Fast Box Filter with Subpixel Accuracy

Sinisa Petri¢, SigmaPi Design

January 21, 2017

Abstract
Box filter is simple and well known technique for image resizing. This
technical paper describes an algorithm for image downscaling (shrinking)
using box filter with subpixel accuracy, based on color space rescaling,
which avoids floating point arithmetics. All operations in accompaniment
C++ code are completely integer based, which significantly improves im-
age shrinking speed and quality.

1 Introduction

Box filter is the simplest image resizing technique involving pixel interpolation.
It takes a set of pixels, calculates mean value and stores this value as an output
pixel. Considering 1D single-channel 8-bit “image” simplification, if we have
two images Ij(input) and Iy (output) of the length: Ly = 9 and Ly = 4,
shrinking image Lito Leinvolves calculating length ratio:

This ratio tells us that each pixel in output image will be constructed from two
and quarter pixels from input image. So, the first pixel in output image will be:
_1Lp(M)+1-p1(2)+0,25-p1(3)

2,25

p2(1)

Generally, formula for output pixel can be expressed as affine linear combination:

ceil(w)
p2 = Z a;p1
i=1
where:
ceil(w)
Y

Z a;=1land a; = —

. w

=1
or simply:

ceil(w)

1
P2 = w 2; a;p1
i=

http://www.sigmapi-design.com

where ceil(w) is the lowest integer value higher or equal to w, and a;is con-
tribution factor for each pixel from input image. contribution factor values
depend on desired interpolation (Bilinear, Bicubic, Lanczos, etc...). We will
stick to our modified box filter. This process can be shown as diagram:

Input image

C}/’\

Output image

White circles the diagram above, denote input image pixels with contribution
factor = 1, while red circles denote pixels with some real number fraction (0,1).
Green circles denote output image pixels calculated using above formulas.

2 Algorithm

To avoid floating point arithmetics and still obtain subpixel accuracy, we will
rescale 8-bit value of resulting pixel using mapping:[0, 255] ~ [0, 230 — 4], which
gives as much better subpixel resolution. As we will use unsigned long type (4
bytes) for storing pixel summation, we can even extend upper boundary using
bigger exponent value. To accommodate “richer” color space, length ratio is
mapped to constant value: w +— 222. As any value of w is mapped to constant
value, for higher ratio values, less resolution is available for each contribution
factor. We can use modification that uses higher exponent in w — 2"mapping
for bigger w, but for sake of simplicity, we will retain fixed exponent and give
a name to our normalization value: 2?2 = 4194304 = norm. To construct the
output pixel we need to calculate contribution factor in new color space. First,
we will divide our norm with length ratio and extract integer (unsigned long)
fraction and initialize summation variable to norm value:

)

norm

pizC = Ulong(

sumC = norm
Now we can calculate the first output pixel from our example:

p32(1) = pixC-pi (1) + pixC - p1(2) + (sumC — 2 - pixC) - py(3)
p2(1) = p3*(1) > 22

where operator > stands for right shift operation. After summation is done,
the output pixel must be scaled back to it’s normal 8-bit value. For the next
output pixel p2(2) we need to carry over last difference between pixC and last
contribution factor (sumC —2-pizC), and so on. Here is the complete algorithm
for 1D image: When dealing with 2D images, we need to perform box filtering

norm — 4194304
pixC = Ulong(norm /w)
sumC = norm
outVal = 0, Xi =0, Xo =0
// start of input image pixel loop //
loop while Xi < Inplmage.Width
outX = false
Pin = Ulong(InpImage(Xi))
if (sumC > pixC) then
outVal += Pin * pixC
sumContribX -= pixC
goto loop
endif
outVal += Pin * sumC
//scale back and write output pixel
OutImage(Xo) = outVal>>22 Xo +=1
outX=true
// contribution factor for next pixel block //
sumC = pixC - sumC
outVal = Pin * sumC
sumC = norm - sumC
if (Xo >= OutputImage.Width) then exit loop
goto loop
if (loutX) then Outlmage(Xo) = outVal>>22
Algorithm 1: 1D image bozx filter

© 0 N O T AW NN

[N N N R R e s T
B W N = O O ® N O Tk W = O

in both x and y direction. We can do it in two steps, or as suggested in this
article in a single step using additional memory space for y-cumulative, which
consists of one array of size ImgeOutput.Width. Without further pestering
with 2D version of algorithm, here is complete source code for 2D three-channel
8-bit RGB image shrinking.

3 C-++ code

void fbfDownScale (spImage<ptRGB> ximgln, splmage<ptRGB> ximgOut)

{
unsigned long norm = 4194304;

unsigned long shift = 22;

float fX = (float)imgIln—Width() / (float)imgOut—Width (
float fY = (float)imgIn—Height() / (float)imgOut—>Heigh
unsigned long pixContribX = (int)((float)norm / fX);
unsigned long pixContribY = (int)((float)norm / fY);
unsigned long sumContribX, sumContribY , restContribY , yContrib;
unsigned long outVal[3];

unsigned long xcumulY [3];

unsigned int x, y, yi, xi;

bool outX, outY, outLastRow;

for (int i = 0; i < 3; i++)

{

cumulY[i] = new unsigned long [imgOut—Width ()];

memset (cumulY[i], 0, imgOut—Width() #* sizeof (unsigned long));
}

y = 0;

sumContribY = norm — pixContribY;

yContrib = pixContribY;

restContribY = 0;

outY = false;

outLastRow = false;

for (yi = 0; yi < imgIn—>Height (); yi++)

{ // start yi loop

)
t();

x = 0;
outVal[0] = outVal[l] = outVal[2] = 0;
sumContribX = norm;

for (xi = 0; xi < imgIn—>Width(); xi++)
{ // start xi loop
outX = false;
if (sumContribX > pixContribX)
{
outVal[0] += (unsigned long)imgIn—>Pixel(yi, xi).ch[0] * pixContribX;
outVal[1l] += (unsigned long)imgIn—>Pixel(yi, xi).ch[1] * pixContribX;
outVal[2] += (unsigned long)imgIn—>Pixel(yi, xi).ch[2] * pixContribX;
sumContribX —= pixContribX;
continue ;
}
// rest of contribution factor (sumContrib < pixContrib)
outVal[0] += (unsigned long)imgIn—Pixel(yi, xi).ch[0] * sumContribX;
outVal[1l] += (unsigned long)imgIn—>Pixel(yi, xi).ch[1] * sumContribX;
outVal[2] 4= (unsigned long)imgIn—>Pixel(yi, xi).ch[2] % sumContribX;
// done — output pixel to y culmulative
cumulY [0][x] += (outVal[0]>>shift) * yContrib;
cumulY [1][x] += (outVal[l]>>shift) * yContrib;
cumulY [2][x] += (outVal[2]>>shift) x yContrib;
if (outY)

{

// done — output pixel

imgOut—>Pixel (y, x).ch[0] (Byte)(cumulY [0][x] >>shift);
imgOut—>Pixel(y, x).ch[1] = (Byte)(cumulY[1][x] >>shift);
imgOut—Pixel (y, x).ch[2] (Byte) (cumulY [2][x] >>shift);

// contribution factor for next pixels block (pixContribY —sumContribY)
cumulY [0][x] = (outVal[0]>>shift) * restContribY ;

cumulY [1][x] = (outVal[l]>>shift) * restContribY ;

cumulY [2][x] = (outVal[2]>>shift) * restContribY ;

// contribution factor for next pixels block (pixContribX—sumContribX)
sumContribX = pixContribX — sumContribX;

outVal[0] = (unsigned long)imgIn—>Pixel(yi, xi).ch[0] % sumContribX;
outVal[1l] = (unsigned long)imgIn—Pixel(yi, xi).ch[1] % sumContribX;
outVal[2] = (unsigned long)imgIn—Pixel(yi, xi).ch[2] % sumContribX;

sumContribX = norm — sumContribX;
//
outX = true;
X++;
if (x >= imgOut—>Width ())
break ;

} // end xi loop
// output last pixel
if (loutX)
{
cumulY [0][x] += (outVal[0]>>shift)+xyContrib;
cumulY [1][x] += (outVal[l]>>shift)xyContrib;
cumulY [2][x] += (outVal[2]>>shift)xyContrib;
if (outY)
{
// done — output pixel
imgOut—>Pixel (y, x).ch[0] = (Byte)(cumulY[0][x] >>shift);
imgOut—Pixel(y, x).ch[1] = (Byte)(cumulY[1][x] >>shift);
imgOut—Pixel (y, x).ch[2] = (Byte)(cumulY[2][x] >>shift);
// contribution factor for next pixels block (pixContribY—sumContribY’)
cumulY [0][x] = (outVal[0]>>shift) * restContribY;
cumulY [1][x] = (outVal[l]>>shift) % restContribY;
cumulY [2][x] (outVal[2]>>shift) * restContribY ;

}
if (outY)
if (y = imgOut—Height()—1)
{
outLastRow = true;
break ;
}

y+=i
}
if (y >= imgOut—>Height ())
break ;
outY = false;
if (sumContribY > pixContribY)

{

yContrib = pixContribY;
sumContribY —= pixContribY ;
continue;

}

yContrib = sumContribY ;

restContribY = pixContribY — sumContribY;
sumContribY = norm — restContribY ;

outY = true;

} // end yi loop

// output last row

if (!outLastRow)

{

for (int xo = 0; xo < imgOut—>Width (); xo++)
{
imgOut—Pixel(y, xo0).ch[0] = (Byte)(cumulY[0][x0o] >>shift);
imgOut—>Pixel(y, xo0).ch[1] = (Byte)(cumulY[1][xo] >>shift);
imgOut—>Pixel(y, xo0).ch[2] = (Byte)(cumulY[2][xo] >>shift);
}

}

for (int i = 0; i < 3; i++)
delete []cumulY[i];
}

Image container used for the source code can be replaced by any other image
container or an 2D array holding RGB pixel values.

4 Performance test
Here is a table with some ad-hoc performance measurement (shrinking by 10,

both width and height => w/10, h/10) . Test configuration: Intel i5-2400@3.10GHz,
6GB memory, Win7 64, program platform: 32-bit.

| image size [speed (sec) |

1024x1024 0.011
1115x1621 0.021
2048x1365 0.031
3240x4320 0.085
12000x12000 0.781

Last image tested is a huge image downloaded from NASA site.

http://visibleearth.nasa.gov/view.php?id=78314

Figure 1: photo by Jassi Oberai

An example of subsequent image shrinking by factor 2 (w/2, h/2).

5 Conclusion

Algorithm and accompaniment source code presented in this technical paper
gives quite decent results with acceptable speed. Any improvements regard-
ing this method are welcomed and highly appreciated. For any questions and
suggestions please mail to: sigmapi@sigmapi-design.com.

	Introduction
	Algorithm
	C++ code
	Performance test
	Conclusion

