϕ −
√

ϕ2 − x), |x | < ϕ2,

subject to the initial conditions F(0) = 0 and F ′(0) = 1. Then C = ϕF(1/ϕ). A power-
series technique can be used to evaluate C numerically from these formulas. It is simpler,
however, to use the following product:

C =
∞∏

n=2

2ϕ

ϕ + ϕn
,

which is stable and converges quickly [18].
Another interesting constant is defined via the radical expression [7, 19]√√√√

1 +

√
2 +

√
3 +

√
4 + √

5 + · · · = 1.7579327566 . . . ,

but no expression of this in terms of other constants is known.

1.2.2 Cubic Variations of the Golden Mean

Perrin’s sequence is defined by

g0 = 3, g1 = 0, g2 = 2, gn = gn−2 + gn−3 for n ≥ 3

and has the property that n > 1 divides gn if n is prime [20, 21]. The limit of ratios of
successive Perrin numbers

ψ = lim
n→∞

gn+1

gn
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satisfies ψ3 − ψ − 1 = 0 and is given by

ψ =
(

1
2 +

√
69

18

) 1
3 + 1

3

(
1
2 +

√
69

18

)− 1
3 = 2

√
3

3 cos
(

1
3 arccos

(
3
√

3
2

))
= 1.3247179572 . . . .

This also has the radical expansion

ψ =
3

√√√√
1 +

3

√
1 + 3

√
1 + 3

√
1 + 3

√
1 + · · · .

An amusing account of ψ is given in [20], where it is referred to as the Plastic constant
(to contrast against the Golden constant). See also [2.30].

The so-called Tribonacci sequence [22, 23]

h0 = 0, h1 = 0, h2 = 1, hn = hn−1 + hn−2 + hn−3 for n ≥ 3

has an analogous limiting ratio

χ =
(

19
27 +

√
33
9

) 1
3 + 4

9

(
19
27 +

√
33
9

)− 1
3 + 1

3 = 4
3 cos

(
1
3 arccos

(
19
8

)) + 1
3

= 1.8392867552 . . . ,

that is, the real solution of χ3 − χ2 − χ − 1 = 0. See [1.2.3]. Consider also the four-
numbers game: Start with a 4-vector (a, b, c, d) of nonnegative real numbers and
determine the cyclic absolute differences (|b − a|, |c − b|, |d − c|, |a − d|). Iterate
indefinitely. Under most circumstances (e.g., if a, b, c, d are each positive integers),
the process terminates with the zero 4-vector after only a finite number of steps. Is this
always true? No. It is known [24] that v = (1, χ, χ2, χ3) is a counterexample, as well
as any positive scalar multiple of v, or linear combination with the 4-vector (1, 1, 1, 1).
Also, w = (χ3, χ2 + χ, χ2, 0) is a counterexample, as well as any positive scalar
multiple of w, or linear combination with the 4-vector (1, 1, 1, 1). These encompass
all the possible exceptions. Note that, starting with w, one obtains v after one step.

1.2.3 Generalized Continued Fractions

Recall from [1.1.1] that generalized continued fractions are constructed via the replace-
ment rule

p → p + 1

q
, q → q + p

q

applied to each new term in a particular generation. In particular, if p = q = 1, the
partial convergents are equal to ratios of successive terms of the Tribonacci sequence,
and hence converge to χ . By way of contrast, the replacement rule [25, 26]

r → r + 1

r + 1

r



P1: FHB/SPH P2: FHB/SPH QC: FHB/SPH T1: FHB

CB503-01 CB503/Finch-v2.cls April 8, 2003 10:55 Char Count=

10 1 Well-Known Constants

is associated with a root of x3 − r x2 − r = 0. If r = 1, the limiting value is(
29
54 +

√
93

18

) 1
3 + 1

9

(
29
54 +

√
93

18

)− 1
3 + 1

3 = 2
3 cos

(
1
3 arccos

(
29
2

)) + 1
3

= 1.4655712318 . . . .

Other higher-order analogs of the Golden mean are offered in [27–29].

1.2.4 Random Fibonacci Sequences

Consider the sequence of random variables

x0 = 1, x1 = 1, xn = ±xn−1 ± xn−2 for n ≥ 2,

where the signs are equiprobable and independent. Viswanath [30–32] proved the sur-
prising result that

lim
n→∞

n
√

|xn| = 1.13198824 . . .

with probability 1. Embree & Trefethen [33] proved that generalized random linear
recurrences of the form

xn = xn−1 ± βxn−2

decay exponentially with probability 1 if 0 < β < 0.70258 . . . and grow exponentially
with probability 1 if β > 0.70258 . . . .

1.2.5 Fibonacci Factorials

We mention the asymptotic result
∏n

k=1 fk ∼ c · ϕn(n+1)/2 · 5−n/2 as n → ∞,
where [34, 35]

c =
∞∏

n=1

(
1 − (−1)n

ϕ2n

)
= 1.2267420107 . . . .

See the related expression in [5.14].
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