
The seL4® Foundation

https://sel4.systems/Foundation

The seL4 Microkernel
An Introduction

Gernot Heiser
gernot@sel4.systems
Revision 1.3 of 2024-05-07

https://sel4.systems/Foundation


Abstract

This whitepaper provides an introduction to and overview of seL4. We explain what
seL4 is (and is not) and explore its defining features. We explain what makes seL4
uniquely qualified as the operating-system kernel of choice for security- and safety-
critical systems, and generally embedded and cyber-physical systems. In particular,
we explain seL4’s assurance story, its security- and safety-relevant features, and its
benchmark-setting performance. We also discuss typical usage scenarios, including
incremental cyber retrofit of legacy systems.

CCS Concepts

• Software and its engineering → Operating Systems
• Security and privacy → Systems security
• Security and privacy → Formal methods and theory of security
• Computer systems organization → Real-time systems → Real-time operating
systems

• Computer systems organization → Real-time systems → Dependable and fault-
tolerant systems and networks

Keywords
seL4, microkernel, performance

Reference Format:
Gernot Heiser. The seL4 Microkernel – An Introduction. White paper. The seL4 Foun-
dation, Revision 1.3 of 2024-05-07.

Copyright © 2020 seL4 Project a Series of LF Projects, LLC.
Distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License.
seL4 is a trademark of LF Projects, LLC.

https://creativecommons.org/licenses/by-sa/4.0/legalcode


Chapter 1

What Is seL4?

seL4 is an operating system microkernel
An operating system (OS) is the low-level system software that controls a com-
puter system’s resources and enforces security. Unlike application software, the
OS has exclusive access to a more privileged execution mode of the processor
(kernel mode) that gives it direct access to hardware. Applications only ever exe-
cute in user mode and can only access hardware as permitted by the OS.

An OS microkernel is a minimal core of an OS, reducing the code executing at
higher privilege to a minimum. seL4 is a member of the L4 family of microkernels
that goes back to the mid-1990s. (And no, seL4 has nothing to do with seLinux.)

seL4 is also a hypervisor
seL4 supports virtual machines that can run a fully fledged guest OS such as
Linux. Subject to seL4’s enforcement of communication channels, guests and
their applications can communicate with each other as well as with native appli-
cations.

Learn more about what it means that seL4 is a microkernel and its use as a hy-
pervisor in Chapter 2. And learn about real-world deployment scenarios, including
approaches for retrofitting security into legacy systems in Chapter 7.

seL4 is proved correct
seL4 comes with a formal, mathematical, machine-checked proof of implemen-
tation correctness, meaning the kernel is in a very strong sense “bug free” with
respect to its specification. In fact, seL4 is the world’s first OS kernel with such a
proof at the code level [Klein et al., 2009].

seL4 is provably secure
Besides implementation correctness, seL4 comes with further proofs of security
enforcement [Klein et al., 2014]. They say that in a correctly configured seL4-based
system, the kernel guarantees the classical security properties of confidentiality,
integrity and availability. More about these proofs in Chapter 3.

seL4 improves security with fine-grained access control through capabilities
Capabilities are access tokens which support very fine-grained control over which
entity can access a particular resource in a system. They support strong security
according to the principle of least privilege (also called principle of least authority,

1

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Microkernel
https://en.wikipedia.org/wiki/L4_microkernel_family
https://en.wikipedia.org/wiki/Capability-based_security
https://en.wikipedia.org/wiki/Principle_of_least_privilege


POLA). This is a core design principle of highly secure system, and is impossible
to achieve with the way access control happens in mainstream systems such as
Linux or Windows.

seL4 is still the world’s only OS that is both capability-based and formally verified,
and as such has a defensible claim of being the world’s most secure OS. More
about capabilities in Chapter 4.

seL4 ensures safety of time-critical systems
seL4 is the world’s only OS kernel (at least in the open literature) that has un-
dergone a complete and sound analysis of its worst-case execution time (WCET)
[Blackham et al., 2011, Sewell et al., 2017]. This means, if the kernel is configured
appropriately, all kernel operations are bounded in time, and the bound is known.
This is a prerequisite for building hard real-time systems, where failure to react to
an event within a strictly bounded time period is catastrophic.

seL4 is the world’s most advanced mixed-criticality OS
seL4 provides strong support for mixed criticality real-time systems (MCS), where
the timeliness of critical activities must be ensured even if they co-exist with less
trusted code executing on the same platform. seL4 achieves this with a flexible
model that retains good resource utilisation, unlike the more established MCS
OSes that use strict (and inflexible) time and space partitioning [Lyons et al., 2018].
More on seL4’s real-time and MCS support in Chapter 5.

seL4 is the world’s fastest microkernel
Traditionally, systems are either (sort-of) secure, or they are fast. seL4 is unique
in that it is both. seL4 is designed to support a wide range of real-world use cases,
whether they are security- (or safety-)critical or not, and excellent performance is
a requirement. More on seL4’s performance in Chapter 6.

seL4 is pronounced “ess-e-ell-four”
The pronunciation “sell-four” is deprecated.

How to read this document

This document is meant to be approachable by a wide audience. However, for com-
pleteness, we will add some deeper technical detail in places.

Such detail will be marked with a chilli, like the one on the left. If you see this
then you know you can safely skip the marked passage if you think the technical
description is too “spicy” for your taste, or if you are simply not interested in this
level of detail. Only other chillied passages will assume you have read it.

Technical section

Where the chilli appears in a section title, such as here, this indicates that the whole
section is fairly technical and can be skipped.

2

https://en.wikipedia.org/wiki/Mixed_criticality


Chapter 2

seL4 Is a Microkernel and a Hypervisor,
It Is Not an OS

2.1 Monolithic kernels vs microkernels

To understand the difference between a mainstream OS, such as Linux, and a micro-
kernel, such as seL4, let’s look at Figure 2.1.

10 kSLOC

Hardware

VFS

IPC, File System

Scheduler, Virtual Memory

Device Drivers, Dispatcher

Syscall

Hardware

IPC, Threads, Virtual Memory

Application

NW
Proto-
col
Stack

File
ServerDevice

Driver

IPC

Kernel
Mode

User
Mode

20,000
kSLOC

Figure 2.1: Operating-system structure: Monolithic kernel (left) vs microkernel (right).

The left side presents a (fairly abstracted) view of the architecture of a system such
as Linux. The yellow part is the OS kernel, it offers services such as file storage and
networking to applications. All the code that implements those services executes in
the privileged mode of the hardware, also called kernel mode or supervisor mode – the
executionmode that has unfettered access and control of all resources in the system. In
contrast, applications run in unprivileged, or usermode, and do not have direct access to
many hardware resources, whichmust be accessed through the OS. The OS is internally
structured in a number of layers, where each layer provides abstractions implemented
by layers below.

The problem with privileged-mode code is that it is dangerous: If anything goes wrong
here, there’s nothing to stop the damage. In particular, if this code has a bug that can be
exploited by an attacker to run the attacker’s code in privilegedmode (called a privilege-
escalation or arbitrary code-execution attack) then the attacker can do what they want
with the system. Such flaws are the root problem of the many system compromises
we experience in mainstream systems.

3



Of course, software bugs are mostly a fact of life, and OSes are not different. For
example, the Linux kernel comprises of the order of 20 million lines of source code
(20MSLOC); we can estimate that it contains literally tens of thousands of bugs [Biggs
et al., 2018]. This is obviously a huge attack surface! This idea is captured by saying
that Linux has a large trusted computing base (TCB), which is defined as the subset of
the overall system thatmust be trusted to operate correctly for the system to be secure.

The idea behind a microkernel design is to drastically reduce the TCB and thus the at-
tack surface. As schematically shown at the right of Figure 2.1, the kernel, i.e. the part
of the system executing in privileged mode, is much smaller. In a well-designed micro-
kernel, such as seL4, it is of the order of ten thousand lines of source code (10 kSLOC).
This is literally three orders of magnitude smaller than the Linux kernel, and the attack
surface shrinks accordingly (maybe more, as the density of bugs probably grows more
than linearly with code size).

Obviously, it is not possible to provide the same functionality, in terms of OS services, in
such a small code base. In fact, the microkernel provides almost no services: it is just
a thin wrapper around hardware, just enough to securely multiplex hardware resources.
What the microkernel mostly provides is isolation, sandboxes in which programs can
executewithout interference fromother programs. And, critically, it provides a protected
procedure call mechanism, for historic reasons called IPC. This allows one program to
securely call a function in a different program, where the microkernel transports func-
tion inputs and outputs between the programs and, importantly, enforces interfaces:
the “remote” (contained in a different sandbox) function can only be called at an ex-
ported entrypoint, and only by explicitly authorised clients (who have been given the
appropriate capability, see Chapter 4).

For a deeper explanation of what seL4 IPC is and is not, I recommend reading my
blog How to (and how not to) use seL4 IPC.

The microkernel system uses this approach to provide the services the monolithic OS
implements in the kernel. In the microkernel world, these services are just programs,
no different from applications, that run in their own sandboxes, and provide an IPC in-
terface for applications to call. Should a server be compromised, that compromise is
confined to the server, its sandbox protects the rest of the system. This is in stark con-
trast to the monolithic case, where a compromise of an OS service compromises the
complete system.

This effect can be quantified: Our recent study shows that of the known Linux com-
promises classified as critical, i.e. most severe, 29% would be fully eliminated by a mi-
crokernel design, and another 55% would be mitigated enough to no longer qualify as
critical [Biggs et al., 2018].

2.2 seL4 Is a microkernel, not an OS

seL4 is amicrokernel, and designed for generality whileminimising the TCB. It is amem-
ber of the L4 microkernel family, which goes back to the mid-’90s; Figure 2.2 shows
seL4’s provenance. It was developed by our group at UNSW/NICTA, these days known
as Trustworthy Systems (TS). At the time we had 15 years of experience in develop-
ing high-performance microkernels, and a track-record of real-world deployments: Our

4

https://microkerneldude.wordpress.com/2019/03/07/how-to-and-how-not-to-use-sel4-ipc/


93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13

L3 → L4 “X” Hazelnut Pistachio

L4/Alpha

L4/MIPS

seL4

OKL4 Microkernel

OKL4 Microvisor

Codezero

P4 → PikeOS

Fiasco Fiasco.OC

L4-embedded

NOVA
API Inheritance

Code Inheritance

GMD/IBM/TU Karlsruhe UNSW/NICTA/Data61TU Dresden Commercial CloneOK LabsCreators:

Figure 2.2: L4 microkernel family tree.

OKL4 Microkernel shipped on billions of Qualcomm cellular modem chips, and our L4-
embedded kernel from the mid-Noughties runs on the secure enclave of all recent iOS
devices (iPhones etc).

Being a microkernel, seL4 contains none of the usual OS services; such services are
provided by programs running in user mode. Besides the great advantages elaborated
above, there are downsides to the microkernel design: These components must come
from somewhere. Some can be ported from open-source OSes, such as FreeBSD or
Linux, or they can be written from scratch. But in any case, this is significant work.

To scale up we need the help of the community, and the seL4 Foundation is the key
mechanism for enabling the community to cooperate and develop or port such services
for seL4-based systems. Themost important ones are device drivers, network protocol
stacks, and file systems. We have a fair number of these, but much more is needed.

An important enabler is a component framework; it allows developers to focus on the
code that implements the services, and automates much of the system integration.
There are presently twomain component frameworks for seL4, both open source: CAmkES
and Genode.

CAmkES is a framework that is aimed at embedded and cyber-physical systems, which
typically have a static architecture, meaning they consist of a defined set of compo-
nents that does not change once the system has fully booted up.

Genode is inmanyways amore powerful and general framework, that supportsmultiple
microkernels and already comeswith awealth of services and device drivers, especially
for x86 platforms. It is arguably more convenient to work with than CAmkES, and is
certainly the way to get a complex system up quickly. However, Genode has drawbacks:
1. As it supports multiple microkernels, not all as powerful as seL4, Genode is based
on the least common denominator. In particular, it cannot use all of seL4’s security and
safety features. 2. It has no assurance story. More on this in Section 3.2.

5

https://docs.sel4.systems/projects/available-user-components.html
https://trustworthy.systems/projects/TS/camkes/
https://genode.org/


2.3 seL4 is also a hypervisor

seL4 is a microkernel, but it is also a hypervisor: It is possible to run virtual machines
on seL4, and inside the virtual machine (VM) a mainstream OS, such as Linux.

Application

Native
NW
Protocol
Stack

Native
Flash
Driver

Virtual Machine

Linux Guest

Linux
NIC
Driver

Virtual Machine

Linux Guest

Linux 
File
System

Figure 2.3: Using virtualisation to integrate native OS services with Linux-provided ser-
vices.

This enables an alternative way of provisioning system services, by having a Linux VM
provide them. Such a setup is shown in Figure 2.3, which shows how some services
are borrowed from multiple Linux instances running as guest OSes in separate VMs.

In this example, we provide two system services: networking and storage. Networking
is provided by a native protocol stack running directly on seL4, lwIP or PicoTCP are
frequently used stacks. Instead of porting a network driver, we borrow one from Linux,
by running a VM with a stripped-down Linux guest that has little more than the NIC
driver. The protocol stack communicates with Linux via an seL4-provided channel, and
the application similarly obtains network services by communicating with the protocol
stack. Note that in the setup shown in the figure, the application has no channel to the
NIC-driver VM, and thus cannot communicate with it directly, only via the NW stack; this
is enabled by seL4’s capability-based protection (see Chapter 4).

A similar setup is shown for the storage service; this time the file system is a Linux one
running in a VM, while the storage driver is native. Again, communication between the
components is limited to the minimum channels required. In particular, the app cannot
talk to the storage driver (except through the file system), and the two Linux systems
cannot communicate with each other.

When used as a hypervisor, seL4 runs in the appropriate hypervisor mode (EL2 on
Arm, Root Ring-0 on x86, HS on RISC-V), which is a higher privilege level than the
guest operating system. Just as when running as the OS kernel, it only does the
minimum work that has to be performed in the privileged (hypervisor) mode and
leaves everything else to user mode.

Specifically this means that seL4 performs world switches, meaning it switches
virtual machine state when a VM’s execution time is up, or VMsmust be switched
for some other reason. It also catches virtualisation exceptions (“VMexits” in Intel
lingo) and forwards them to a user-level handler, called the virtualmachinemonitor

6



VM1

Guest 
OS

Guest
Apps VMM1

Native
Apps

Native
Services

Hypervisor
Mode

Guest
Kernel
Mode

User
Mode

VM2

Guest 
OS

Guest
Apps VMM2

Figure 2.4: seL4 virtualisation support with usermode VMMs.

(VMM). The VMM is then responsible for performing any emulation operations
needed.

Each VM has its private copy of the VMM, isolated from the guest OS as well as
from other VMs, as shown in Figure 2.4. This means that the VMM cannot break
isolation, and is therefore not more trusted than the guest OS itself. In particular,
this means that there is no need to verify the VMM, as that would not add real
assurance as long as the guest OS, typically Linux, is not verified.

2.4 seL4 is not seLinux

Many people confuse seL4 with seLinux (probably because seL4 might be mistaken as
a shorthand for the 4th version of seLinux). Fact is that seL4 has nothing whatsoever
to do with seLinux, other than both being open source. They share no code nor abstrac-
tions. seLinux is not a microkernel, it is a security policy framework built into Linux.
While in some ways more secure than standard Linux, seLinux suffers from the same
problem as standard Linux: a huge TCB, and correspondingly huge attack surface. In
other words, seLinux is an add-on to a fundamentally insecure operating system and
thus remains fundamentally insecure. In contrast, seL4 provides bullet-proof isolation
from the ground up.

In short, seLinux is not suitable for truly security-critical uses, while seL4 is designed
for them.

7



Chapter 3

seL4’s Verification Story

In 2009, seL4 became the world’s first OS kernel with a machine-checked functional
correctness proof at the source-code level. This proof was 200,000 lines of proof script
at the time, one of the largest ever (we think it was the second largest then). It showed
that a functionally correct OS kernel is possible, something that until then had been
considered infeasible.

Since then we have extended the scope of the verification to higher level properties,
Figure 3.1 shows the chain of proofs, which are explained below. Importantly, we main-
tained the proofwith the ongoing evolution of the kernel: Commits to themainline kernel
source are only allowed if they do not break proofs, otherwise the poofs are updated
as well. This proof engineering is also a novelty. Our seL4 proofs constitute by far the
largest proof base that is actively maintained. The set of proofs has by now grown to
well over a million lines, most of this manually written and then machine checked.

Proof P
ro

of

Pr
oo
f

Integrity

Abstract
Model

C Imple-
mentation

Confidentiality Availability

Binary code

P
ro

of
P
ro

of

Figure 3.1: seL4’s proof chain.

8



3.1 Correctness and security enforcement

Functional correctness

The core of seL4’s verification is the functional correctness proof, which says that the
C implementation is free of implementation defects. More precisely, there is a formal
specification of the kernel’s functionality, expressed in a mathematical language called
higher-order logic (HOL). This is represented by the box labelled abstract model in the
figure. The functional correctness proof then says that the C implementation is a re-
finement of the abstract model, meaning the possible behaviours of the C code are a
subset of those allowed by the abstract model.

This informal description glosses over a lot of detail. Here is some of it in case
you wonder.

C is not a formal language; in order to allow reasoning about a C program in the
theorem prover (we use Isabelle/HOL), it has to be transformed intomathematical
logic (HOL). This is done by a C parser written in Isabelle. The parser defines the
semantics of the C program, and gives it meaning in HOL according to this seman-
tics. It is this formalisation whichwe prove to be a refinement of themathematical
(abstract) model.

Note that C does not have an official mathematical semantics, and parts of the
C language are notoriously subtle and not necessarily that well defined. We solve
this by restricting our use of C to a well-defined subset of the language, for which
we have an unambiguous semantics. However, this does not guarantee that our
assumed semantics for that subset is the same as the compiler’s. More on that
below.

The proof means that everything we want to know about the kernel’s behaviour (other
than timing) is expressed by the abstract spec, and the kernel cannot behave in ways
that are not allowed by the spec. Among others, this rules out the usual attacks against
operating systems, such as stack smashing, null-pointer dereference, any code injec-
tion or control-flow highjacking etc.

Translation validation

Having a bug-free C implementation of the kernel is great, but still leaves us at the
mercy of the C compiler. Those compilers (we use GCC) are themselves large, complex
programs that have bugs. So we could have a bug-free kernel that gets compiled into a
buggy binary.

In the security-critical space, compiler bugs are not the only problem. A compiler could
be outright malicious, containing a Trojan that automatically builds in a back door when
compiling the OS. The Trojan can be extended to automatically add itself when com-
piling the compiler, making it almost impossible to detect, even if the compiler is open-
source! Ken Thompson explained this attack in his Turing Award lecture [Thompson,
1984].

To protect against defective ormalicious compilers, we additionally verify the executable
binary that is produced by the compiler and linker. Specifically, we prove that the binary

9



Binary Code Formalised
Binary

Graph
Language

Graph
Language

Formal ISA Spec

SMT Solver

Rewrite
Rules

Dis-
assembler

Formalised
C CodeFormal 

C Semantics

C Code

Compiler

Figure 3.2: Translation validation proof chain.

is a correct translation of the (proved correct) C code, and thus that the binary refines
the abstract spec.

Unlike the verification of the C code, this proof is not done manually but by an
automatic tool chain. It consists of several phases, as shown in Figure 3.2. A
formal model of the processor’s instruction set architecture (ISA) formalises the
binary in the theorem prover; we use an L3 formalisation of the RISC-V ISA, as well
as the extensively tested L3 Arm ISA formalisation of Fox and Myreen [2010].

Then a disassembler, written in the HOL4 theorem prover, translates this low-level
representation into a higher-level representation in a graph language that basically
represents control flow. This transformation is provably correct.

The formalised C program is translated into the same graph language, through
provably correct transformations in the Isabelle/HOL theorem prover. We then
have two programs, in the same representation, which we need to show equiv-
alent. This is a bit tricky, as compilers apply a number of heuristic-driven trans-
formations to optimise the code. We apply a number of such transformations
through rewrite rules on the graph-language representation of the C program (still
in the theorem prover, and thus provably correct).

In the end we then have two programs that are quite similar but not the same, and
we need to prove that they have the same semantics. In theory this is equivalent to
the halting problem and as such unsolvable. In practice, what the compiler does
is deterministic enough tomake the problem tractable. We do this by throwing the
programs, in small chunks, at multiple SMT solvers. If one of these can prove that
all the corresponding pieces have the same semantics, then we know that the two
programs are equivalent.

Note also that the C program that is proved to refine the abstract spec, and the C
program that we prove to be equivalent to the binary, are the same Isabelle/HOL
formalisations. This means that our assumptions on C semantics drop out of the
assumptions made by the proofs. Altogether, the proofs not only show that the
compiler did not introduce bugs, but also that its semantics for the C subset we

10

https://en.wikipedia.org/wiki/Satisfiability_modulo_theories


use are the same as ours.

Security properties

Figure 3.1 also shows proofs between the abstract spec and the high-level security prop-
erties confidentiality, integrity and availability (these are commonly dubbed theCIA prop-
erties). These state that the abstract spec is actually useful for security: They prove that
in a correctly configured system, the kernel will enforce these properties.

Specifically, seL4 enforces

confidentiality: seL4 will not allow an entity to read (or otherwise infer) data without
having been explicitly given read access to the data;

integrity: seL4 will not allow an entity to modify data without having been explicitly
given write access to the data;

availability: seL4 will not allow an entity to prevent another entity’s authorised use of
resources.

These proofs presently do not capture properties associated with time. Our con-
fidentiality proofs rule out covert storage channels but presently not covert timing
channels, which are used by such attacks as Spectre. Preventing timing chan-
nels is something we are working on [Heiser et al., 2019]. Similarly, the integrity
and availability proofs presently do not cover timeliness, but our new MCS model
[Lyons et al., 2018] is designed to cover those aspects (see Section 5.2).

Proof assumptions

All reasoning about correctness is based on assumptions, whether the reasoning is for-
mal, as with seL4, or informal, when someone thinks about why their programmight be
“correct”. Every program executes in some context, and its correct behaviour inevitably
depends on some assumptions about this context.

One of the advantages of machine-checked formal reasoning is that it forces people to
make those assumptions explicit. It is not possible to make unstated assumptions, the
proofs will just not succeed if they depend on assumptions that are not clearly stated.
In that sense, formal reasoning protects against forgetting assumptions, or not being
clear about them; that in itself is a significant benefit of verification.

The verification of seL4 makes three assumptions:

Hardware behaves as expected. This should be obvious. The kernel is at the mercy
of the underlying hardware, and if the hardware is buggy (or worse, has Trojans),
then all bets are off, whether you are running verified seL4 or any unverified OS.
Verifying hardware is outside the scope of seL4 (and the competency of TS); other
people are working on that.

The spec matches expectations. This is a difficult one, because one can never be sure
that a formal specification means what we think it should mean. Of course, the
same problem exists if there is no formal specification: if the spec is informal

11



or non-existent, then it is obviously impossible to precisely reason about correct
behaviour.

One can reduce this risk by proving properties about the spec, as we have done
with our security proofs, which show that seL4 is able to enforce certain security
properties. That then shifts the problem to the specification of those properties.
They are much simpler than the kernel spec, reducing the risk of misunderstand-
ing.

But in the end, there is always a gap between the world of mathematics and the
physical world, and no end of reasoning (formal or informal) can remove this com-
pletely. The advantage of formal reasoning is that you know exactly what this gap
is.

The theorem prover is correct. This sounds like a serious problem, given that theorem
provers are themselves large and complex programs. However, in reality this is the
least concerning of the three assumptions. The reason is that the Isabelle/HOL
theoremprover has a small core (of a few 10 kSLOC) that checks all proofs against
the axioms of the logic. And this core has checked many proofs small and large
fromawide field of formal reasoning, so the chance of it containing a correctness-
critical bug is extremely small.

Proof status and coverage

seL4 has been or is being verified formultiple architectures: Arm, x86 and RISC-V. Some
of these are more complete than others, but the missing bits are generally worked on
or waiting for funding. Please refer to the seL4 project status page for details.

3.2 The CAmkES component framework

CAmkES is a component framework that allows you to reason about a system archi-
tecturally, i.e. as a collection of sandboxed components with defined communication
channels. Figure 3.3 shows the main abstractions.

Components are represented as square boxes. They represent programs, code and
data, encapsulated by seL4.

Component A

Component C

Component B

Shared 
memory

RPC

Event

Figure 3.3: CAmkES components and connectors.

12

https://docs.sel4.systems/projects/sel4/status.html
https://trustworthy.systems/projects/TS/camkes/trustcomp.pml


Interfaces are shown as decorations on the components. They define how a compo-
nent can be invoked, or can invoke others. An interface is either imported (invok-
ing an interface of another component) or exported (able to be invoked by another
component’s imported interface), except for the shared-memory interface, which
is symmetric.

Connectors connect like interfaces by linking an importing with an exporting interface.
Connectors in CAmkES are always one-to-one, but broadcast or multicast func-
tionality can be implemented on top of this model by building components that
copy inputs to multiple outputs.

The CAmkES system is specified in a formal architecture description language (the
CAmkESADL), which contains a precise description of the components, their interfaces
and the connectors that link them up. The CAmkES promise to the system designer is
that what is specified in the ADL (and visualised as in Figure 3.3) is a faithful repre-
sentation of the possible interactions. In particular, it promises that no interactions are
possible beyond those shown in the diagram.

Endpoint

Send Re-
ceive

driver.c VMM.cglue.c

Compiler/
Linker

Binary

init.c

Data
Link

Radio
Driver

Crypto

Radio
Driver

Uncritical/
untrusted,
contained

Lidar
Driver

Camera
Driver

Linux

C
O
N
TE

XT

CNode

∙∙∙

VSpace

Thread
Object

CSpace
Process

C
O
N
TE

XT

CNode

∙∙
∙

VSpace

Thread
Object

CSpace
Process

Figure 3.4: Verified architecture mapping and system generation (note that not all veri-
fication steps are of full strength yet). Green boxes are generated provably correct.

Of course, this promise depends on enforcement by seL4, and the ADL representation
must be mapped onto low-level seL4 objects and access rights to them. This is what
the CAmkES machinery achieves, and is shown in Figure 3.4.

In the figure, the architecture (i.e. what is described in the ADL) is shown at the top. This

13



is a fairly simple system, consisting of four native components and one component that
houses a virtual machine hosting a Linux guest with a couple of networking drivers.
The Linux VM is only connected to other components via the crypto component, which
ensures that it can only access encrypted links and cannot leak data.

Even this simple system maps to hundreds if not thousands of seL4 objects, an indica-
tion of the complexity reduction provided by the CAmkES component abstraction.

For the seL4-level description we have another formal language, called CapDL (capa-
bility distribution language). The system designer never needs to deal with CapDL, it
is a purely internal representation. The CAmkES framework contains a compiler which
automatically translates CAmkES ADL into CapDL, indicated by the box arrow pointing
left-down. The box in the left of the figure gives a (simplified) representation of the seL4
objects described in CapDL. (It is actually a simplified representation of amuch simpler
system, basically just the two components at the top of Figure 3.3 and the connector
between them.)

The CapDL spec is a precise representation of access rights in the system, and it is
what seL4 enforces. Which means that once the system gets into the state described
by the CapDL spec, it is guaranteed to behave as described by the CAmkES ADL spec,
and therefore the architecture-level description is sufficient for further reasoning about
security properties.

So we need assurance that the system boots up into the state described by the CapDL
spec. We achieve this with a second automated step: We generate from CapDL the
startup code that, as soon as seL4 itself has booted, takes control and generates all
the seL4 objects referenced by the spec, including the ones describing active compo-
nents, and distributes the capabilities (see Chapter 4) that grant access to those objects
according to the spec. At the end of the execution of this init code, the system is prov-
ably in the state described by the CapDL spec, and thus in the state represented by the
ADL spec.

The third thing that gets generated from the ADL spec is the “glue” code between com-
ponents. Sending data through a connector requires invocation of seL4 system calls,
the exact details of which are hidden by the CAmkES abstraction. The glue code is set-
ting up these system calls. For example, an “RPC” connector abstracts the invocation
of a function provided by another component as a regular function call performed by
the client component.

Note: At the time of writing, the proofs about CAmkES and CapDL are not yet complete,
but completion should not be far off.

Note also that none of the verification work mentioned deals with information
leakage through timing channels (yet). This is amajor unsolved research problem,
but we’re at the forefront of solving it.

14



Chapter 4

About Capabilities

We encountered capabilities in Chapter 1, noting that they are access tokens. We will
now look at the concept in more detail.

4.1 What are capabilities?

Obj reference
Access rights

Object

Figure 4.1: A capability is a key that conveys specific rights to a particular object.

As shown in Figure 4.1, a capability is an object reference; in that sense it is similar to
a pointer (and implementation of capabilities are often referred as “fat pointers”). They
are immutable pointers, in the sense that a capability will always reference the same
object, so each capability uniquely specifies a particular object.

In addition to pointers, a capability also encodes access rights, in fact, the capability
is an encapsulation of an object reference and the rights it conveys to that object. In a
capability-based system, such as seL4, invoking a capability is the one and only way of
performing an operation on a system object.

For example, an operation may be to call a function in a component. The object refer-
ence embedded in the capability then points to an interface to that object, and conveys
the right to invoke that function (i.e. a particular method on the component object). The
capability may or may not at the same time convey the right to pass another capability
along as a function argument (delegating to the component the right to use the object
referenced by the capability argument).

This is a high-level description of what happens at the CAmkES abstraction level.
In fact, at the CAmkES level, the capabilities themselves are abstracted away.

Underneath, the connector is represented by an endpoint object, and the client
component needs a capability with call right.

15



It is this fine-grained, object-oriented nature that makes capabilities the access-control
mechanism of choice for security-oriented systems. The rights given to a component
can be restricted to the absolute minimum it needs to do its job, as required by the
principle of least privilege.

Note that this notion of object capabilities is quite different from (and far more
powerful than) what Linux calls “capabilities”, which are really access-control lists
(ACLs)with system-call granularity. Linux capabilities, like all ACL schemes, suffer
from the confused deputy problem, which is at the root ofmany security breaches,
and explained in the next section. seL4 capabilities do not have this problem.

seL4 capabilities are also not susceptible to the attack of Boebert [1984]; this at-
tack applies to capabilities directly implemented in hardware while seL4’s capa-
bilities are implemented and protected by the kernel.

There are ten types of seL4 objects, all referenced by capabilities:

Endpoints are used to perform protected function calls;

Reply Objects represent a return path from a protected procedure call;

Address Spaces provide the sandboxes around components (thin wrappers ab-
stracting hardware page tables);

Cnodes store capabilities representing a component’s access rights;

Thread Control Blocks represent threads of execution;

Scheduling Contexts represent the right to access a certain fraction of execution
time on a core;

Notifications are synchronisation objects (similar to semaphores);

Frames represent physical memory that can be mapped into address spaces;

Interrupt objects provide access to interrupt handling; and

Untypeds unused (free) physical memory that can be converted (“retyped”) into
any of the other types.

4.2 Why Capabilities

Fine-grained access control

As observed above, capabilities provide fine-grained access control, in line with the se-
curity principle of least privilege (also called principle of least authority, short POLA).
This is in contrast to the more traditional access-control model of access-control lists
(ACLs), which are used in mainstream systems such as Linux or Windows, but also in
commercial, supposedly secure systems, such as INTEGRITY or PikeOS.

To understand the difference, consider how access control works in Linux: A file (and
the file model applies to most other Linux objects) has an associated set of access-
mode bits. Some of these bits determine what operations its owner can perform on
the file, others represent the operations permitted for each member of the file’s “group”,

16

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Confused_deputy_problem


and a final set gives default rights to everyone else. This is a subject-oriented scheme:
It is a property of the subject (the process that is attempting access) that determines
the validity of the access, and all subjects with the same value of the property (user ID
or group ID) have the same rights. Moreover, these subjects have the same rights to all
files with the same settings of the access properties.

This is a very coarse-grain form of access control, and is a fundamental limitation on
what security policies can be enforced. A typical scenario is that a user wants to run
an untrusted program (downloaded from the internet) to process a particular file but
wants to prevent the program from accessing any other files the user has access. This
is called a confinement scenario, and there is no clean way to do this in Linux, which is
the reason people came up with heavyweight workarounds (I like to call them hacks)
such as “chroot jails”, containers etc.

With capabilities, this problem is straightforward to solve, as capabilities provide an
object-oriented form of access control. Specifically, the kernel will allow an operation
to go ahead if and only if the subject that requests the operation presents a capability
that empowers it to perform the operation. In the confinement scenario, the untrusted
app can only access files to which it has been given a capability. So Alice invokes the
program, handing it a capability to the one file the program is allowed to read, plus a
capability to a file where the program can write its output, and the program is unable to
access anything else – proper least privilege.

Interposition and delegation

Capabilities have further nice properties. One is the ability to interpose access, which
is a consequence of the fact that they are opaque object references. If Alice is given a
capability to an object, she has no way of knowing what that object really is, all she can
do is invoke methods on the object.

For example, the system designer may pretend that the capability given to Alice refers
to a file, when in fact it refers to a communication channel to a security monitor, which
in turns holds the actual file capability. The monitor can examine Alice’s requested
operations and, if valid, performs them on the file on her behalf, while ignoring invalid
ones. The monitor effectively virtualises the file.

Interposition has applications beyond enforcing security policies; the approach
can be used for packet filtering, information-flow tracing and many more. A de-
bugger can transparently interpose and virtualise object invokations. It can even
be used to create objects lazily: Instead of an object reference, Alice is given a
capability to a constructor, which then replaces the capability once the object has
been created.

Another advantage of capabilities is that they support safe and efficient delegation of
privilege. If Alice wants to give Bob access to one of her objects, she can create (“mint”
in seL4 speak) a new capability to the object and hand it to Bob. Bob then can use
that capability to operate on the object without referring back to Alice. (If, instead, Alice
does want to stay in the loop, it can use virtualisation as explained above.)

The new capability can have diminished rights; Alice can use this to give Bob only read-
only access to the file. And Alice can revoke Bob’s access at any time by destroying the

17



derived capability she handed to Bob.

Delegation is powerful and cannot easily and safely be done in ACL systems. A typical
case of its use is setting up sub-systems that manage resources autonomously. When
the system starts up, the initial process holds authority to all resources in the system
(other than the small and fixed amount the kernel uses itself). This initial resource
manager can then partition the system, by creating newprocesses (secondary resource
managers) and handing them privilege to disjoint subsets of the system resources.

The subsystems can then autonomously (without referring back to the original man-
ager) control their subset of resources, while unable to interfere with each other. Only if
they want to change the original resource allocation do they need to involve the original
manager.

Ambient authority and the confused deputy

Alice gcc Log fileWX

alice$ gcc –o prog.o prog.c

Figure 4.2: The compiler as a confused deputy.

ACLs have an unsolvable problem, generally called the confused deputy. Let’s look at
a C compiler. It takes a C source file and produces an object-code output file, the file
names are passed as arguments. To run the compiler, a user, Alice, must have execute
permission on the compiler, as shown in Figure 4.2.

Assume the compiler also creates an entry in a system-wide log file for auditing pur-
poses. The log file is not accessible to normal users, so the compiler must execute
with elevated privilege in order to write to the log file (traditionally done by making it a
setuid program).

If Alice is malicious, she can trick the compiler into doing things it shouldn’t do. For
example, Alice can specify the password file as the output file when invoking the com-
piler. The compiler, unless it is written very carefully to avoid any potential abuse, will
just open the output file (password file) and overwrite it with the compiled object code.
It doesn’t take a lot of skill for Alice to write a program which compiles such that the
newly generated password file will give her privileges she should not have.

The fundamental problem here is that ACL-based systems use ambient authority for
determining access rights. When the compiler opens its output file for writing, the OS
determines the validity of the access by looking at the compiler’s subject ID, to deter-
mine whether it has access to the object. It is up to the compiler to determine whether
the operation is valid or not, making the compiler part of the system’s TCB, meaning it
has to be fully trusted to do the right thing under all circumstances.

ACL-based systems can employ a number of workarounds to mitigate the particular
problemhere, for example, ensuring that the password file and the log file are in different
security domains (which will not stop Alice from clobbering the log file, which in itself

18



is a useful thing to do for an attacker covering her traces). This then sets up the usual
arms race of attacks and workarounds, which is always a losing proposition for the
good guys.

The confusion arises due to ambient authority: The validity of an operation is deter-
mined by the security state of the agent (compiler), which in this case is a deputy op-
erating on behalf of an original agent (Alice). For proper security, the access must be
determined by Alice’s security state. This means that denomination (the reference to
the file) and authority (the right to perform operations on the file) must be coupled, a
principle called no designation without authority. If that is the case, then the compiler
invokes the designated object (output file) with the authority that comes with the des-
ignation (from Alice), and Alice can no longer confuse the deputy.

This is exactly what a capability system enforces. In such a system, Alice needs to
hold three capabilities: an execute capability on the compiler, a read capability on the
input file, and a write capability on the output file. She invokes the compiler with the
execute capability and passes the other two as arguments. When the compiler then
opens the output file, it does so with the capability provided by Alice, and there is no
more confusion possible. The compiler uses a separate capability, which it holds itself,
for opening the log file, keeping the twofileswell separated. In particular, it is impossible
for Alice to trick the compiler into writing to a file she has no access to herself.

The confused deputy problem is the “killer app” for capabilities, as the problem is un-
solvable with ACLs. Hence, next time someone is trying to sell you a “secure” OS, not
only ask whether they have a correctness proof for the OS, but also whether it uses
capability-based access control. If the answer to either questions is “no”, then you’re
being offered snake oil.

19



Chapter 5

Support for Hard Real-Time Systems

seL4 is designed as a protected-mode real-time OS. This means that unlike classical
RTOSes, seL4 combines real-time capability with memory protection, for security as
well as part of its support for mixed-criticality systems.

5.1 General real-time support

seL4 has a simple, priority-based scheduling policy that is easy to understand and anal-
yse, a core requirement for hard real-time systems. The kernel will, on its own, never
adjust priorities, so the user is in control.

Another requirement are bounded interrupt latencies. seL4, like most members of the
L4 microkernel family, executes with interrupts disabled while in kernel mode. This
design decision greatly simplifies the kernel design and implementation, as the kernel
(on a unicore processor) requires no concurrency control. seL4’s formal verification
would otherwise be infeasible, but the design is also an enabler for excellent average-
case performance.

There is a widespread belief that a real-time OS must be preemptible, except for
short critical sections, in order to keep interrupt latencies low. While true for tradi-
tional unprotected RTOSes running on simple microcontrollers, this belief is mis-
taken for a protected-mode system, such as seL4. The reason is thatwhen running
on a powerful microprocessor with memory protection enabled, the time for en-
tering the kernel, switching context, and exiting the kernel, is significant, and not
much less than a seL4 system call. In terms of interrupt latencies, little could be
gained by a preemptible design, but the cost in terms of complexity would be very
high, making a preemptible design unjustified.

This works as long as all system calls are short. In seL4 they generally are, but there are
exceptions. Especially revoking a capability can be a long-running operation. seL4 deals
with this situation by breaking such operations into short sub-operations, andmaking it
possible to abort and restart the complete operation after each sub-operation, should
there be a pending interrupt.

The approach is called incremental consistency. Each sub-operation transforms
the kernel from a consistent state into another consistent state. The operation is

20



structured such that after aborting, the operation can be restarted without repeat-
ing the sub-operations that had succeeded before the abort. The kernel checks for
pending interrupts after each sub-operation. If there are any, it aborts the current
operation, at which time the interrupt forces re-entry into the kernel, which pro-
cesses the interrupt. When finished, the original system call is restarted, which
then continues from the point where it was aborted, guaranteeing progress.

We performed a complete and sound worst-case execution time (WCET) analysis of
seL4, which is the only one documented for a protected-mode OS [Blackham et al.,
2011, Sewell et al., 2016]. It means that we had obtained provable, hard upper bounds
for all system-call latencies and, by implication, worst-case interrupt latencies.

This WCET analysis is a prerequisite for supporting hard real-time systems, and also a
feature that puts seL4 apart from the competition. While complete and sound WCET
analyses had been done for unprotected RTOSes, the industry-standard approach for
protected-mode systems is to subject the kernel to high load, measure the latencies,
take theworst observed one and add a safety factor. There can be no guarantee that the
bound obtained by this approach is safe, and it is unsuitable for safety-critical systems.

We did the WCET analysis of seL4 for Arm v6 processors. It has since fallen into
abeyance, as Arm has stopped providing the required information on the worst-case
latencies of instructions, and Intel never provided those for their architecture. However,
with the advent of open-source RISC-V processors, we will be able to redo this analysis.

5.2 Mixed-criticality systems

What is a mixed-criticality system?

Criticality is a term from the safety domain relating to the seriousness of a failure of a
component. For example, avionics standards categorise failures from “no effect” (on
vehicle safety) to “catastrophic” (loss of life). The more critical a component, the more
extensive (and expensive) is the required assurance, so there is a strong incentive for
keeping criticalities low.

A mixed-criticality system (MCS) is made up of (interacting) components of different
criticalities. Its core safety requirement is that failure of a component must not affect
any more critical components, so the critical components can be assured independent
of the less critical ones.

The trend to MCS results from the desire to consolidate: Traditionally, critical systems
would use a dedicated microcontroller for each function, i.e. isolation by air-gapping.
With growing functionality, this approach leads to a proliferation of processors (and
their packaging and wiring), which causes space, weight and power (SWaP) problems,
which MCS aim to overcome.

This is similar to the security notion of having trusted and untrusted components in
the same system, and the core requirement on the OS is in both cases strong isolation.
The challenge in the safety domain is that safety depends not only on functional correct-
ness but also on timeliness: Critical components typically have real-time requirements,
meaning that they have to respond to an event by a deadline.

21



Traditional approach to MCS

Traditional MCS OSes completely isolate components temporally and spatially, an ap-
proach called strict time and space partitioning (TSP), exemplified by the ARINC 653
avionics standard [ARINC]. This means that each component is statically assigned a
fixed memory area, and partitions are executing according to a pre-determined sched-
ule, with fixed time slices.

The TSP approach guarantees isolation, but has severe drawbacks. The most obvious
one is poor resource utilisation. Every real-time component must be able to finish its
work within its time slice, so the time slicemust be at least the component’s worst-case
execution time. The WCET of a component can be orders of magnitude larger than the
typical execution time, as it must allow for exceptional circumstances.

Furthermore, determining a safe bound for the WCET is generally tricky. For critical
components it must be done very conservatively to convince a sceptical certification
authority, which typically leads to large over-estimates. This means that typically the
processor is greatly under-utilised. But, because of the strict partitioning, the slack
time cannot be used by other components, so the poor utilisation is an inherent prob-
lem. Basically, by retaining the strong isolation of air-gapping, TSP also retains its poor
resource usage.

Another big drawback of TSP is that interrupt latencies are inherently high. Take the
example of Figure 5.1, which might represent a (highly simplified) autonomous vehicle.
The critical component is a control loop, which executes once every 5ms to process
sensor data and send commands to actuators. Its WCET, and therefore time slice, is
3ms. The vehicle also communicates with a ground station, which can update way
points. Because the system operates on a 5ms period, this is the latency at which
network interrupts can be processed, greatly limiting network throughput and generally
responsiveness to external events.

MCS support in seL4

The core challenge with MCS is that the OS must provide strong resource isolation, but
TSP is overly simplistic (and thus inflexible). In terms of space resources, seL4 already
has a flexible, powerful and provably secure model: object capabilities (see Chapter 4).
MCS support extends this to time: access to the processor is now also controlled by

Control 
loop

Sensor
readings

Actuator
controls

NW 
driver

Interrupts Data

Data
Shared
data

Figure 5.1: Simplified example of a mixed-criticality system.

22

https://en.wikipedia.org/wiki/ARINC_653


capabilities.

seL4’s capabilities for processor time are called scheduling-context capabilities. A com-
ponent can only obtain processor time if it holds such a capability, and the amount of
processor time it can use is encoded in the capability. This is analogous to the way
access rights to spatial objects work.

In traditional seL4 (as inmost L4 kernels before it) a thread had twomain schedul-
ing parameters: a priority and a time slice, which determine access to the proces-
sor. The priority determines when a thread can execute: it can run if there is no
higher-priority thread runnable. The time slice determines how long the kernel will
let the thread run before preempting it (unless it is preempted before by a higher
priority thread becoming runnable). When the time slice is exhausted, the sched-
uler will again pick the highest-priority runnable thread (which may be the thread
just preempted), with a round-robin policy used within priority levels.

The MCS version of seL4 replaces the time slice by a capability to a scheduling-
context object, which performs a similar function, but in a more precise way that
is the key to isolation: A scheduling context contains two main attributes. (1) a
time budget, which is similar to the old time slice, and limits the time for which
a thread can execute until preempted. (2) a time period, which determines how
often the budget can be used: the thread will not get more time than one budget
per period, preventing it from monopolising the CPU irrespective of its priority.

Scheduling contexts support reasoning about the amount of time a thread can con-
sume, and therefore, how much time is left. Specifically, they can be used to prevent a
high-priority thread from monopolising the processor.

Applied to the above example, thismeans thatwe can give the (less critical) device
driver a higher priority than the (critical) control component. This allows the driver
to preempt the control, leading to high responsiveness. But the budget limit will
stop the driver from monopolising the CPU.

For example, we give the controller a budget of 3ms (its WCET) and a period of
5ms (corresponding to the frequency at which it operates). And we give the high-
priority driver a small budget of 3µswith a period of 10µs, meaning it can under no
circumstances consume more than 30% of total processor time, yet can execute
frequently enough to ensure good responsiveness. Importantly we can guarantee
that the control, which needs nomore than 60% of available processor time, is left
with enough time to meet its deadline.

By guaranteeing the critical deadline irrespective of the behaviour of the driver, we iso-
late the control from the untrusted driver, according to the core requirement of MCS. In
particular, the driver need not be certified as safety-critical.

seL4’s time capability model addresses a number of other challenges of MCS, which
go beyond the scope of this white paper, and we refer the interested reader to the peer-
reviewed publication [Lyons et al., 2018]. Suffice to say that seL4 provides the most
advanced and flexible MCS support of any OS suitable for critical systems.

23



Chapter 6

Security is No Excuse for Poor
Performance

Performance has always been the hallmark of L4 microkernels, and seL4 is no excep-
tion. We built seL4 for real-world use, and our aim was not to lose more than 10% in IPC
performance relative to the fastest kernels we had before. As it turns out, seL4 ended
up beating the performance of those kernels.

And it beats the performance of any other microkernel. This is a claim that is difficult
to prove, as the competition generally holds their performance data close to their chest
(for very good reason!)

However, we make this performance claim, publicly, at every opportunity. If anyone
disagrees they need to present evidence. We also know through a number of informal
channels that IPC performance of other systems tends to range between 2 times slower
than seL4 to much slower, typically around a factor of ten.

The few independent performance comparisons certainly back our claim.

Mi et al. [2019] compare the performance of three open-source systems, seL4,
Fiasco.OC and Zircon. It finds that seL4 IPC costs are about 10–20% above the
hardware limit of kernel entry, address-space switch and kernel exit. Fiasco.OC
is more than a factor of two slower than seL4 (close to three times the hardware
limit), and Zircon is almost nine times slower than seL4.

Gu et al. [2016] compare the performance of CertiKOS to seL4, measuring 3,820
cycles for a round-trip IPC operation in CertiKOS compared to 1,830 in seL4, a fac-
tor of two. However, it turns out sel4bench, the seL4 benchmarking suite, had at
the time a bug in dealing with timers on x86, resulting in exaggerated latencies.
The correct seL4 performance figure is around 720 cycles, or more than five times
faster than CertiKOS. This is in the context of CertiKOS offering very limited func-
tionality, and no capability-based security.

24

https://sel4.systems/About/Performance/


Chapter 7

Real-World Deployment and Incremental
Cyber Retrofit

7.1 General considerations

When planning to protect the security or safety of your system with seL4, the first step
should be to identify the critical assets you need to protect. The aim should be to min-
imise this part of your trusted computing base, andmake it asmodular as feasible, with
each module becoming an seL4-protected CAmkES component.

The other important preparation is to check availability and verification status of seL4
on your platform. Obviously you will want a verified kernel, that’s what seL4 is all about.
However, even on platforms where the kernel is not verified, the fact that it sharesmuch
of its codewith a verified platformwill give youmuch higher assurance thanwith almost
any other OS. But keep in mind that without verification the assurance is not what it can
be. Also, you must not make any verification claim if you are using a kernel that is not
verified for your platform, or that is in any way modified.

You furthermore will need to assess whether the available user-level infrastructure is
sufficient for your purpose. If not, then this is where the communitymay help you. There
are companies specialising in providing support for seL4 adoption. Also, if you develop
any generally useful components yourself, you should seriously consider sharing them
with the community under an appropriate open-source license. Those who give back
will find it easier to get help from others.

7.2 Retrofitting existing systems

Most real-world deployments of seL4 will not run everything native. Typically, there are
significant legacy components that would be expensive to port, because they are too
big or rely on too many system services that are not presently supported by seL4. Also,
frequently there would be little security or safety gain from running such legacy stacks
natively.

Using seL4’s virtualisation capabilities is frequently the pragmatic way to proceed, Sec-
tion 2.3 shows examples.

25

https://sel4.systems/Use/
https://docs.sel4.systems/Hardware/
https://docs.sel4.systems/projects/sel4/verified-configurations.html
https://sel4.systems/Foundation/Trademark/
https://docs.sel4.systems/projects/available-user-components.html


Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Virt-Mach Monitor

Trusted

Miss.
Mgr.

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Trusted

Mission
Mngr

Comms GPS
Local 

NW

Crypto

Cam-
era

Linux

VMM

Figure 7.1: Incremental cyber-retrofit of the Boeing ULB mission computer during the
DARPA HACMS program.

The typical approach is what we call incremental cyber-retrofit, a term coined by then
DARPA program director John Launchbury. As Figure 7.1 shows, this typically starts
out by simply putting the whole existing software stack into a virtual machine running
on seL4. Obviously this step buys nothing in terms of security and safety, it only adds
(very small) overhead. Its significance is that it provides a baseline from where to start
modularising.

A great example is the work our HACMS project partners did on cyber-retrofitting the
Boeing ULB autonomous helicopter. The original system ran on Linux, and in a first step,
the team put seL4 underneath.

The next step broke out two components: The particularly untrusted camera software
wasmoved to a second VM, also running Linux, with the two Linux VMs communicating
via CAmkES channels. At the same time, the network stack was pulled out of the VM
and converted to a native CAmkES component, also communicating with the main VM.

The final step pulled all other critical modules, as well as the (untrusted) GPS software,
into separate CAmkES components, removing the original main VM. The final system
consisted of a number of CAmkES components running seL4-native code, and a single
VM running just Linux and the camera software.

The upshot was that while the initial system was readily hacked by the professional
penetration testers hired by DARPA, the end state was highly resilient. The attackers
could compromise the Linux system and do whatever they wanted with it, but were
unable to break out and compromise any of the rest of the system. The team was
confident enough to demonstrate an attack in-flight.

26

https://trustworthy.systems/projects/TS/SMACCM/


Chapter 8

Conclusions

seL4 was the world’s first OS kernel with a proof of implementation correctness (func-
tional correctness). We then extended the verification down to the binary and up to
security-enforcement properties, as explained in Chapter 3.

While by now there are other verified OS kernels, seL4 still defines the state of the
art [Heiser, 2019]: It has the most comprehensive verification story, it is still the only
capability-based OS that is verified, and it has the most advanced real-time support.
And our ongoing research aims to ensure that seL4 will retain its position as the clear
leader among security- and safety-oriented OSes, for example by pioneering system-
atic and principled prevention of information leakage through timing channels [Ge et al.,
2019].

Besides this technological leadership, seL4 is in practical terms still far ahead of its
successors: While we designed seL4 for real-world use from the beginning, almost all
other verified OS kernels are academic toys, and far from real-world capable. In fact, we
are only aware of one other (very recently) verified system that is practically deployable
(although in far more limited scenarios).

seL4’s real-world readiness is a result of two aspects that drove the design: uncom-
promising performance focus, as highlighted in Chapter 6, and mechanisms that are
designed to support the widest range of application scenarios and security policies,
the latter enabled by capability-based access control (Chapter 4).

Ten years of taking seL4 to the real-world, including cyber-retrofitting legacy systems
(Chapter 7), has obviously helped us to refine and improve the system, but I’m proud
to say that mild, incremental changes were sufficient. The one exception is the MCS
support (Section 5.2), which required a fairly significant change to the model and its
implementation, but privileged management of time was the one thing we knowingly
left in the to-do basket at the time of the original design [Heiser and Elphinstone, 2016].

This white paper has hopefully given you a reasonable idea of what seL4 is, what you
can do with it, and, importantly, why you would want to use it. I hope this will help you
become an active member of the seL4 community, including joining and participating
in the seL4 Foundation.

I expect this document will keep evolving, and I am keen on feedback. But most of all,
I’m keen to hear of your experience with deploying seL4.

27

https://sel4.systems/Foundation


Acknowledgments

I gratefully acknowledge the feedback I received on earlier versions of this whitepaper,
which helped improve it. The following members of TS commented on drafts: Curtis
Millar, Gerwin Klein, Ihor Kuz, June Andronick, Liz Willer, Luke Mondy, Michael Norrish
and Zoltan Kocsis.

In addition I received comments fromcommunitymembersBen Leslie andDavorOcelic.

Kim Pastor did a great job in creating the Foundation branding.

28



Bibliography

ARINC. Avionics Application Software Standard Interface. ARINC, November 2012. AR-
INC Standard 653.

Simon Biggs, Damon Lee, and Gernot Heiser. The jury is in: Monolithic OS design is
flawed. In Asia-Pacific Workshop on Systems (APSys), Korea, August 2018. ACM
SIGOPS. doi: https://doi.org/10.1145/3265723.3265733. URL https://trustworthy.
systems/publications/full_text/Biggs_LH_18.pdf.

Bernard Blackham, Yao Shi, Sudipta Chattopadhyay, Abhik Roychoudhury, and Ger-
not Heiser. Timing analysis of a protected operating system kernel. In IEEE Real-
Time Systems Symposium, pages 339–348, Vienna, Austria, November 2011. IEEE
Computer Society. URL https://trustworthy.systems/publications/nicta_full_
text/4863.pdf.

WilliamEarl Boebert. On the inability of an unmodified capabilitymachine to enforce the
⋆–property. In 7th DoD/NBS Computer Security Conference, pages 291–293, Septem-
ber 1984.

Anthony Fox and Magnus Myreen. A trustworthy monadic formalization of the ARMv7
instruction set architecture. In Proceedings of the 1st International Conference on In-
teractive Theorem Proving, volume 6172 of Lecture Notes in Computer Science, pages
243–258, Edinburgh, UK, July 2010. Springer.

Qian Ge, Yuval Yarom, Tom Chothia, and Gernot Heiser. Time protection: the missing
OS abstraction. In EuroSys Conference, Dresden, Germany, March 2019. ACM. doi:
10.1145/3302424.3303976. URL https://trustworthy.systems/publications/full_
text/Ge_YCH_19.pdf.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm
Sjöberg, and David Costanzo. CertiKOS: An extensible architecture for building certi-
fied concurrent OS kernels. In USENIX Symposium on Operating Systems Design and
Implementation, pages 653–669, Savannah, GA, US, November 2016. USENIX Asso-
ciation.

Gernot Heiser. 10 years seL4: Still the best, still getting better, Au-
gust 2019. URL https://microkerneldude.wordpress.com/2019/08/06/
10-years-sel4-still-the-best-still-getting-better/. Blog post.

Gernot Heiser and Kevin Elphinstone. L4 microkernels: The lessons from 20 years
of research and deployment. ACM Transactions on Computer Systems, 34(1):
1:1–1:29, April 2016. doi: 10.1145/2893177. URL https://trustworthy.systems/
publications/nicta_full_text/8988.pdf.

29

https://trustworthy.systems/publications/full_text/Biggs_LH_18.pdf
https://trustworthy.systems/publications/full_text/Biggs_LH_18.pdf
https://trustworthy.systems/publications/nicta_full_text/4863.pdf
https://trustworthy.systems/publications/nicta_full_text/4863.pdf
https://trustworthy.systems/publications/full_text/Ge_YCH_19.pdf
https://trustworthy.systems/publications/full_text/Ge_YCH_19.pdf
https://microkerneldude.wordpress.com/2019/08/06/10-years-sel4-still-the-best-still-getting-better/
https://microkerneldude.wordpress.com/2019/08/06/10-years-sel4-still-the-best-still-getting-better/
https://trustworthy.systems/publications/nicta_full_text/8988.pdf
https://trustworthy.systems/publications/nicta_full_text/8988.pdf


Gernot Heiser, Gerwin Klein, and Toby Murray. Can we prove time protection? In
Workshop on Hot Topics in Operating Systems (HotOS), pages 23–29, Bertinoro,
Italy, May 2019. ACM. doi: https://doi.org/10.1145/3317550.3321431. URL https:
//trustworthy.systems/publications/full_text/Heiser_KM_19.pdf.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Der-
rin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas
Sewell, Harvey Tuch, and Simon Winwood. seL4: Formal verification of an OS ker-
nel. In ACM Symposium on Operating Systems Principles, pages 207–220, Big Sky,
MT, USA, October 2009. ACM. URL https://trustworthy.systems/publications/
nicta_full_text/1852.pdf.

Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell, Rafal
Kolanski, and Gernot Heiser. Comprehensive formal verification of an OS microker-
nel. ACM Transactions on Computer Systems, 32(1):2:1–2:70, February 2014. doi:
10.1145/2560537. URL https://trustworthy.systems/publications/nicta_full_
text/7371.pdf.

Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. Scheduling-context
capabilities: A principled, light-weight OS mechanism for managing time. In EuroSys
Conference, Porto, Portugal, April 2018. ACM. URL https://trustworthy.systems/
publications/full_text/Lyons_MAH_18.pdf.

ZeyuMi, Dingji Li, ZihanYang, XinranWang, andHaiboChen. SkyBridge: Fast and secure
inter-process communication for microkernels. In EuroSys Conference, Dresden, DE,
March 2019. ACM.

Thomas Sewell, Felix Kam, and Gernot Heiser. Complete, high-assurance determination
of loop bounds and infeasible paths for WCET analysis. In IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), Vienna, Austria, April 2016.
URL https://trustworthy.systems/publications/nicta_full_text/9118.pdf.

Thomas Sewell, Felix Kam, and Gernot Heiser. High-assurance timing analysis
for a high-assurance real-time OS. Real-Time Systems, 53:812–853, September
2017. doi: https://doi.org/10.1007/s11241-017-9286-3. URL https://trustworthy.
systems/publications/full_text/Sewell_KH_17.pdf.

Ken Thompson. Reflections on trusting trust: Turing award lecture. Communications
of the ACM, 27(8):761–763, August 1984.

30

https://trustworthy.systems/publications/full_text/Heiser_KM_19.pdf
https://trustworthy.systems/publications/full_text/Heiser_KM_19.pdf
https://trustworthy.systems/publications/nicta_full_text/1852.pdf
https://trustworthy.systems/publications/nicta_full_text/1852.pdf
https://trustworthy.systems/publications/nicta_full_text/7371.pdf
https://trustworthy.systems/publications/nicta_full_text/7371.pdf
https://trustworthy.systems/publications/full_text/Lyons_MAH_18.pdf
https://trustworthy.systems/publications/full_text/Lyons_MAH_18.pdf
https://trustworthy.systems/publications/nicta_full_text/9118.pdf
https://trustworthy.systems/publications/full_text/Sewell_KH_17.pdf
https://trustworthy.systems/publications/full_text/Sewell_KH_17.pdf

	What Is seL4?
	seL4 Is a Microkernel and a Hypervisor, It Is Not an OS
	Monolithic kernels vs microkernels
	seL4 Is a microkernel, not an OS
	seL4 is also a hypervisor
	seL4 is not seLinux

	seL4's Verification Story
	Correctness and security enforcement
	The CAmkES component framework

	About Capabilities
	What are capabilities?
	Why Capabilities

	Support for Hard Real-Time Systems
	General real-time support
	Mixed-criticality systems

	Security is No Excuse for Poor Performance
	Real-World Deployment and Incremental Cyber Retrofit
	General considerations
	Retrofitting existing systems

	Conclusions

