Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Binarized Neural Networks for Resource-Efficient Hashing with Minimizing
Quantization Loss

Feng Zheng', Cheng Deng? and Heng Huang

3,4

!Department of Computer Science and Engineering, Southern University of Science and Technology
2School of Electronic Enigineering, Xidian University
3Department of Electrical and Computer Engineering, University of Pittsburgh

4JD Finance America Corporation
zhengf@sustech.edu.cn, chdeng.xd @gmail.com, heng.huang @pitt.edu

Abstract

In order to solve the problem of memory con-
sumption and computational requirements, this pa-
per proposes a novel learning binary neural net-
work framework to achieve a resource-efficient
deep hashing. In contrast to floating-point (32-
bit) full-precision networks, the proposed method
achieves a 32x model compression rate. At the
same time, computational burden in convolution
is greatly reduced due to efficient Boolean opera-
tions. To this end, in our framework, a new quan-
tization loss defined between the binary weights
and the learned real values is minimized to re-
duce the model distortion, while, by minimizing a
binary entropy function, the discrete optimization
is successfully avoided and the stochastic gradi-
ent descend method can be used smoothly. More
importantly, we provide two theories to demon-
strate the necessity and effectiveness of minimiz-
ing the quantization losses for both weights and
activations. Numerous experiments show that the
proposed method can achieve fast code generation
without sacrificing accuracy.

1 Introduction

Binary embedding (hashing) is widely used to address a
variety of large-scale computer vision and machine learn-
ing problems due to its advanced performance in both data
compression and fast approximate nearest-neighbour search.
The basic requirement of binary embedding (hashing) is
that the measurements in code space should be consistent
with the measurements in original space and that consistency
makes it feasible for similar samples to have similar binary
codes. In order to achieve this, various learning hash meth-
ods have been proposed to explore data-dependent hash func-
tions. Among them, deep hashing [Venkateswara er al., 2017;
Huang et al., 2016; Liny et al., 2016; Lai et al., 2015;
Perpinan and Raziperchikolaei, 2015; Zhao er al., 2015;
Liong et al., 2015] would be the most anticipated method,
because of the advanced non-linearity and memorability to
capture consistency.

*To whom all correspondence should be addressed.

1032

However, despite the satisfied results achieved by recent
deep hashing-based methods, deep neural networks (DNN)
often encounter unbearable memory consumption and com-
putational requirements during the inference phase. This
makes it difficult to deploy DNN-based applications on low
cost devices. Taking VGG-16 [Simonyan and Zisserman,
2015] as an example, it consists of 138 million parameters
and the computational complexity of the reasoning stage is
very large. However, the biggest advantage of hashing is to
reduce storage space and improve efficiency. In a sense, us-
ing a DNN for hashing is a dilemma. Thus, it is necessary to
speed up code generation and reduce storage consumption.

Recently, some compression strategies, such as pruning
[Han et al., 2015], binarization [Courbariaux and Bengio,
2015] and distillation [Hinton et al., 20151, have been ex-
plored to reduce the floating-point multiplication in convo-
lutions. Among them, binarization of neural network will be
the most economical method, because each weight only needs
one bit. It can significantly reduce storage and eliminate mul-
tiplication, but unfortunately some problems are inevitably
introduced into neural networks. The immediate suffering
is to incorporate the sign function into the neural network.
Since the step function is not differentiable, it is difficult to
propagate the gradient backwards to update the parameters.
The more important problem is that most existing compres-
sion methods cannot consider the quantization loss between
the binary model used for inference and the actual trained
real-valued model.

Driven by these two perspectives, we develop a novel
framework, which can minimize the quantization loss for the
weights and activations (see Fig. 1), to learn a binary neu-
ral network for Resource-Efficient Deep Hashing (REDH).
Compared with existing deep hashing methods, the proposed
binary network can speed up code generation and reduce stor-
age consumption. This is because Boolean operations are
used in our architecture. First, we use the log cosh function
to define the quantization loss between the real-valued weight
and its quantized code. By minimizing this loss, the real-
valued weights learned can approximate the amount of code
that is quantized. Therefore, this allows us to directly train the
deep architecture of real values using the classical stochastic
gradient descent (SGD) and successfully avoids the problem
of the sign function. Since the difference between binary
and real weights has been minimized, the binary architecture

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

lielck Propagation

Minimizing the binary
entropy for activations

A9 59

@

Inference: XNOR+POPCOUNT

Minimizing the quantization
loss for weights

o Loss function
09&% S oss functio
202 9™ 02 g8° for tasks
> 00 33 00?
£ A%
AN
& A Task:
Matching
Retrieval
of ..
IS Recognition

Figure 1: The motivation of binary neural networks: resource-efficient inference (forward propagation: red arrow) using xnor + popcount
operation while effective training (back propagation: blue arrow) directly on real-valued networks with minimizing a quantization loss

between the quantized code and the real weight.

used can still retain the original attributes. Our theoretical
analysis shows that the vibration of the output representation
can be bounded by the proposed quantization loss. Second,
we use the binary entropy function to further define the quan-
titative loss between activation and its quantified code. By
minimizing the difference (loss) between them, we can get
the binary input in the middle layer, so the multiplication in
the convolution can be replaced by the XNOR operand. At
the same time, the activation of the middle layer and the fi-
nal binary representation can be treated equally, so the gra-
dient can propagate backwards in the same way. We provide
a theory to show that an auxiliary distance converges to the
Hamming distance uniformly under the control of quantiza-
tion loss. Moreover, various properties or constraints used in
other classical hashing methods can be seamlessly integrated
into our framework. Finally, by optimizing the integrated ob-
jective function, a binary neural network can be constructed
to fast generate binary codes for some special tasks.

In summary, we make the following contributions: 1) To
the best of our knowledge, we are the first to integrate the
learning of a binary neural network and the generation of bi-
nary codes into a unified framework. 2) In order to learn the
network directly on the real values, we propose the quanti-
zation losses for the weights and activations. 3) We provide
two theories: Theoretically prove the necessity of minimiz-
ing the weight quantization loss and positively ensure that the
Hamming distance can be safely replaced by an auxiliary dis-
tance. 4) A large number of experiments show that the pro-
posed method can improve the efficiency of code generation,
but without sacrificing much accuracy.

2 Related Work

Recently, due to the promising results in the area of ob-
ject recognition, DNNs [Venkateswara ef al., 2017; Huang
et al., 2016; Liny et al., 2016; Lai et al., 2015; Perpinan and
Raziperchikolaei, 2015; Zhao et al., 2015; Liong et al., 2015]
have been also introduced to learn binary codes. In [Liong

1033

et al., 2015], multiple hierarchical non-linear transformations
are used to learn binary codes. In the same year, [Zhao et
al., 2015] also incorporates deep convolutional neural net-
work into hash functions. In addition, a binary auto-encoder
model which seeks to reconstruct an image from the binary
code is proposed in [Perpinan and Raziperchikolaei, 2015].
While [Lai er al., 2015] focuses on using a deep architec-
ture for supervised hashing, in which three blocks including a
stack of convolution layers, a divide-and-encode module and
a triplet ranking loss are designed. In [Liny et al., 2016],
an unsupervised deep neural network is proposed to learn bi-
nary descriptors. [Huang et al., 2016] trains deep convolu-
tional neural networks coupled with unsupervised discrimina-
tive clustering and then uses the cluster membership as a soft
supervision. Actually, the deep hashing network can also ex-
ploited for unsupervised domain adaptation [Venkateswara er
al., 2017]. Undoubtedly, these methods achieve better results
than the linear methods. However, a significant disadvantage
of deep neural networks is that inference (code generation)
is computationally expensive and memory intensive. In this
paper, our goal is to propose a binary neural network to solve
this problem.

Using binary neural networks to reduce unbearable bur-
den of computation and memory is an active research topic.
[Courbariaux and Bengio, 2015] proposes a simple method
to binarize the network weights. Later, they extend this
work to binarize the activations as well [Courbariaux et al.,
2016]. XNOR-Networks [Rastegariy et al., 20161, in which
both weights and activations are binarized, results in 58 times
faster convolutional operations and 32 times memory savings.
Following the XNOR-Networks, [Hou et al., 2017] further
consider the effect of binarization on a loss during binariza-
tion. It is worth noting that the loss in [Hou et al., 2017] is
not the quantization loss discussed in our paper. DoReFa-Net
[Zhou er al., 2016] also binarizes weights into bits but quan-
tizes both gradients and activations into low bitwidth codes.
Another similar line is to train ternary weight networks [Li
et al., 2016; Zhu et al., 2017] which weights are constrained

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

to +1, 0 and —1. The ternary weight networks (TWNs) [Li
et al., 2016] are designed to reduces the accuracy loss of bi-
nary networks by introducing zero as a third quantized value.
Based on TWNs, Zhu er. al. [Zhu er al., 2017] quantize the
weights into 0 and two real-values (positive and negative) for
each layer, which are trainable parameters. However, these
methods all focus on training compressed networks for the
task of recognition. As far as we know, there is no algorithm
for efficient hashing. Moreover, the quantization loss be-
tween the quantized codes and the full precision weights has
not been considered in training, which is potentially harmful
for the performance after the network quantization.

3 The Proposed Binarized Hashing Network

In this paper, we consider to directly learn deep binary neural
networks for binary representation and simultaneously mini-
mize the quantization loss between the real-valued parameter
learned and the final binary code that is quantized. Gener-
ally, state-of-the-art deep architectures consist of billions of
operands in convolutions and activations which are compu-
tationally expensive and memory consumption in inference.
In this section, we first discuss the scheme of binarizing the
convolution weights and then propose a method of binarizing
the output of the activation. Finally, we introduce the basic
requirements of binary embedding.

Let F be a DNN with L layers, I be a raw sample input
of the network, TW; be a matrix (or tensor) of the real-valued
parameters in the /th layer and x; be the output of the /th
layer. Thus, we have x;, = F(I) which is the final binary
representation of the sample I and xy = I which is the input
of the network. Simply, for all the layers including the input
and the output, we can write the operations as:

T :B(A(B(Wl)@xl_l)),l =1,---,L, (D)

where B is a binary function and A is a activation function

both which will are discussed later. It is worth noting that
@ denotes the xnor + popcount operation. In fact, in the
inference, the binarization can be conducted in advance and
only the binary nets need to be stored in memory.

3.1 Binarizing Weights

In fact, convolution is the most basic operation in deep net-
works, and the size of the parameters leads to a lot of time and
memory consumption. Therefore, our first step is to binarize
the real-value weights into bits and replace multiplications
with xnor + popcount operations.

Binarization

Configuring the parameters using binary codes {—1,1} di-
rectly would be the most straightforward method but it is
obvious that discrete optimization for the parameter config-
uration is an NP-hard problem. Otherwise, the most feasible
solution is that the real-valued parameters is first learned and
then weights binarization is performed by transforming real
values to 1 and —1 as:

B(W)) = sign(W)), 2)

where B(-) is an element-wise function. Other compression
methods could project their parameters into clusters and thus

1034

the parameters in the same cluster share their representative
quantized values. For example, ternary values [Zhu et al.,
2017] are adopted to represent the parameters by introducing
a threshold and [Zhou et al., 2016] uses a straight-through
estimator method to generate low bitwidth weights. In con-
trast, sign function in Eq. 1 can produce the most efficient
operations and the most compact representations.

Minimizing Quantization Loss

However, most existing methods try to generate a low
bitwidth weight as close as possible to the original method,
but the quantization loss between the final binary network
and the real valued parameters cannot be minimized during
the training. Thus, it is inevitable to explore a variety of com-
plex quantization schemes that will increase the complexity
of the model. Instead, we think a better network of real-
valued weights that is closer to the final quantized value can
be first learned and then the following quantification becomes
a simple matter.

Before introducing the quantization loss, we give a simple
example to illustrate the importance of minimizing the loss.
Given a network of L layers without regard to activations, we
have the following theory:

Theorem 3.1. Suppose x} (k) = (W[, z,_1) and z,(k) =
(sign(W[),z,_1) for the kth neuron in the lth layer, then
we can define Az (k) = x(k) — z} (k) AWF = WF —
sign(WF). If we define © = sup, . ||z||?, the following
inequality holds

lAz]? <

IAWL|*(© + [[AWL 1 |*(© +
S [[AWAPlzol?)). 3)

All the proofs will be provided in an anonymous website
(https://github.com/AI-2019/1JCAI2019.git).

We can see that the vibrations (loss) of weights [|AW;|| are
transmitted on the networks to the output x . Furthermore,
the inequality in Theory 3.1 clearly demonstrates that min-
imizing [|AW;|[,l = 1,---, L can reduce the vibration of
output ||Axy||. Although we provide the theory for the sim-
plified networks, the same conclusion can be also obtained
for the complex models which activation functions are used.
This is because that, normally, the activation functions are
monotonically non-decreasing. While the robustness of final
representation xy, is very significant for the following tasks.
Thus, to improve the robustness, we need to minimize the
quantization loss of weights.

To this end, we explore a novel quantization loss to guide
the training of parameters. Considering the absolute function
|z| & log(cosh(z)), we can define our quantization loss as:

L(W;) = log(cosh(W? — U)) ® U, 4)

where U has the same size of W; and all items in U are 1
and ® is the convolution operation playing the same role as
summation here. Both log(-) and cosh(-) are element-wise
functions. It is obvious that the loss function £(W}) is dif-
ferentiable and has two minimums for each item of W;. The
following theory guarantees that || ATW;||? in Theory 3 can be
bounded by the proposed quantization loss.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Theorem 3.2. If we define AW, = W, — sign(W;) and a
loss function in Eq. 4, the following inequality holds:

[AW|]> < (L(W;) +U) @ U Q)

It is obvious that U is a constant matrix. As a result, min-
imizing £(W;) can make parameters move to the represen-
tative quantized values {—1, 1} with a large probability and
further reduce the output vibrations ||Az [|%.

3.2 Binarizing Activations

Binarizing weights into bits converts the convolutional mul-
tiplication to a real-value addition that is still slower than the
xnor operation. To further accelerate the inference, we also
need to binarize the activation of middle layers. In fact, we
can think of the output of activations as being the same as the
final binary representation.

Binarization

Assume that B(W}) and the binary representation in the last
layer x;_; are given. To simulate the real-valued convolu-
tions for kth neuron, we use & operator which is defined as:

alk) = BW) @ ©)
= popcount(Y}k, 1) — popcount(Ylk7 -1),
where V¥ = B(W}) xnor z;_; is a vector with the same
size of Wlk. In fact, all filters Wl’C have the same size to z;_.
Thus, z(k) € [—d}’,d}"] is a value centred at 0 and has the
largest norm that is the same to the size di” of W}.

In this paper, we adopt a logistic function p;(k) =
O"(Zl(k)) = m as the activation function in our
binary neural networks, in which the steepness of the curve 7
is set to 1. Thus, the activations p; (k) can be considered as a
probability of the kth neuron at the /th layer. Moreover, it is
easy to prove that the expectation of activations is u = 0.5.

Therefore, by using the sign step function again, our stochas-
tic binarization function is defined as:

x1(k) = sign(2pi(k) - 2u). ™)
The quantization procedure will be conducted for the output
representation layer and all the intermediate layers z; : [=
1,---, L. In summary, the activation function of our real-
valued net in the training stage is A(-) = 20(-) — 2u whilst
the intermediate layers of the corresponding binary net in the
inference stage is x;(k) = sign(A(z;(k))).

Minimizing Binary Entropy

Obviously, the quantization step speeds up the convolutions
but suffers from the information loss which would make the
learned model unstable. For example, when p;(k) is very
close to u, the binarization decision is very sensitive. To
mitigate the negative influence, we consider the quantiza-
tion procedure as a Bernoulli process of the random variable
2;(k). Thus, simply, we have Pr(x;(k) = 1) = p;(k) and
Pr(z;(k) = —1) = 1 — p;(k). Therefore, a binary entropy
function Hy(x;(k)) (See Fig. 2) of 2;(k) can be given by:

Hy(z:(k)) = H(pi(F)) + H(1 — pi(k)), ®)

where H(p;(k)) = —pi(k) logs(pi(k)) is the entropy of the
probability p;(k). We can observe that the maximum of bi-
nary entropy function Hy attains its maximum value, when

1035

1

Binary Entropy Ha(z;(k))

0 0.2 0.4 0.6 0.8 1
The activations p;(k)

Figure 2: The plot of binary entropy function.

pi(k) = 0.5. On the contrary, minimizing the binary entropy
function will make p;(k) closer to either 1 or 0. Therefore,
based on the Bernoulli process of activations, we can define
the quantization loss for binarizing the activations as:

Lz, Wi) =y Ha(zi(k)) ©)
k

Directly real-valued network training that minimizes quanti-
zation loss avoids the difficulties caused by discrete variables.
More importantly, we will theoretically prove that minimiz-
ing the quantization loss of last layer can ensure that an auxil-
iary distance in the learning space consistently approaches the
expected Hamming distance. Therefore, it is feasible to use
a differentiable distance to replace the Hamming distance in
objectives for hash learning. Finally, the stochastic gradient
descent method can be used smoothly.

Balance and Independence

Beside our proposed quantization losses, similar to most
other hashing methods [Weiss er al., 2009; Liong et al.,
2015], we also add a regularization item to consider the bit
balance and independence of the activation for each layer as:

1 1

~2dp 2Ndf,

R(pi, Wi, X) IWiw," = I — tr(PP),

where P; consists of the outputted column vectors in the Ith
layer for all samples in the mini-batch X and N is the size of
the mini-batch. d}’ is used to normalize the two items so that
they are in the same scale.

3.3 Preserving Properties

As for the semantic retrieval, the triplet loss introduced in
FaceNet [Schrof et al., 2015] can be used. Given three sam-
ples I, I and I"™ with labels %°, ¢/ and y™, the first two
samples come from the same class y* = 37 whilst I* and I™
come from different classes y* # y™. Thus, I’ is consid-
ered as the anchor sample, I/ denotes the positive samples
and I™ refers to the negative samples. The embedding F
is required to project the samples into the learned space in
which the Hamming distance Dy, (z%, 27) between z’ and

a:]L is closer than that between z; and 2. Considering this,

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Embedding

Binarizing

Feature space

Approximated

D, (x5,%)

Figure 3: Theory 4.1 shows that D.(pt, pJL) can approach
Dy (2%, x,) when the quantization loss is minimized.

the triplet loss is defined as:
YAy
Z [Dh(xLa 1L) Dh(mLa z7') +

yi=yJ

‘C(FaX) = a]+v (10)

where 2% = F(I') and « is a hyperparameter.

As for the nearest neighbour search, we can use the scheme
of graph embedding [Yan ef al., 2007] to preserve the local
structures. The original projection functions are learned in
a way of batch optimization in which all training samples
are involved. But, deep models are usually trained in a se-
quential manner where a minibatch of samples is sampled
at each step. To enable the leaned architecture can capture
the local structures, we define a mini-graph (G, .S) for all
pairs (1%, I7) in the minibatches X using the raw features as:
Si; = exp(—||I" — I||?/o) if ||[I* — I7||> < &, otherwise
Si; = 0, where both ¢ and § are hyperparameters.

ZSHDh F(I)). an

Accompanying the local structure for unsupervised tasks,
actually, an unsupervised triplet loss can be also defined
based on the number of nearest neighbours K in the origi-
nal space. The positive sample can be selected from the first
K nearest neighbours whilst the negative sample can be se-
lected from others. Thus, from this way, we can build un-
supervised triplet loss for learning binary embedding. The
choice of which property in Eq. 10 and 11 to use depends on
the specific requirements of the task.

4 Optimization Method

4.1 Opverall Objective

To learn a resource-efficient network for hashing, the quan-
tization losses of both weight and activation binarizations
as well as the intrinsic properties should be all considered.
Therefore, we obtain the overall objective function as:

iy £(F), 12)

=L(F,X)+ Zl(/\lﬁ(wl) + X L(x, W) +
AsR(pi, Wi, X)). Among them, A1, A2 and A3 are the bal-
ancing parameters and x; : [= 1,--- , L refer to the final bi-
nary representation and all the intermediate layers. However,

" .
F* = arg ming_py, ..

where L(F)

1036

Algorithm 1 Training binary neural networks algorithm

Input: Current real-valued parameters W} : { =1,--- | L
and learning rate n’. Set the parameters A1, A2 and \3.
Output: F*+ = {W{*! ... Wit}

Initialisation:

Sample a minibatch X.

Forward Propagation:

Calculate 71 = B(A(B(W/}) @ x¢)) for all samples in X.

for [=2,--- L
Binarize the filter weights B(W}).
Perform xnor + popcount: z; = B(W/) @ z;_.
Apply batch-normalization.
Calculate ; = B(A(z;)) in the [-th layer.

end for

Backward Propagation:

Compute the overall loss function in Eq. 12.

for [=L,---,1
Calculate the gradient based on
if ide = find(log cosh(Wl) < 9)

9(Wy,idw) = g(Wy,ide) + i 5 (idw).

1 8£(F) OL(F)

oW,

and z;.

end if
W/*! = UpdateParameters(1}, 865‘/({).
end for

n'*! = UpdateLearningrate(n’, t).

the Hamming distance in £(F) is non-differentiable thus the
general Stochastic Gradient Descend (SGD) method cannot
be directly used. To solve the problem, we use an auxil-

iary distance D, (p?, p]L) to replace the Hamming distance
Dy,(z% , 2) while, fortunately, the following theory guaran-
tees that the substitution is reasonable.

Theorem 4.1. Assume an auxlllary variable D (pL,pL) =
|lpt. — 1, ||? is given for bits x; and x, then we have
D.(plpf) SR04 2y (13)
To simulate the real-valued convolutions, we minimize the

binary entropy of activations so that the value 2p;(k) — 2u
is close to either —1 or 1. Actually, the Hamming distance
between two samples 2% and z7 in the final representation
can also be simulated using the D.(p?, p}) in the stage of
training. Fig. 3 shows the relationships between the original
space, the learned Euclidean space and the Hamming space.

4.2 Updating Parameters

As yet, all the optimization problems in the objective Eq. 12
have been addressed. Consequently, our resource-efficient
architecture can be easily trained in a similar way of clas-
sical methods while the final weights and representations
can approximate to the quantized codes. It means the gra-
dient aa%F) of loss function L£(F) w.r.t the filter weights
dL(F)

W, could be back propagated to the gradient = in the
first layer. However, we have also observed that the gradi-
ent would be vanished when some weights are close to the

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

SH-BDNN SDH SDHREDH REDH|U-REDH U-REDH UH-BDNN DB DH
Set| BDNN BDNN DH DH BDNN| DH BDNN DH DH DH
16bt| 94.2 933 46.8 71.6 854 | 442 45.6 454 28.243.1
24bt| 944 941 - 723 889 | 458 49.1 - - -
32bt| 95.4 947 51.0 7477 90.2 | 483 52.5 472 320450
48bt - - - 762 91.0 | 49.0 55.6 - - -
64bt] - - 525 779 924 | 503 56.2 44.546.7

Table 1: Mean Average Precision (MAP%) on MNIST dataset with
respect to 16, 24, 32, 48 and 64 number of bits. ‘-> means no result
reports are given. ‘Set’ refers to the general two types of dataset
partitions. The first 5 columns illustrate the results of supervised
algorithms. DB is DeepBit.

SH-BDNN DHN SDH* REDH REDH|U-REDH U-REDH UH-BDNN DH DB
Set| BDNN DH DH DH BDNN| DH BDNN DH DH DH
16btf 652 594 188 499 553 19.9 23.6 17.8 16.219.43
24bt| 662 603 - 51.7 562 | 221 253 - - -
32bt| 66.5 62.1 20.8 522 595 25.6 289 185 16.624.86
48bt] - - - 547 613 26.7 29.1 - - -
64bt] - - 225 58.1 657 | 288 33.1 17.027.73

Table 2: Mean Average

quantized codes. To solve this, we use a cumulative gradi-
ent to update these weights which are close to the quantized
codes. First, in each epoch, we find those weights in W,
using idx = find(logcosh(W;) < §). 4 is a very small
value and Idzx is the index of those weights. It is easy to
prove that the corresponding items in W; are close to the
quantized codes when the non-negative values are less than
a small value. Then, we accumulate these gradients using

gWyp,idz) = g(Wy,idz) + %Lié‘?(idx). Last, for those
weights which have the different signs to the corresponding
gradients, we update them using 2g(Wp,,idx) and set the
accumulated gradients to zero. The strategy can make the
weights move around the quantized codes.

The detailed algorithm of training binary neural networks
for binary embedding is given in Algorithm 1. In the stage of
inference, the real-valued weights W, are discarded and only
the binary weights B(W},) need to be kept.

5 Experimental Results

We validate our proposed method in two tasks: semantic re-
trieval and object matching. The common characteristic of
these two tasks is that their application in real systems re-
quires efficient prediction and matching. In our method, the
balancing parameters A\; = 0.1, Ao = 3.5 and A3 = 125 are
fixed in all experiments. Moreover, we use Eq. 10 to cap-
ture the special properties of the data. For semantic retrieval
tasks, samples can be sampled by category. For the task of
object matching, it is possible to select whether the samples
belong to the same object or not, according to the correspon-
dence. However, similar to the framework in DH [Liong et
al., 2015], we can build our unsupervised version of our pro-
posed badget-aware deep hashing, named as U-REDH, with-
out considering semantic information in Eq. 10. Otherwise,
either the triplet loss in Eq. 10 or geometric property in Eq.
11 are considered in REDH. In our model, a deep architecture
based on the GoogLeNet [Szegedy et al., 2015] style Incep-
tion model is used as the structure of the convolutional neural
network. The output layer is replaced by a binarizing layer

1037

which is the same as the previous activations in intermediate
layers and can produce the required number of binary codes.
The parameters will be tuned and updated according to the
objective function in Eq. 12 for some specific tasks.

5.1 Semantic Image Retrieval

In this section, CIFAR-10 and MNIST datasets are used to
compare our method with the state-of-the-arts. The experi-
mental setting for CIFAR-10 and MNIST, in which label in-
formation is provided, is the same as that in [Liong er al.,
2015]. Generally, there are two types of dataset partitions and
the difference between them that affects MAP performance is
the number of gallery. The first setting is the same as the one
in DH [Liong ef al., 2015], in which, for both datasets, 1000
samples, 100 per class, are randomly selected as the query
data, and the remaining samples are used as the gallery set.
Whilst, the second setting is the same as the one in BDNN
[Do et al., 2016], in which the query set contains 10,000 sam-
ples, and the others are treated as gallery set.

Then the Mean Average Precision (MAP) which is the av-
erage precision at the ranks where recall changes, is used
to evaluate the overall performance. We also calculate the
Precision-Recall curves under varying Hamming distance be-
tween the learned binary codes at the code length of 16, 32
and 64, respectively. The deep architecture based hashing
methods inclduing DSH [Liu ef al., 2016a], DHN [Zhu e? al.,
2016], DNNH [Lai et al., 2015], BDNN [Do et al., 2016],
DH [Liong et al., 2015] and DeepBit [Liny et al., 2016] are
used as the baseline methods. Among them, DH [Liong et
al., 2015] and DeepBit [Liny et al., 2016] are two unsuper-
vised methods while others are supervised. More five linear
unsupervised methods including LSH [Indyk and Motwani,
19981, ITQ [Gong et al., 2013], PCAH [Wang er al., 2012],
SH [Weiss et al., 2009], SpH [Heo et al., 2015] and one lin-
ear supervised method SDH [Shen et al., 2015] are also com-
pared. Generally, supervised methods use labels to define the
sample relationship for guiding the metric learning.

For MNIST dataset, Fig. 4 shows the comparison of
Precision-Recall curves between the unsupervised version of
REDH and other unsupervised methods in the partition set-
ting of DH [Liong et al., 2015]. We can see that U-REDH
can consistently achieve better results than all other non-deep
methods and deep architecture-based methods. The compari-
son results of the overall performance (MAP) between REDH
and other supervised and unsupervised deep hashing methods
are shown in Table 1. Generally, we can see that the per-
formance using dataset partition of DH [Liong et al., 2015]
is lower than that of BDNN [Do et al., 2016] because the
former setting has more samples in the gallery set. More-
over, for the task of semantic retrieval, supervised methods
perform much better than the unsupervised methods. Un-
supervised BDAH outperforms other unsupervised methods.
Meanwhile, the performance of supervised BDAH is close to
other supervised deep hashing methods, which fully explore
the label information to improve the performance. It is worth
noting that all other deep hashing methods are real-valued
deep architectures and thus, obviously, REDH will run faster
and save more memory than them when generating code.

For CIFAR-10 dataset [Krizhevsky and Hinton, 2009], a

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

MNIST

MNIST

MNIST

-o-LSH
—4-1TQ
~6-PCAH
—#-SH 1
SpH |
—- REDH
-6~ DeepBit| -
—#—DH

Precision
Precision

-o-LSH -e-LsH
—-1TQ 07F —ITQ
- PCAH 5 ~6-PCAH
S-sH] 3T s |
SpH | 8 osf SpH 12
4= REDH o % REDH
—©-DeepBit| 4 04f —©-DeepBit| 4
—¥-DH —*DH

04 05 06 07 03
Recall @ 16 bits

03

0
Recall @ 32 bits

4 05

04 05 06
Recall @ 64 bits

06 01 02 03

Figure 4: MNIST dataset: Precision-Recall curves compared with different unsupervised methods under varying binary lengths at 16, 32 and

64 bits, respectively.

CIFAR10

-©-LSH
—%-1TQ
- PCAH
—de— SH 1
SpH i
—#%-REDH
-©- DeepBit| 4
——DH

Precision

Precision
o

CIFAR10

CIFAR10

~5-LsH —o-LsH
0.7
Balin c ¥ palion
- SH y B 0 - SH y
5]

SspH | 3 o SspH |
—#%- REDH a - REDH
—©- DeepBit| 4 -6~ DeepBit| 4
—-DH

04 05
Recall @ 16 bits

Figure 5: CIFAR-10 dataset:

512-D GIST feature vector® for each image is taken as the
input of models whilst our model directly projects the raw
image into binary codes. The compared results on CIFAR-
10 dataset are given in Table 2 and Fig. 5. The results of
all methods on the CIFAR-10 data set are lower than those
on the MNIST data set and it means that the retrieval task of
real images is harder than that of digital images. We can also
observe that label information can boost the performance but
the degrees of performance improvement for different meth-
ods are varied. Compared with DH, the supervised version of
REDH has improved more significantly. It demonstrates that
our model can easily incorporate different properties. Over-
all, we can obtain the same conclusions as the comparison
results on MNIST dataset. From Fig. 5, it seems that Deep-
Bit is a little better than unsupervised version of REDH at the
length of 16 when the recall rate is above 0.5. In other cases,
REDH outperforms other methods on CIFAR-10 dataset.

5.2 Image Matching of the Same Object

To further validate the proposed method for fast binary em-
bedding, we test it on two matching (re-identification) ap-
plications. Hamming distance would be the most efficient
measure to compare the samples. Same as most matching
methods, Cumulated Matching Characteristics (CMC) [Zhao
et al., 2014] curve is used to evaluate the performance.

The first task is to match two images of the same person
taken by different cameras. Our model is fine-tuned on the

Deep features can be used as the input for the classical non-deep
learning methods. Performance may increase by about 3% — 10%,
but it is still lower than the deep models [Do et al., 2016].

4 05

Recall @ 32 bits

1038

06
Recall @ 64 bits

Precision-Recall curves compared with different unsupervised methods.

CMC rank score on CUHKO1

—&- SalMatch-28.5%
—<&— MLF-34.3%
~»-eSDC-19.7%
—— SDALF-9.9%
——REDH-37.7%

40 50 60 70 80

Rank

20 30

10

Figure 6: CMC rank scores of 5 methods at ranks from 1 to 85 for
person image matching.

datasets introduced in [Zheng e al., 2015] and then validated
on CUHKO1 [Zhao et al., 2014] dataset. CUHKO1 contains
971 persons, each of which has two images. All the images
are normalised to 160 x 60. The experimental setting is the
same as [Zhao et al., 2014] where 486 persons are chosen for
query and the remaining persons for gallery. Four methods
including eSDC [Zhao et al., 2013b], SDALF [Farenzena et
al., 2010], SalMatch [Zhao et al., 2013a] and MLF [Zhao et
al., 2014] are validated on this dataset. The compared results
on CUHKOI1 dataset are given in Fig. 6. We can see that
the proposed method REDH consistently yields better results
than the other methods, from 1 to 80 ranks. Actually, only
REDH can effectively match the samples in the Hamming
space, while other methods use Euclidean distance.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

CMC rank score on ViRi dataset

Matching rate

0.5! —&—GooglLeNet |
—<4FACT
AlexNet
——BOW-CN
——REDH

5 10 15 20 25
Rank

Figure 7: CMC rank scores of 5 methods at ranks from 1 to 25 for
vehicle image matching.

The second task is to match two images of the same ve-
hicle model. VeRi [Liu et al., 2016b] was collected from a
real-world urban surveillance scene and contains a total of
776 vehicles captured by 19 cameras. 37,778 images of the
576 vehicle are used for training while the remaining 13, 257
images of 200 the vehicle are used for the test. Our exper-
iment setup is the same as the original report in [Liu ef al.,
2016b]. Four methods including GoogLeNet [Szegedy et al.,
2015], FACT [Liu et al., 2016b], Bow-CN [van de Weijer
et al., 2007] and AlexNet [Krizhevsky et al., 2012] are se-
lected to compare their performance. The compared results
on VeRi dataset are given in Fig. 7. FACT, designed for ve-
hicle matching, also uses deep architectures to generate real-
valued features. In contrast, REDH learns binary represen-
tations through binary networks and runs faster than other
methods, including FACT, AlexNet, and GoogLeNet, in the
projection and matching phases. In fact, REDH still outper-
form a real-valued deep architecture: AlexNet. In general, we
can see that REDH achieves acceptable results on this dataset.

5.3 Resource-Efficient Analysis

We investigate the memory consumption and the computa-
tional time in the stage of code generation. Three general ar-
chitectures which are popularly used in various applications
are compared. Most existing deep hashing methods choose
the typical architectures including AlexNet [Krizhevsky et
al., 2012], GoogLeNet [Szegedy er al., 2015] and VGG [Si-
monyan and Zisserman, 2015] as the basic projection func-
tion. For example, DeepBit [Liny et al., 2016] uses the VGG-
16 [Simonyan and Zisserman, 2015] as the basic architecture
of deep hashing model. In fact, both memory and calculation
depend not only on the number of parameters, but also on the
way how it is calculated. In this paper, we resort to change
the way of calculation by replacing the multiplications in the
convolutional neural networks using the Boolean operations.

The comparison results are given in Table 3. We can see
that our model has the same number of parameters as the
basic GoogLeNet architecture, but the memory requirement
is greatly reduced because only one bit per parameter is re-
quired. Moreover, since the Boolean operation is much faster
than the multiplication, the calculation time of the inference
is also greatly reduced. In summary, we propose a method
that can achieve at least a 32x model compression rate and a

1039

Architectures |AlexNet GoogLeNet VGG-16 DeepBit REDH
Model size 60M SM 138M 138M 5M
Memory 240M 20M 552M 552M 0.625M
Computation (s)| 0.090 0.106 0.923 0.923 0.002

Table 3: Comparison of the memory consumption of parameters and
the computational time of inference.

45x efficiency increase rate.

6 Conclusion

In this paper, we introduce a novel framework to achieve the
resource-efficient deep hashing. The model can be easily
trained using the classical stochastic gradient descend method
because the quantization loss between the quantized values
and the learned real-valued weights is minimized. This also
leads to a quantized model that is as close to the original
trained model as possible. Extensive experiments show that
the proposed method can achieve competitive results over the
state-of-the-art methods but use much fewer resources.

Acknowledgements

H.H. was partially supported by U.S. NSF IIS 1836945,
IIS 1836938, DBI 1836866, IIS 1845666, IIS 1852606, IIS
1838627, 1IS 1837956.

References

[Courbariaux and Bengio, 2015] Matthieu Courbariaux and
Yoshua Bengio. Binaryconnect: Training deep neural net-
works with binary weights during propagations. In NIPS,
pages 3123-3131, 2015.

[Courbariaux et al., 2016] Matthieu Courbariaux, Itay
Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Binarized neural networks: Training neural networks
with weights and activations constrained to +1 or 1. In
NIPS, pages 41144122, 2016.

[Do et al., 2016] Thanh-Toan Do, Anh-Dzung Doan, and
Ngai-Man Cheung. Learning to hash with binary deep
neural network. In ECCV, pages 219-234, 2016.

[Farenzena et al., 2010] Michela Farenzena, Loris Bazzani,
Alessandro Perina, Vittorio Murino, and Marco Cristani.
Person re-identification by symmetry-driven accumulation
of local features. In CVPR, pages 2360-2367, 2010.

[Gong et al., 2013] Yunchao Gong, Svetlana Lazebnik, Al-
bert Gordo, and Florent Perronnin. Iterative quantization:
A procrustean approach to learning binary codes for large-
scale image retrieval. IEEE TPAMI, 35(12):2916 —2929,
2013.

[Han et al., 2015] Song Han, Jeff Pool, John Tran, and
William J. Dally. Learning both weights and connections
for efficient neural network. In NIPS, pages 1135-1143,
2015.

[Heo et al., 2015] Jae-Pil Heo, Youngwoon Lee, Junfeng He,
Shih-Fu Chang, and Sung-Eui Yoon. Spherical hashing:
Binary code embedding with hyperspheres. IEEE TPAMI,
37(11):2304-2316, 2015.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
In arXiv preprint arXiv:1503.02531, 2015.

[Hou et al., 2017] Lu Hou, Quanming Yao, and James T.
Kwok. Loss-aware binarization of deep networks. In
ICLR, 2017.

[Huang ef al., 2016] Chen Huang, Chen Change Loy, and
Xiaoou Tang. Unsupervised learning of discriminative at-

tributes and visual representations. In CVPR, pages 5175—
5184, 2016.

[Indyk and Motwani, 1998] Piotr Indyk and Rajeev Mot-
wani. Approximate nearest neighbors: towards remov-
ing the curse of dimensionality. In STOC, pages 604-613,
1998.

[Krizhevsky and Hinton, 2009] Alex Krizhevsky and Geof-
frey Hinton. Learning multiple layers of features from tiny
images. Technical report, University of Toronto, 2009.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E. Hinton. Imagenet classification with deep

convolutional neural networks. In NIPS, pages 1097-
1105, 2012.

[Lai er al., 2015] Hanjiang Lai, Yan Pan, Ye Liux, and
Shuicheng Yan. Simultaneous feature learning and hash
coding with deep neural networks. In CVPR, pages 3270-
3278, 2015.

[Li et al., 2016] Fengfu Li, Bo Zhang, and Bin Liu. Ternary
weight networks. In Workshop in NIPS, 2016.

[Liny ef al., 2016] Kevin Liny, Jiwen Luz, Chu-Song Cheny,
and Jie Zhou. Learning compact binary descriptors with
unsupervised deep neural networks. In CVPR, pages
1183-1192, 2016.

[Liong et al., 2015] Venice Erin Liong, Jiwen Lu, Gang
Wang, Pierre Moulin, and Jie Zhou. Deep hashing for
compact binary codes learning. In CVPR, pages 2475-
2483, 2015.

[Liu et al., 2016a] Haomiao Liu, Ruiping Wang, Shiguang
Shan, and Xilin Chen. Deep supervised hashing for fast
image retrieval. In CVPR, pages 2064-2072, 2016.

[Liu et al., 2016b] Xinchen Liu, Wu Liu, Tao Mei, and
Huadong Ma. A deep learning-based approach to pro-
gressive vehicle re-identification for urban surveillance. In
ECCV, pages 869-884, 2016.

[Perpinan and Raziperchikolaei, 2015] Miguel A. Carreira
Perpinan and Ramin Raziperchikolaei. Hashing with bi-
nary autoencoders. In CVPR, pages 557-566, 2015.

[Rastegariy et al., 2016] Mohammad Rastegariy, Vicente
Ordonezy, Joseph Redmon, and Ali Farhadi. Xnor-net:
Imagenet classification using binary convolutional neural
networks. In ECCV, pages 525-542, 2016.

[Schrof ef al., 2015] Florian Schrof, Dmitry Kalenichenko,
and James Philbin. Facenet: A unified embedding for
face recognition and clustering. In CVPR, pages 815-823,
2015.

1040

[Shen et al., 2015] Fumin Shen, Chunhua Shen, Wei Liu,
and Heng Tao Shen. Supervised discrete hashing. In
CVPR, pages 37-45, 2015.

[Simonyan and Zisserman, 2015] Karen Simonyan and An-
drew Zisserman. Very deep convolutional networks for
large-scale image recognition. In /CLR, 2015.

[Szegedy et al., 2015] Christian Szegedy, Wei Liu, Yangqing
Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In CVPR, pages 1-9,
2015.

[van de Weijer er al., 2007] Joost van de Weijer, Cordelia
Schmid, Jakob Verbeek, and Diane Larlus. Learning color
names for real-world applications. In CVPR, 2007.

[Venkateswara et al., 2017] Hemanth Venkateswara, Jose
Eusebio, Shayok Chakraborty, and Sethuraman Pan-
chanathan. Deep hashing network for unsupervised do-
main adaptation. In CVPR, pages 5018-5027, 2017.

[Wang et al., 2012] Jun Wang, Sanjiv Kumar, and Shih-Fu
Chang. Semi-supervised hashing for large-scale search.
IEEE TPAMI, 34(12):2393-2406, 2012.

[Weiss er al., 2009] Yair Weiss, Torralba, and Rob Fergus.
Spectral hashing. In NIPS, pages 1753-1760, 2009.

[Yan ez al., 2007] Shuicheng Yan, Dong Xu, Benyu Zhang,
Hong jiang Zhang, Qiang Yang, and Stephen Lin. Graph
embedding and extensions: A general framework for di-
mensionality reduction. IEEE TPAMI, 29(1), 2007.

[Zhao et al., 2013a] Rui Zhao, Wanli Ouyang, and Xiaogang
Wang. Person re-identification by salience matching. In
ICCV, pages 2528-2535, 2013.

[Zhao et al., 2013b] Rui Zhao, Wanli Ouyang, and Xiaogang
Wang. Unsupervised salience learning for person re-
identification. In CVPR, pages 3586-3593, 2013.

[Zhao er al., 2014] Rui Zhao, Wanli Ouyang, and Xiao-
gang Wang. Learning mid-level filters for person re-
identification. In Proc. CVPR, pages 144-151, 2014.

[Zhao et al., 2015] Fang Zhao, Yongzhen Huang, Liang
Wang, and Tieniu Tan. Deep semantic ranking based hash-
ing for multi-label image retrieval. In CVPR, pages 1556—
1564, 2015.

[Zheng et al., 2015] Liang Zheng, Liyue Shen, Lu Tian,
Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable
person re-identification: A benchmark. In ICCV, pages
1116-1124, 2015.

[Zhou et al., 2016] Shuchang Zhou, Yuxin Wu, Zekun Ni,
Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low
bitwidth gradients. In arXiv:1606.06160, 2016.

[Zhu et al., 2016] Han Zhu, Mingsheng Long, Jianmin-
Wang, and Yue Cao. Deep hashing network for efficient
similarity retrieval. In AAAI, pages 2415-2421, 2016.

[Zhu et al., 2017] Chenzhuo Zhu, Song Han, Huizi Mao, and
William J. Dally. Trained ternary quantization. In LCLR,
2017.

