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Complex & high-dimensional data

® Interest in developing new methods for analyzing & interpreting
complex, high-dimensional data

& Arise routinely in broad fields of sciences, engineering & even
arts & humanities

» Despite huge interest in big data, there are vast gaps that have
fundamentally limited progress in many fields
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‘Typical’ approaches to big data

#» There is an increasingly immense literature focused on big data
» Most of the focus has been on optimization-style methods

:» Rapidly obtaining a point estimate even when sample size n &
overall ‘size’ of data is immense

» Bandwagons: many people work on quite similar problems,
while critical open problems remain untouched
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potentially using many computers

"I wish we hadn't learned probability
‘cause I don't think our odds are good.”

» Accurate uncertainty quantification (UQ) is a critical issue
:» Robustness of inferences also crucial

@ Particular emphasis on scientific applications - limited labeled
data

Motivation & background



Bayes approaches

¢

W

(

& Bayesian methods offer an attractive general approach for
modeling complex data

Motivation & background



Bayes approaches

¢

W

(

:» Bayesian methods offer an attractive general approach for
modeling complex data
:» Choosing a prior 7(0) & likelihood L(Y " 10), the posterior is
L(y®™ L(y™
2,01 ™) = n(0)L(Y10) _ n(0)L(Y10)
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:» Bayesian methods offer an attractive general approach for
modeling complex data
:» Choosing a prior 7(0) & likelihood L(Y "™ 10), the posterior is

n@O)LY™0)  w@O)LY™|0)
[r@OLY™|0)dd LY™)

» Often 6 is moderate to high-dimensional & the integral in the
denominator is intractable

:» Accurate analytic approximations to the posterior have proven
elusive outside of narrow settings

» Markov chain Monte Carlo (MCMC) & other posterior sampling
algorithms remain the standard

» Scaling MCMC to big & complex settings challenging

@Y ™) =
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MCMC & Computational bottlenecks

:» MCMC constructs Markov chain with stationary distribution
w01y ")

A transition kernel is carefully chosen & iterative sampling
proceeds

Time per iteration increases with # of parameters/unknowns

¢

Mixing worse as dimension of data increases
Storing & basic processing on big data sets is problematic

€ € ¢ ¢

Usually multiple likelihood and/or gradient evaluations at each
iteration
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Solutions

:» Embarrassingly parallel (EP) MCMC: run MCMC in parallel for
different subsets of data & combine.

» Approximate MCMC: Approximate expensive to evaluate
transition kernels.

» Hybrid algorithms: run MCMC for a subset of the parameters
& use a fast estimate for the others.

» Designer MCMC: define clever kernels that solve mixing
problems in high dimensions

s I'll focus on EP-MCMC & aMCMC in remainder

Motivation & background
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Embarrassingly parallel MCMC

Big Data Data Subsets Subset Posteriors

B-

» Divide large sample size n data set into many smaller data sets
stored on different machines

& Draw posterior samples for each subset posterior in parallel

» ‘Magically’ combine the results quickly & simply
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1 +exp(25.’:1 xijﬁj).

priyi: = 1xi1,..., Xip,0) =

» Subset posteriors: ‘noisy’ approximations of full data posterior.
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Toy Example: Logistic Regression

1.151

1.05
&' 1.004

0.951

090 —— MCMC
—— Subset Posterior
0gsl —— WASP

-1115 -1110 -1'05 -1100 -095 -090 -0'85
Ba p
eXp(ijlxijﬁj)
p .
1+exp(2j:1x,~jﬁj)

priyi: = 1xi1,..., Xip,0) =

» Subset posteriors: ‘noisy’ approximations of full data posterior.
& ‘Averaging’ of subset posteriors reduces this ‘noise’ & leads to
an accurate posterior approximation.
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Stochastic Approximation

:» Full data posterior density of inid data Y

[, pi(yi 10)7(6)

@17 JoIIL, pi(yi 10)m(0)do

s» Divide full data Y™ into k subsets of size m:
YU = (Yo, oo, Yijoeeor Yigg)-

» Subset posterior density for jth data subset
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Stochastic Approximation

:» Full data posterior density of inid data Y

[T, pi(yi 10)(©0)

@17 JoIIL, pi(yi 10)m(0)do

s» Divide full data Y™ into k subsets of size m:
YU = (Yo, oo, Yijoeeor Yigg)-

» Subset posterior density for jth data subset

ie/1(pi(yi 10)'7(0)

#» ¥ = O(k) - chosen to minimize approximation error

EP-MCMC
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WAsserstein barycenter of Subset Posteriors (WASP)
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Srivastava, Li & Dunson (2015)

» 2-Wasserstein distance between p,v € 22,(0)

Wa(,v) = inf{(Eld (X, V1) :law(X) = g, law(Y) = v},
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» 2-Wasserstein distance between p,v € 22,(0)

Wa (i, v) = inf{([E[dz(X, Y1) law(X) = g, law(Y) = v}.
& I1,(-1 ;) for j=1,..., k are combined through WASP

_ 1 &
T, (| Y™) = argmin — Y W2IL T, (| Yij))).  tAouen & carer (o1
[Me2?,(0) j=1
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WAsserstein barycenter of Subset Posteriors (WASP)

4
Srivastava, Li & Dunson (2015)

» 2-Wasserstein distance between p,v € 22,(0)

Wa(,v) = inf{(Eld(X, Y1) :law(X) = 1, law(Y) = vh
o I, Yj;) for j=1,..., k are combined through WASP

— R L
(-1 Y™) = argmin — Y W2(ILTL,(-| Y1) thowen & carer (011
e2?,(0) j=1

s Plugging in T17, (- | Vi) for j=1,...,k, alinear program (LP) can
be used for fast estimation of an atomic approximation
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LP Estimation of WASP

Minimizing Wasserstein is solution to a discrete optimal
transport problem

Let p=Y"L, a;0p,;, v=21, bidg, & M1z € /2 = matrix of
square differences in atoms {601}, {02;}.

Optimal transport polytope: 9 (a,b) = set of doubly stochastic
matrices w/ row sums a & column sums b

Objective is to find T € 9 (a,b) minimizing tr(TTM;,)

For WASP, generalize to multimargin optimal transport problem
- entropy smoothing has been used previously

We can avoid such smoothing & use sparse LP solvers -
neglible computation cost compared to sampling

EP-MCMC



WASP: Theorems

Theorem (Subset Posteriors)

Under “usual” regularity conditions, there exists a constant C;
independent of subset posteriors, such that for large m,

1
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WASP: Theorems

Theorem (Subset Posteriors)

Under “usual” regularity conditions, there exists a constant C;
independent of subset posteriors, such that for large m,

1
log?m\* .
[Ep;ﬂsz{H%I(-lYm)ﬁeo(')}fcl( %n ) j=1..k
0

Theorem (WASP)
Under “usual” regularity conditions and for large m,
kml/a

_ log®’* m
W, {HL(- | Y)Y, 89, (-)} = Opu ( g—).
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Simple & Fast Posterior Interval Estimation (PIE)

Li, Srivastava & Dunson (2015)

Usually report point & interval estimates for different 1-d
functionals - multidimensional posterior difficult to interpret

WASP has explicit relationship with subset posteriors in 1-d

Quantiles of WASP are simple averages of quantiles of subset
posteriors

Leads to a super trivial algorithm - run MCMC for each subset &
average quantiles - reminiscent of bag of little bootstraps

Strong theory showing accuracy of the resulting approximation
Can be implemented in STAN, which allows powered likelihoods

EP-MCMC 16
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Theory on PIE/1-d WASP

:» We show 1-d WASP 11,,(¢|Y ) is highly accurate approximation
to exact posterior IT,,(£| Y )

» As subset sample size m increases, W, distance between them
decreases at faster than parametric rate o,,(n‘“z)

:» Theorem allows k = O(n) and m = O(n'~¢) for any c€ (0,1), so
m can increase very slowly relative to k (recall n = mk)

» Their biases, variances, quantiles only differ in high orders of
the total sample size

® Conditions: standard, mild conditions on likelihood + prior finite
2nd moment & uniform integrabiity of subset posteriors
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Results

» We have implemented for rich variety of data & models

» Logistic & linear random effects models, mixture models, matrix
& tensor factorizations, Gaussian process regression

Nonparametric models, dependence, hierarchical models, etc.
We compare to long runs of MCMC (when feasible) & VB
WASP/PIE is much faster than MCMC & highly accurate
Carefully designed VB implementations often do very well

€ €& € ¢
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aMCMC Johndrow, Mattingly, Mukherjee & Dunson (2015)

s Different way to speed up MCMC - replace expensive transition
kernels with approximations

» For example, approximate a conditional distribution in Gibbs
sampler with a Gaussian or using a subsample of data

» Can potentially vastly speed up MCMC sampling in
high-dimensional settings

» Original MCMC sampler converges to a stationary distribution
corresponding to the exact posterior

» Not clear what happens when we start substituting in
approximations - may diverge etc

aMCMC
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aMCMC Overview

» aMCMC is used routinely in an essentially ad hoc manner

» Our goal: obtain theory guarantees & use these to target design
of algorithms

» Define ‘exact’ MCMC algorithm, which is computationally
intractable but has good mixing

» ‘exact’ chain converges to stationary distribution corresponding
to exact posterior

@ Approximate kernel in exact chain with more computationally
tractable alternative

aMCMC

20
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HI! = I'M SELLING
THEORY INSURANCE!

w Define se = 11(P)/1,(22.) = computational speed-up, 11(2) =
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w Define se = 11(P)/1,(22.) = computational speed-up, 11(2) =
time for one step with transition kernel 22

» Interest: optimizing computational time-accuracy tradeoff for
estimators of I1f = [ f(O)I1(d0|x)

:» We provide tight, finite sample bounds on L, error

» aMCMC estimators win for low computational budgets but have
asymptotic bias

» Often larger approximation error — larger s, & rougher
approximations are better when speed super important
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Ex 1: Approximations using subsets

» Replace the full data likelihood with

N/|V|

Le(x160) = (H L(x; Ie)) )
eV

for randomly chosen subset V c{1,...,n}.

» Applied to Polya-Gamma data augmentation for logistic
regression

» Different V at each iteration — trivial modification to Gibbs
» Assumptions hold with high probability for subsets > minimal
size (wrt distribution of subsets, data & kernel).
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Application to SUSY dataset

® n=>5,000,000 (0.5 million test), binary outcome & 18 continuous
covariates

Considered subsets sizes ranging from |V| = 1,000 to 4,500,000
Considered different losses as function of | V|
Rate at which loss — 0 with € heavily dependent on loss

For small computational budget & focus on posterior mean
estimation, small subsets preferred

# As budget increases & loss focused more on tails (e.g., for
interval estimation), optimal |V| increases

¢ € ¢ ¢
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Application 2: Mixture models & tensor factorizations

= Z
£
TeusoR PaRAFAC

:» We also considered a nonparametric Bayes model:
k P

priyin=ci,...,Yip=¢p) = Z An H Ve,

=1 j=1

a very useful model for multivariate categorical data
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:» We also considered a nonparametric Bayes model:

k P
pryin=ci,...,yip=cp) = Z An l_[ 1//2]2
h=1 j=1
a very useful model for multivariate categorical data
» Dunson & Xing (2009) - a data augmentation Gibbs sampler
Sampling latent classes computationally prohibitive for huge n
» Use adaptive Gaussian approximation - avoid sampling
individual latent classes
:» We have shown Assumptions 1-2, Assumption 2 result more
general than this setting
» Improved computation performance for large n
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Application 3: Low rank approximation to GP
d]

Gaussian process regression, y; = f(x;) +1i, n; ~ N(0,0?)

f ~ GP prior with covariance 72 exp(—¢||x; — x2/[%)

Discrete-uniform on ¢ & gamma priors on 772,02

2

O

Marginal MCMC sampler updates ¢, 72,0~

€ €& € € ¢

We show Assumption 1 holds under mild regularity conditions
on “truth”, Assumption 2 holds for partial rank-r eigen
approximation to X

¢

Less accurate approximations clearly superior in practice for
small computational budget
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Applications: General Conclusions

» Achieving uniform control of approximation error e requires
approximations adaptive to current state of chain

» More accurate approximations needed farther from high
probability region of posterior; good as chain rarely there

» Approximations to conditionals of vector parameters are highly
sensitive to 2nd moment

® Smaller condition numbers for the covariance matrix of vector
parameters mean less accurate approximations can be used

aMCMC 26
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Discussion

» Proposed very general classes of scalable Bayes algorithms
EP-MCMC & aMCMC - fast & scalable with guarantees

 Interest in improving theory - avoid reliance on asymptotics in
EP-MCMC & weaken assumptions in aMCMC

» Useful to combine algorithms - e.g., run aMCMC for each subset

¢

» By looking at algorithms through our theory lens, suggests new
& improved algorithms

s Also, very interested in hybrid frequentist-Bayes algorithms
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Hybrid high-dimensional density estimation
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» Potentially use Dirichlet process mixtures of factor models
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Hybrid high-dimensional density estimation
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Ye, Canale & Dunson (2016, AISTATS)
® ¥i=it,...,yip)T ~ f with p large & f an unknown density
Potentially use Dirichlet process mixtures of factor models

»
» Approach doesn’t scale well at all with p
®
k)

Instead use hybrid of Gibbs sampling & fast multiscale SVD
Scalable, excellent mixing & empirical/predictive performance
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#® In the above we have put aside the mixing issues that can arise
in big samples

» Slow mixing — we need many more MCMC samples for the
sample MC error

» Common data augmentation algorithms for discrete data fail
badly for large imbalanced data (Johndrow et al. 2016)

» But such problems can be fixed via calibration (Duan et al. 2016)
s Interesting area for further research
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