A CUBICAL TYPE THEORY FOR HIGHER INDUCTIVE
TYPES

SIMON HUBER

1. INTRODUCTION

This note describes a variation of cubical type theory [1] better suited
for the extension with higher inductive types. The basic idea is to de-
compose the composition operation into a generalized version of transport
and a homogeneous composition, i.e., a composition in a constant type. A
similar approach was already taken in earlier versions of [1] which where
then dropped due to problems with a regularity assumption on composition
present in the earlier versions.

2. NEwW PRIMITIVES

2.1. Transport. The generalization of the transport operation from [1]
where one can also specify where the given type is known to be constant;
on this part the output is equal to the input.

Ii:IFA Tre:F T,i:LeH A= A(i/0) T'Foug: A(i/0)
T F transp’ A pug : A(i/1)[p — ug)
Note that since I';i : [, o = A = A(i/0) also I',p + A(i/0) = A(i/1) (and
hence this equation also holds in context I',i : I, ¢).

We can also derive a corresponding “filling” operation which connects the
input to transp to its output by:

ri:IFA '-e:F Ii:LpkH A= A(i/0) I'Fug: A(/0)
[yi: T+ transpFill' Apug = transp’ A(i/iAj) (eV (i=0))uy: A
Note that I',i : I, o = A = A(i/0) entails
Ti:Lj:LoV(i=0)FAx/iAj) = A@/i A§)(/0).

This operation satisfies
' F (transpFill® A@u)(i/0) = ug : A(i/0), and
I F (transpFill’ A ug)(i/1) = transp’ Apug : A(i/1),

and the induced path is constant ug on .

Date: August 2017.

This old write-up is based on work figuring out higher inductive types in cubical type
theory together with Thierry Coquand, Anders Mortberg, and Cyril Cohen, which later
also lead to [2]. Section 3.6 was slightly modified in February 2022, after a possible problem
was pointed out by Andrds Kovécs (see https://github.com/agda/agda/issues/5755).

1

2 SIMON HUBER
Using the involution on I we can also derive the corresponding operation
going from (i/1) to (i/0) by:
transp~ ' Apu = (transp’ A(i/1 — i) pu)(i/1 — 1) : A(i/0)
where now u : A(i/1). Similarly one can define transpFill ™" A ¢ u.
Another derived operation is forward:
i:IFA PkEr:I Ckwu: A(Gi/r)
I+ forward’ Aru = transp” A(i/i Vr) (r = 1)u: A(i/1)

satisfying forward’ A1u = u.
2.2. Homogeneous Composition. Homogeneous composition is like com-
position from [1] but in a constant type:
r-A F'Fe:F Fi:Lpku:A I'Foug: Alp — u(i/0)]
'+ hcomp® A [@ — u]ug = Alp — u(i/1)]

We have a derived analogous homogeneous filling operation given by
T,i:TF hfill Alp — u]ug = hcomp? Afp — u(i/i A j), (i = 0) — ug]ug : A.
2.3. Composition. The general composition operation from [1] can be de-
fined in terms of transp and hcomp as follows.

Ii:IFA
F'e:F Ii:LetFu:A I'Fug: A(2/0)[¢ — u(i/0)]
, I‘l—compiA[cp»—>u]u0: '
hcomp® A(i/1) [p > forward’ A(i/j)iu] (forward® AOwg) : A(i/1)

Note forward’ A(i/j)iu binds j only in A we can also simply write this as
forward’ Aiu. The required judgmental equality for comp follows from the
one of hcomp and forward’ A1u = u.

It might be illustrative to the reader to see that such a generalized trans-
port operation transp’ A puy can be defined in terms of composition by
comp’ A [¢ > uo) ugp.

3. RECURSIVE DEFINITION OF TRANSPORT

We now explain transp’ A ¢ ug by induction on the type A.
3.1. Natural Numbers.
transp' N 0 = 0
transp’ N ¢ (Sug) = S(transp’ N ¢ ug)
We could also directly take transp’ N ¢ ug = ug.

3.2. Dependent Paths. Let I';i : I, : I+ A, T,i: I+ u: A(j/0), and
Fyi:Tkov: A(/1).
transp’ (Path’ Avw) pug =
(4) comp® A[ip = ug j, (j = 0) = v, (j = 1) = w] (ug j)

Note that we can in general not take an hcomp here as A might depend on 1.

A CUBICAL TYPE THEORY FOR HIGHER INDUCTIVE TYPES 3

3.3. Dependent Pairs. Let I'i : I F A and I';i : I,z : A + B with
Ii:LpkA=A(i/0)and I',i: Lo,z : A+ B = B(i/0).
transp’ ((z : A) x B) @ ug = (transp’ A o (ug.1), transp’ B(z/v) ¢ (ug.2))
where v = transpFill’ A @ ug.1.
3.4. Dependent Functions. Let ;i : I+ Aand I',i : [,x : A+ B with
Ii:LprA=A(i/0)and I',i: Lo,z : A+ B = B(i/0).
transp’ ((z : A) — B) pupv = transp’ B(z/w) ¢ (uo w(i/0))
where v : A(i/1) and w = transpFill ™ Ap v,
3.5. Universe. '
transp'Up A=A
3.6. Glue. Let
rii:1-A Fi:IFe:F Li:LokET Ii:1,okFw:Equivl A
and write B for Glue [— (T, w)] A. We will indicate the (usually omitted)
arguments of unglue by a subscript of the involved partial element, so, e.g.,
unglue, denotes the unglue of B, and unglue ;) the unglue of B(i/0).
Let further ' F ¢ : Fand I',i : [, = B = B(i/0) and T' F ug : B(i/0).
We are going to define
T F transp’ Bepug : B(i/1)
satisfying’
(i) T,y = transpiBwUO =wup : B(i/1), and
(ii) I',Vip F transp® By ug = transp’ Ty ug : T'(i/1).
Note that since B is constant when restricted to ¢, so is T"
i:Le,wtET=B=B(i/0)=1T(i/0),
and so the right-hand side in (ii) is well typed.
First, we set
I',Vip,i: 1+t =transpFilll T ug : T
and I',Vip -t = #(i/1) : T(i/1).
Next, define
I'Fa; = comp’ Ay — unglue,, uo, Vig — w.11] (unglue,; /0y uo) : A(i/1).
Note that we have
L, AVip,i:1Fwlt=wlug= unglue,, uo,

and T',Vip F (w.1%)(i/0) = w(i/0).1up = unglue
composition is well formed.
We get a partial element

W L, (if1), ¢ V Vip = [= (uo, (_)ar),
Vip — (t1,(_)a1)] : fibw(i/1).1a;

¢(i/0) U0, SO the previous

INote that these are of course rules of the system. What this really shows is that
these rules are admissible in this case, and should also suggest how to define a construc-
tive semantics based on cubical sets similar to [1]. Similar remarks apply later for our
calculations.

4 SIMON HUBER

which we can extend to an element
L0(i/1) F (t),) : fibw(i/1).1a,

using that w(i/1).1 is an equivalence [1, Lemma 5].
Now set

I'Fa) =hcomp’ A(i/1) [p(i/1) = aj, v+ a1]ay : A(i/1).

Note that T, j : I, o(i/1) AY = aj = ay since (¢,) extends (1), and trivially
I'p(i/1) F a0 = a; as « is in the fiber of a;.
Finally, we can set

I F transp’(Glue [p — (T, w)] A) Y ug = glue[p(i/1) — t}]d} : B(i/1)

which is well defined as T, p(i/1) F o} = a1 =w(i/1).1 ¢].

Let us now check (i) and (ii). For (i) we have T',v¢, p(i/1) F ¢} = wp :
T(i/1) as (t},) extends (1).

Concerning (ii) we have

I, Vi F transp’(Glue [p — (T, w)] A)thug =t} = t;
using Vigp < ¢(i/1) and (1).

4. RECURSIVE DEFINITION OF HOMOGENEOUS COMPOSITION

We explain hcomp by induction on the type.

4.1. Natural Numbers.
hcomp’ N [¢ ~ 0]0 = 0
hcomp® N [— Su] (Sugp) = S(hcomp® N [¢ — u] ug)
4.2. Dependent Paths.
hcomp®(Path? Avw) [¢ — u]ug =
(j) heomp® Al = uj, (j = 0) = v, (j = 1) = w] (uo j)
4.3. Dependent Pairs.
hcomp® ((z : A) x B) [p + u]ug = (v(i/1),comp’ B(x/v) [p + 1.2] u.2)

where v = hfill’ A [¢ +— u.1] up.1. As v depends on i we cannot use hcomp in
the second component on the right-hand side.

4.4. Dependent Functions.
hcomp® ((z : A) = B) [p — u] ug v = hcomp® B(z/v) [¢ — uv] (ugv)

4.5. Universe.

hcomp’ U [p + E] A = Glue[p — (E(i/1),equiv’ E(i/1 —i))] A

A CUBICAL TYPE THEORY FOR HIGHER INDUCTIVE TYPES 5

4.6. Glue. Given I'F A, I'F o :F, I',oFT,and I',o - w : EquivT' A. Let
us write B for Glue [p — (T, w)] A. Moreover, we are given
Ty F T,i:L+u:B T+ ug : Bl — u(i/0)]
and we want to define
' F hcomp'® B [1h — u] ug : B[t — u(i/1)]
such that
(2) I, ¢ F hcomp® B [tp — u] ug = hcomp® T [tp — u] ug : T.
First, we set '
T,i: Lk i=hfill T [u]ug: T
and write t; = #(i/1). ‘
Now define I' - a; = hcomp® A [¢) — unglueu, o — w.1%] (unglueug) : A.
This composition is well formed since
[, ok w.1(i/0) = w.1ug = unglueug : A
and
Ii:T, oA unglueu =w.lu=wlt: A.

We can now set T' - hcomp® B [¢) — u]ug = glue [+ t1]ay : B. This is
well defined as Ty - a; = w.1#(i/1) = w.1t; : A. Note that we also have
I,¢ F hcomp® B[— u]ug = u(i/1) : B since I';¢, o b t1 = u(i/1) : T and
[,¢F a; = ungluewu(i/1) : A, so

T, F hcomp® B [t — u] ug = glue [¢ — t1]ay
= glue[p — u(i/1)] (unglueu(i/1)) = u(i/1) : B

Also (2) trivially follows from I', ¢ - glue [p +— t1]ay =t; : T.
Observe that we didn’t use the fact that w.1 is an equivalence.

REFERENCES

1. C. Cohen, T. Coquand, S. Huber, and A. Mortberg, Cubical Type Theory: A Construc-
tive Interpretation of the Univalence Axiom, 21st International Conference on Types
for Proofs and Programs (TYPES 2015) (T. Uustalu, ed.), Leibniz International Pro-
ceedings in Informatics (LIPIcs), vol. 69, Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2018.

2. T. Coquand, S. Huber, and A. Mortberg, On higher inductive types in cubical type
theory, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer
Science (New York, NY, USA), LICS ’18, ACM, 2018, pp. 255-264.

