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Complex & high-dimensional data

j Interest in developing new methods for analyzing & interpreting
complex, high-dimensional data

j Arise routinely in broad fields of sciences, engineering & even
arts & humanities

j Despite huge interest in big data, there are vast gaps that have
fundamentally limited progress in many fields
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‘Typical’ approaches to big data

j There is an increasingly immense literature focused on big data

j Most of the focus has been on optimization-style methods

j Rapidly obtaining a point estimate even when sample size n &
overall ‘size’ of data is immense

j Bandwagons: many people work on quite similar problems,
while critical open problems remain untouched
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My focus - probability models

j General probabilistic inference
algorithms for complex data

j We would like to be able to handle
arbitrarily complex probability models

j Algorithms scalable to huge data -
potentially using many computers

j Accurate uncertainty quantification (UQ) is a critical issue

j Robustness of inferences also crucial

j Particular emphasis on scientific applications - limited labeled
data
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Bayes approaches

j Bayesian methods offer an attractive general approach for
modeling complex data

j Choosing a prior π(θ) & likelihood L(Y (n)|θ), the posterior is

πn(θ|Y (n)) = π(θ)L(Y (n)|θ)∫
π(θ)L(Y (n)|θ)dθ

= π(θ)L(Y (n)|θ)

L(Y (n))
.

j Often θ is moderate to high-dimensional & the integral in the
denominator is intractable

j Accurate analytic approximations to the posterior have proven
elusive outside of narrow settings

j Markov chain Monte Carlo (MCMC) & other posterior sampling
algorithms remain the standard

j Scaling MCMC to big & complex settings challenging
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MCMC & Computational bottlenecks

j MCMC constructs Markov chain with stationary distribution
πn(θ|Y (n))

j A transition kernel is carefully chosen & iterative sampling
proceeds

j Time per iteration increases with # of parameters/unknowns

j Mixing worse as dimension of data increases

j Storing & basic processing on big data sets is problematic

j Usually multiple likelihood and/or gradient evaluations at each
iteration
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Solutions

j Embarrassingly parallel (EP) MCMC: run MCMC in parallel for
different subsets of data & combine.

j Approximate MCMC: Approximate expensive to evaluate
transition kernels.

j Hybrid algorithms: run MCMC for a subset of the parameters
& use a fast estimate for the others.

j Designer MCMC: define clever kernels that solve mixing
problems in high dimensions

j I’ll focus on EP-MCMC & aMCMC in remainder
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Embarrassingly parallel MCMC

j Divide large sample size n data set into many smaller data sets
stored on different machines

j Draw posterior samples for each subset posterior in parallel
j ‘Magically’ combine the results quickly & simply
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Toy Example: Logistic Regression
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MCMC
Subset Posterior
WASP

β1

β 2

pr(yi = 1|xi 1, . . . , xi p ,θ) =
exp

(∑p
j=1 xi jβ j

)
1+exp

(∑p
j=1 xi jβ j

) .

j Subset posteriors: ‘noisy’ approximations of full data posterior.

j ‘Averaging’ of subset posteriors reduces this ‘noise’ & leads to
an accurate posterior approximation.
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Stochastic Approximation

j Full data posterior density of inid data Y (n)

πn(θ | Y (n)) =
∏n

i=1 pi (yi | θ)π(θ)∫
Θ

∏n
i=1 pi (yi | θ)π(θ)dθ

.

j Divide full data Y (n) into k subsets of size m:
Y (n) = (Y[1], . . . ,Y[ j ], . . . ,Y[k]).

j Subset posterior density for j th data subset

π
γ
m(θ | Y[ j ]) =

∏
i∈[ j ](pi (yi | θ))γπ(θ)∫

Θ

∏
i∈[ j ](pi (yi | θ))γπ(θ)dθ

.

j γ=O(k) - chosen to minimize approximation error
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Barycenter in Metric Spaces
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Barycenter in Metric Spaces
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WAsserstein barycenter of Subset Posteriors (WASP)

Srivastava, Li & Dunson (2015)

j 2-Wasserstein distance between µ,ν ∈P 2(Θ)

W2(µ,ν) = inf
{(
E[d 2(X ,Y )]

) 1
2 : law(X ) =µ, law(Y ) = ν

}
.

j Π
γ
m(· | Y[ j ]) for j = 1, . . . ,k are combined through WASP

Π
γ
n(· | Y (n)) = argmin

Π∈P 2(Θ)

1

k

k∑
j=1

W 2
2 (Π,Πγ

m(· | Y[ j ])). [Agueh & Carlier (2011)]

j Plugging in Π̂γ
m(· | Y[ j ]) for j = 1, . . . ,k, a linear program (LP) can

be used for fast estimation of an atomic approximation
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LP Estimation of WASP

j Minimizing Wasserstein is solution to a discrete optimal
transport problem

j Let µ=∑J1
j=1 a jδθ1 j , ν=∑J2

l=1 blδθ2l & M12 ∈ℜJ1×J2 = matrix of
square differences in atoms {θ1 j }, {θ2l }.

j Optimal transport polytope: T (a,b) = set of doubly stochastic
matrices w/ row sums a & column sums b

j Objective is to find T ∈T (a,b) minimizing tr(TT M12)

j For WASP, generalize to multimargin optimal transport problem
- entropy smoothing has been used previously

j We can avoid such smoothing & use sparse LP solvers -
neglible computation cost compared to sampling
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j For WASP, generalize to multimargin optimal transport problem
- entropy smoothing has been used previously

j We can avoid such smoothing & use sparse LP solvers -
neglible computation cost compared to sampling
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WASP: Theorems

Theorem (Subset Posteriors)
Under “usual” regularity conditions, there exists a constant C1

independent of subset posteriors, such that for large m,

E
P [ j ]
θ0

W 2
2

{
Π
γ
m(· | Y[ j ]),δθ0 (·)}≤C1

(
log2 m

m

) 1
α

j = 1, . . . ,k,

Theorem (WASP)
Under “usual” regularity conditions and for large m,

W2

{
Π
γ
n(· | Y (n)),δθ0 (·)

}
=OP (n)

θ0

√
log2/αm

km1/α

 .
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Simple & Fast Posterior Interval Estimation (PIE)

Li, Srivastava & Dunson (2015)

j Usually report point & interval estimates for different 1-d
functionals - multidimensional posterior difficult to interpret

j WASP has explicit relationship with subset posteriors in 1-d

j Quantiles of WASP are simple averages of quantiles of subset
posteriors

j Leads to a super trivial algorithm - run MCMC for each subset &
average quantiles - reminiscent of bag of little bootstraps

j Strong theory showing accuracy of the resulting approximation

j Can be implemented in STAN, which allows powered likelihoods
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Theory on PIE/1-d WASP

j We show 1-d WASP Πn(ξ|Y (n)) is highly accurate approximation
to exact posterior Πn(ξ|Y (n))

j As subset sample size m increases, W2 distance between them
decreases at faster than parametric rate op (n−1/2)

j Theorem allows k =O(nc ) and m =O(n1−c ) for any c ∈ (0,1), so
m can increase very slowly relative to k (recall n = mk)

j Their biases, variances, quantiles only differ in high orders of
the total sample size

j Conditions: standard, mild conditions on likelihood + prior finite
2nd moment & uniform integrabiity of subset posteriors
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Results

j We have implemented for rich variety of data & models

j Logistic & linear random effects models, mixture models, matrix
& tensor factorizations, Gaussian process regression

j Nonparametric models, dependence, hierarchical models, etc.

j We compare to long runs of MCMC (when feasible) & VB

j WASP/PIE is much faster than MCMC & highly accurate

j Carefully designed VB implementations often do very well
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aMCMC Johndrow, Mattingly, Mukherjee & Dunson (2015)

j Different way to speed up MCMC - replace expensive transition
kernels with approximations

j For example, approximate a conditional distribution in Gibbs
sampler with a Gaussian or using a subsample of data

j Can potentially vastly speed up MCMC sampling in
high-dimensional settings

j Original MCMC sampler converges to a stationary distribution
corresponding to the exact posterior

j Not clear what happens when we start substituting in
approximations - may diverge etc
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aMCMC Overview

j aMCMC is used routinely in an essentially ad hoc manner

j Our goal: obtain theory guarantees & use these to target design
of algorithms

j Define ‘exact’ MCMC algorithm, which is computationally
intractable but has good mixing

j ‘exact’ chain converges to stationary distribution corresponding
to exact posterior

j Approximate kernel in exact chain with more computationally
tractable alternative

aMCMC 20
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Sketch of theory

j Define sε = τ1(P )/τ1(Pε) = computational speed-up, τ1(P ) =
time for one step with transition kernel P

j Interest: optimizing computational time-accuracy tradeoff for
estimators of Π f = ∫

Θ f (θ)Π(dθ|x)

j We provide tight, finite sample bounds on L2 error

j aMCMC estimators win for low computational budgets but have
asymptotic bias

j Often larger approximation error → larger sε & rougher
approximations are better when speed super important
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Ex 1: Approximations using subsets

j Replace the full data likelihood with

Lε(x | θ) =
(∏

i∈V
L(xi | θ)

)N /|V |
,

for randomly chosen subset V ⊂ {1, . . . ,n}.

j Applied to Pólya-Gamma data augmentation for logistic
regression

j Different V at each iteration – trivial modification to Gibbs
j Assumptions hold with high probability for subsets > minimal

size (wrt distribution of subsets, data & kernel).
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Application to SUSY dataset

j n = 5,000,000 (0.5 million test), binary outcome & 18 continuous
covariates

j Considered subsets sizes ranging from |V | = 1,000 to 4,500,000

j Considered different losses as function of |V |
j Rate at which loss → 0 with ε heavily dependent on loss

j For small computational budget & focus on posterior mean
estimation, small subsets preferred

j As budget increases & loss focused more on tails (e.g., for
interval estimation), optimal |V | increases
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Application 2: Mixture models & tensor factorizations

j We also considered a nonparametric Bayes model:

pr(yi 1 = c1, . . . , yi p = cp ) =
k∑

h=1
λh

p∏
j=1

ψ
( j )
hc j

,

a very useful model for multivariate categorical data

j Dunson & Xing (2009) - a data augmentation Gibbs sampler
j Sampling latent classes computationally prohibitive for huge n

j Use adaptive Gaussian approximation - avoid sampling
individual latent classes

j We have shown Assumptions 1-2, Assumption 2 result more
general than this setting

j Improved computation performance for large n
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Application 3: Low rank approximation to GP

j Gaussian process regression, yi = f (xi )+ηi , ηi ∼ N (0,σ2)

j f ∼GP prior with covariance τ2 exp(−φ||x1 −x2||2)

j Discrete-uniform on φ & gamma priors on τ−2,σ−2

j Marginal MCMC sampler updates φ,τ−2,σ−2

j We show Assumption 1 holds under mild regularity conditions
on “truth”, Assumption 2 holds for partial rank-r eigen
approximation to Σ

j Less accurate approximations clearly superior in practice for
small computational budget
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Applications: General Conclusions

j Achieving uniform control of approximation error ε requires
approximations adaptive to current state of chain

j More accurate approximations needed farther from high
probability region of posterior; good as chain rarely there

j Approximations to conditionals of vector parameters are highly
sensitive to 2nd moment

j Smaller condition numbers for the covariance matrix of vector
parameters mean less accurate approximations can be used
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Discussion

j Proposed very general classes of scalable Bayes algorithms

j EP-MCMC & aMCMC - fast & scalable with guarantees

j Interest in improving theory - avoid reliance on asymptotics in
EP-MCMC & weaken assumptions in aMCMC

j Useful to combine algorithms - e.g., run aMCMC for each subset

j By looking at algorithms through our theory lens, suggests new
& improved algorithms

j Also, very interested in hybrid frequentist-Bayes algorithms
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Hybrid high-dimensional density estimation

Ye, Canale & Dunson (2016, AISTATS)

j yi = (yi 1, . . . , yi p )T ∼ f with p large & f an unknown density

j Potentially use Dirichlet process mixtures of factor models

j Approach doesn’t scale well at all with p

j Instead use hybrid of Gibbs sampling & fast multiscale SVD

j Scalable, excellent mixing & empirical/predictive performance
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What about mixing?
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j In the above we have put aside the mixing issues that can arise
in big samples

j Slow mixing → we need many more MCMC samples for the
sample MC error

j Common data augmentation algorithms for discrete data fail
badly for large imbalanced data (Johndrow et al. 2016)

j But such problems can be fixed via calibration (Duan et al. 2016)

j Interesting area for further research
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