Sequence: Simple and efficient iterators

Simon Cruanes

July 8th, 2014

Simon Cruanes July 8th, 2014 1/18

PhD student in Deducteam
Topic: Automated Theorem Proving

@ In a nutshell: try to solve the unsolvable (Gddel, etc.)
@ Symbolic computations

@ Lots of data structures and algorithms

Simon Cruanes July 8th, 2014 2 /18

https://www.rocq.inria.fr/deducteam/

[terators

abstraction over iteration (enumerating values)
present in many languages
Java, C++, python, rust, C#, lua, etc.

sometimes built-in syntax (python, java,...)

OCaml: fold/iter higher-order functions more common

Simon Cruanes July 8th, 2014 3/18

Still, would be useful in OCaml

@ Conversion between containers: n? functions to write
— in practice, at best to_list and of_list

e Missing functions (Queue.mem, Array.for_all, etc.)
@ flat_map: (’a -> ’b t) -> ’a t -> ’b t inefficient on most
containers

e combinators (map, etc.): eager, build intermediate structures

— we define a type ’a Sequence.t

@ lazy (possibly infinite)
@ no intermediate structure

o efficient

Simon Cruanes July 8th, 2014 4 /18

Replace the for loop

OCaml’s for loop is limited. Instead:

Sequence. (1 -- 10_.000_000 [> fold (+) 0);;
- : int = 50000005000000

let p x = x mod 5 = 0 in
Sequence. (1 -- 5_000
[> filter p
|> map (fun x-> x*x)
[> fold (+) O
)5
- : 1int = 8345837500

Simon Cruanes July 8th, 2014 5 /18

One recursive function to write them all

type term = Var of string
| App of term * term
| Lambda of term ;;
let subterms : term -> term sequence =

Now we can define many other functions easily!

let vars t =
S.filter_map

(function Var s -> Some s | _ -> None)
(subterms t) ;;
val vars : term -> string sequence = <fun>

let size t = Sequence.length (subterms t) ;;
val size : term -> int = <fun>

let vars_list 1 = S.of_list 1 |> S.flat_map vars;;
val vars_list : term list -> string sequence = <fun>

Simon Cruanes July 8th, 2014 6 /18

Containers

let contains_value x h =
S.hashtbl_values h
|> S.mem x ;;

- ¢ b -> (’a,’b) Hashtbl.t -> bool

let rev_tbl h =
S.of_hashtbl h
|> S.map (fun (x,y) -> y,x)
|> S.to_hashtbl ;;
- : (’a,’b) Hashtbl.t -> (’b,’a) Hashtbl.t

let tbl_of_list 1 = S.to_hashtbl (S.of_list 1);;
- : (’a * ’b) list -> (’a,’b) Hashtbl.t

let tbl_values h = S.to_list (S.hashtbl_values h) ;;
- : (’a, ’b) Hashtbl.t -> ’b 1list

Simon Cruanes July 8th, 2014 7 /18

Playing with Hashtbl

let tbl = Sequence.(1 -- 1000
|> map (fun i -> i, string_of_int i)
|> to_hashtbl
)5

- : (int, string) Hashtbl.t = <abstr>

Hashtbl.length tbl;;
- : int = 1000

Sequence.(hashtbl_keys tbl
|> take 15
|> iter (Hashtbl.remove tbl)
)5

- : unit = QO

Hashtbl.length tbl;;
- : int = 985

Simon Cruanes July 8th, 2014 8 /18

Combinatorics

Quite easy to backtrack using Sequence (+ early exit, fold. . .)

Example: Permutations of lists

module S = Sequence ;;
let rec insert x 1 = match 1 with
| [1 -> S.return [x]
| y::tl ->
S.append

S.(insert x tl >|= fun tl’ -> y::tl?)
(S.return (x::1)) ;;

let rec permute 1 = match 1 with
| [-> S.return []
| x::tl -> permute tl >>= insert x ;;

permute [1;2;3;4] |> S.take 2 |> S.to_list ;;
- : int 1list 1list = [[4; 3; 2; 11; [4; 3; 1; 2]]

v

Simon Cruanes July 8th, 2014 9 /18

Gabriel Radanne (@rup): https://github.com/Drup/LILiS

5 U

Nested flat_map (convert segment into sub-segments)
(flat_map : (a -> b t) -> ’a t -> ’b t)

Simon Cruanes July 8th, 2014 10 / 18

https://github.com/Drup/LILiS

Currently in OCaml|

e standard library: Stream.t (slow, designed for |0)
o Batteries has Enum.t (slow, complicated)

o Core: very recently, core.sequence (requires Core)

— roll my own iterators (fast, self-contained)

Simon Cruanes July 8th, 2014 11 / 18

Survey: Possible Implementations

Roughly

type ’a gen = unit -> ’a option;;

type ’a BatGen.t = unit -> ’a node

and ’a node =

| Nil

| Cons of ’a * ’a BatGen.t ;;

type ’a sequence = (’a -> unit) -> unit ;;

@ Possibility to use structural types

@ Possibility to use exceptions for end-of-iterator

@ Monadic versions (Lwt_stream.t)

Simon Cruanes July 8th, 2014 12 /18

Sequence

Choose ’a sequence = (’a -> unit) -> unit:

@ Simple

o Very efficient

e Structural type (interoperability!)

@ Easy to define on opaque types (if iter provided)
— definable on Set.S.t, Queue.t, Hashtbl.t, etc.
— good for interoperability

@ Expressiveness: "good enough" (more details later)

Simon Cruanes July 8th, 2014 13 /18

Benchmarks (L-systems)

--- Lsystem Von_koch for 7 iterations ---

Rate Stream
Stream 2.91+-0.02/s -
Enum 13.5+- 0.3/s 362%

Gen 36.4+- 0.0/s 11507%
BatSeq 42.8+- 0.2/s 1369%
Sequence 51.4+- 0.1/s 16647

--- Lsystem dragon for 15 iterations ---

Rate Stream
Stream 1.81+-0.00/s _—
Enum 9.70+-0.12/s 436%

Gen 22.4+- 0.1/s 11409
BatSeq 26.2+- 0.1/s 13497,
Sequence 34.8+- 0.1/s 1823%

Credits to @Drup. This benchmarks mostly flat_map.

Simon Cruanes

July 8th, 2014

14 / 18

Sequence isn't perfect:

@ Some operators impossible to write
— combine, sorted_merge, €etc.
— other iterators can do it (opam install gen)
— possible with delimcc
— possible with Sequence.persistent (store into list)

e meh for |0
— would need a monad (Lwt/Async)
— resource handling
— other iterators: same problems

Simon Cruanes July 8th, 2014 15 / 18

The Sequence Library

@ BSD-licensed
@ Provides many combinators and conversion functions

o Package sequence on opam

Implementation
quite easy: call continuation k to yield an element

let map f seq = fun k -> seq (fun x -> k (f x));;

let flat_map f seq = fun k -> seq (fun x -> (f x) k);;
let filter p seq = fun k -> seq (fun x -> if p x then k
let iter f seq = seq f ;;

let of_list 1 = fun k -> List.iter k 1

v

Simon Cruanes July 8th, 2014 16 / 18

Conclusion

o Efficient, simple, lazy, structural iterators
@ Used a lot in my code

e backtracking algorithms (n-ary unification)

e traversing nested structures

e missing for_all, flat_map, filter_map, ...operators
[}

@ Works on opaque (third-party) containers

o Free software

Simon Cruanes July 8th, 2014 17 / 18

Simon Cruanes July 8th, 2014 18 / 18

