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Instructor (Stephen Boyd):Well today, we’ll finish up Newton’s method, probably 
won’t take up much of the day though. But – then, we’ll move on to our absolute last 
topic, which is Interior Point Methods for Inequality Constraint Problems. So we’re 
studying methods, Newton’s method, for solving the following problem. You want to 
minimize f of x, which is smooth, subject to a x = b. So we’re assuming here that a x = b 
is feasible. I mean, otherwise, the problem is, the whole problem is infeasible; and that 
we have a starting point x zero that satisfies a x zero = b. So we assume we have a 
feasible point.  

And we’re actually gonna – the first method we’re gonna look at, which is the basic 
Newton’s method, is a feasible method. That means that every iterate will be feasible. 
They’ll all satisfy a x = b. The reason for that is simple: The Newton’s step, at a point x is 
the solution – it’s actually the – this is the Newton step. It’s found by solving this set of 
equations here and that’s the Newton’s step; we looked at what it means last time. Now 
the second block equation says a delta x Newton = zero. So it basically says that this 
search direction is in the Null space of a.  

Now what that means is very simple. It says that, if you have a point that satisfies a x = b, 
and you add any multiple, that’s the step-length times an element in the Null space of a, 
obviously you continue to satisfy a x = b. So feasibility is guaranteed, all iterates are 
going to be feasible no matter the step-lengths, and so on. This is the basic Newton 
method. Okay. So Newton’s method looks like this, with equality constraints. I guess 
you’ll be implementing one; some of you may already have. In fact, we know some of 
you already have because you’ve written with questions. So. But all of you will be 
shortly writing up a Newton’s method with equality constraints.  

So it works like this. You’re given a point in the domain of f, of course, with a x = b and 
you compute this Newton’s step, that’s by solving this set of equations. This set of 
equations has got lots of names; it’s – I guess, mostly this KKT system, is what this is 
because that’s – nah, it’s not the KKT system, this thing. I guess this is called the 
linearized KKT system; that’s called the KKT matrix because that’s where it comes up. A 
lot of people would just call it the Newton system. Do you solve? You compute the 
Newton step. If the Newton decrement is small, you quit. Otherwise, you’d do a line 
search by – you just do a standard backtracking line search.  

So you try t = 1, if that gives you enough decrease, fine. Otherwise, you’d choose beta 
times t, beta squared and so on – beta squared times 1, otherwise known as beta squared. 
And then, you finally update. Now this method has the following attributes. The first is, 
of course, it’s always that point x is always feasible because every step, everything 
direction, all of these things are in the Null space of a. And if the original a satisfies a x = 
b, that’s preserved because of this. So it’s a feasible method. And of course, it’s a descent 
method, so f goes down with each step. And that’s ensured by the line search.  



Okay. Now this method is affine invariant, that’s easy to show. If you change 
coordinates, it’s – you generate exactly the same iterate, so you get a communicative 
diagram there. It has all the features you’d expect to see of Newton’s method, which is 
the affine invariants. What’s interesting about is, in fact, this is identical to applying 
unconstrained Newton’s method to an eliminate – after you use elimination of variables, 
linear elimination of variables, so it’s absolutely identical. That means – it means we 
don’t have to have a new convergence theory or anything like that. You don’t have to see 
a new proof because you’ve already seen it.  

It also means that all the practical inform – stuff you’ve seen about Newton’s method, 
which is like the fast convergence, the quadratic, all that sort of stuff, that’s absolutely 
preserved here. Okay. So you might ask if it’s the same, why do you have to go to all the 
trouble of formulating it this way, and not by elimination of variables. And actually, it’s a 
good question and I’ll answer it right now. The reason is this: There’s no reason – there’s 
a lot of people who would think eliminating variables is better, and there’re actually cases 
where it is better. And I’ll tell you, right now, when and why it is not.  

If this matrix here has structure and then you eliminate variables, eliminating variables 
can destroy the structure. So actually, if there’s one thing you should take – a couple of – 
you should take away, like I don’t know – we’ll make a little tri-fold card. That’s too 
much, even. We’ll make a little pocket – a wallet card of the things you should remember 
when you leave this class. But one of them should be it is not always better to solve a 
smaller set of equations. In fact, in many, many cases, it’s far better to solve a much 
larger set of equations, provided A.) Those equations are structured and B.) You 
intelligently exploit the structure.  

Okay. So I mean, these are kind of obvious, but you’d be shocked how many people 
don’t know these things, or know them, but kind of don’t apply them to their everyday 
life, or something like that. Okay. So all right. This is Newton’s method and you’ll be 
implementing one that works and so on and so forth, has all of the attributes you’ve seen, 
Selfkin coordinates all identical. Then you get an absolute complexity-bound on the 
number of steps required, and so on.  

There’s a variation on Newton’s method that’s very interesting. It won’t play a big role 
for us, but it’s actually important to point out. So here it is. There’s a variation on 
Newton’s method called an infeasible Newton method. And in an infeasible Newton 
method, it’s actually very, very interesting how it works. You want to minimize f of f x 
subject to a x = b, something like that. In the feasible Newton method, x – the original x 
is feasible and then every iterate after that is feasible. So you will always satisfy a x = b.  

There’s another version of this, which works like this. You’re actually allowed, for 
intermediate steps, to actually not be feasible. So I can start with any x I like. So here’s 
an example. You’re solving this one, or you will solve shortly, on your homework, this. 
You’ll minimize minus sum log x i – I think. I can’t remember; is this what you’re 
solving? I think it is. Yeah, something like subject a = b. Okay? So actually, finding a – I 
think this is what your solving, right? Yeah, it is.  



So here, in an unfeasible method, you’re allowed the following. By the way, in an 
infeasible method, you cannot be outside the domain of f. So you can have – you must 
have x positive, actually, with a feasible method as well, obviously. You must have x 
positive at each step. However, you are absolutely allowed to have a x = b violated. So in 
other words, you can start with x zero it’s just like 1. Okay? Then you’re nicely in the 
domain here, but for example, unless you’re very lucky, you don’t satisfy a x = b.  

Now if you have a method like that, there’s a couple of things that get trickier. The 
convergence gets a little bit trickier, not much. But the first thing is you cannot have a 
descent method. In other words, in this problem, you cannot expect the objective to go 
down because the objective actually is meaningless until you’re feasible. So some kind of 
combination – what should go down is gonna be some combination of the objective or 
some measure of sub optimality and the residual. By the way, once x is feasible, then it 
makes sense to talk about the objective.  

But until then, it hardly matters. And indeed, it’s clearly not a feasible, sorry, a descent 
method because if you start with an x for which f is very small, smaller than the optimal 
value, it’s gonna have to increase as iterations go. Okay? So watching this algorithm, 
you’re gonna want to look at two things. You’re gonna want to look at things like a x 
minus b. That’s the so-called primal residual, and the other thing you look at is the dual 
residual, which will give you the optimality conditions. So here, the way it works is this.  

In this case, it’s no different, you simply linearize the optimality conditions and you get a 
set of equations that look like this. By the way, it’s identical, if you’re feasible, this is 
identical to the Newton direction for a feasible point because in that case, the primal 
residual is zero. Okay? So whatever this is, this Newton step at infeasible point, it is a 
generalization of the Newton step when you’re feasible. Okay? However, it allows a non-
zero point here and this – so you can actually – let’s see; we can actually work out a 
couple of interesting things.  

We can see the following: If it always the case that x plus delta x Newton is feasible and 
you can see that directly by this bottom row. This bottom row says x delta x = minus a x 
minus b. So in other words, if you multiply – well, like well, multiply it by this, I get a x 
plus a delta x Newton. And from this bottom equation here, a delta x Newton is minus a x 
plus b, and I’m done. Okay? So a x is b. So if you take a full Newton step, you will be 
feasible. Okay? By the way, in this method, once – if you ever take a full Newton step, 
the following iterate will be feasible. Once it’s feasible, the Newton step you’re 
calculating by the infeasible start is identical to the Newton step for the feasible Newton 
method.  

Okay? So all right, that’s actually a good thing to know. I’ll say a bunch more about that. 
So in other words, what happens is – we haven’t even gotten to the infeasible-start 
Newton method – but what’ll happen is, if you ever take a step of size 1, a full-undamped 
step people call that, then the next iterate will be feasible and all future iterates after that 
will be feasible. So you’ll achieve feasibility. Okay. And let’s see what – and people, you 
can interpret this many, many ways.  



You could say, simply, that you’re linearizing the non-linear optimality conditions. You 
can also – maybe that’s the best one; that’s maybe the simplest way to do it. Right. Some 
people would also call this a primal-dual Newton method because you’re updating both – 
you’re updating both the primal variable and this dual variable at the same time. Of 
course, that’s true of Newton’s method, as well. But still, I guess that’s the idea. So this 
infeasible start Newton method looks like this. You start with a point; it has to be in the 
domain of the function, but it does not have to satisfy a x = b. That’s – it does not.  

And you start with some initial Legrange multiplier; actually, it turns out the initial 
Legrange multiplier is totally irrelevant, but that doesn’t matter. You compute the primal 
and dual Newton steps; you compute these. Then, here’s the important part. You cannot 
do a line search on the function value; makes absolutely no sense. In fact, in the feasible 
– infeasible start Newton method, the objective can, and will and, in fact indeed in some 
cases, it must increase. So it can’t go – and the reason is very simple. Well here, I’ll just 
give you a – let’s just do a really, really simple example.  

Here. Here’s your equality constraint. Gives you – that’s the feasible set. And here’s your 
– here are the sub-level sets of your objective. So here, I’ll just draw the optimal point; 
there’s the optimal point. Okay? What if you start right there? Well f is now at its 
unconstrained minimum; that’s the optimal point. So f has to go up, going from here to 
here. So obviously, a descent method is not gonna do the trick, I mean, at all. Right. By 
the way, in a problem like this, if the function were quadratic, what would the Newton 
step be here? The infeasible start Newton method – step, what would it be from here?  

Student:[Inaudible]  

Instructor (Stephen Boyd):What would it be? It would be – the step you’d take would 
be 1, but the Newton step, which is actually the increment, would point exactly to the 
optimal point because what you’re doing is, you’re making a quadratic approximation. 
The function’s quadratic, it’s not an approximation. Then you’re solving the quadratic 
problem by the linear equations, and you will get this. You will take a step of one, and 
you’ll converge to global solution in one step. If it’s non-quadratic, it might not point 
there, it might point you know, over here. By the way, the infeasible start Newton method 
will always point to point on this line because if you make a single step of size 1, you are 
feasible, and therefore, you’re on this line.  

So it might even point – I mean, I don’t know, seems unlikely, but you know, it could 
point over here. I mean, I could make some sick function that would do that. It would 
point over here. But if you made a full step, you are then feasible and all subsequent steps 
will be on this line – will stay in this line. You make a half-step; you might be here, and 
so on. So that’s the picture. You must – the line search is actually done on the norm of 
the residual and let me tell you what that is. The residual is r dual and r primal. It’s like 
this. It’s this norm. Okay?  

So this is; I guess people call it a Marek function or Leethanol function for this process. 
That’s a function, which proves convergence of something by – in this case, it proves that 



r d and r p goes to zero. It certifies r p and r d going to zero because it’s a function that is, 
you know, non-negative, non-negative positive only and zero only if you’re zero, and 
goes down at each step. So this is what goes down. It’s not very different. And then r 
primal and r dual, that’s just these. No, I’m missing, that’s not quite it. Sorry. This – you 
have to have plus – there it is. Sorry, it’s right there.  

That’s – this is r dual and that’s r primal. Okay? So when you run one of these, you’ll 
want to look at r primal and r dual. Here’s what you want to see. You want to see r primal 
go to zero and stay zero. Actually, if it goes to zero and later becomes non-zero, you have 
a bug. And then, r dual will then, very rapidly, go to zero. Okay? It’ll, in fact, 
quadratically in the end-game. So you have the norm. By the way, it’s the norm, it is not 
the norm squared, here. So just to make a point here. Obviously, both of those go down 
but if you worked out the following, if you worked out the d d t of the norm of the 
residual as a function of the step-length, at t = zero and in the Newton direction, you will 
actually get, I believe it’s minus 1 or something like that. Or it’s actually minus the 
residual. There you go, it’s that. I haven’t – this is worked out in the book, but you can 
work this out; it’s this thing. What this says is that, if you take a step of alpha, you ex – 
sorry, if you take a step of t, the predicted decrease is simply this. It just scales the 
residual down; that’s your predicted decrease. You have to degrade that because this is a 
lower bound by convexity; it’s a lower bound. And you scale it back and alpha can be 
any of the constants you like, point 1, point 0 1. Actually, it appears to not have any diff – 
make any difference what value of alpha you use, over a huge range. So this is what goes 
down as a residual. That’s your line search. By the way, sometimes when you get 
feasible, you can switch your line search back to f because now, it coincides precisely 
with the original Newton method and so on.  

Okay. This is what I was trying to – this is – I was trying to recover this, here so that was 
the – this is the descent cond – that’s the directional derivative of this at t = zero plus is 
this thing. Okay. Actually, you don’t have to worry about all these things. This is just sort 
of to get a rough idea of how the method works. It is – this is actually a very, very good 
method choice, in some cases. If you have a point that’s like not quite feasible, or 
something like that, but it’s easy – for example, if you’re doing a so-called warm start. 
Warm start means you’ve solved a problem just like the last one, except now it changes a 
little bit. So you’re doing – doesn’t really matter what you’re doing – but you just solved 
a problem just like the last one. The data changes a little bit; one more piece of 
information comes up in – comes in, in an estimation problem, something like that. One 
more data point becomes available; one more time-step has evolved or something like 
that. Then what you do is; you can use this with warm start. And in fact, if you’re lucky, 
it would be something like, you know, just two Newton steps, or one would get you right 
back where you want, incorporating the new data. So if you want to do an online 
estimation, update stuff as new information becomes available, for example in maximum 
likelihood, this would work very, very well. Okay. Let’s talk about solving KKT systems. 
This is very important because well, I guess a lot of people don’t seem to know it. I guess 
people who do these things know it, but then – I don’t; they don’t get around much or 
something like that. So to solve a KKT system, and that’s for infeasible start Newton 
method or for standard Newton method, with equality constraints, you have to solve a 



system of equations that looks like that. And that’s called a KKT system just because this 
thing comes up. By the way, it doesn’t only come up in optimization; it comes up in 
mechanics; it comes up in – comes up in tons of places. I’ve seen it – I guess I opened the 
first book of some book on simulating flows in porous media and, like on Page two, I saw 
this. So I mean, they didn’t call it a; they didn’t call it h; but it was, basically, this system. 
So this system of equations is probably worth knowing something about. So here’s how 
you could solve it. I mean, the first thing is just treat the whole thing as dense; it’s m plus 
n. Right? Because this is, that’s m by n and that’s m high. And so in the worst case, you 
just commit to this and solve that, just using absolutely standard methods. Which is to 
say, in other words, this is the h – let’s see if I can get it right – h, you know a prime a 
and then zeroes of the right size backslash v w. So that’s you’re – well, that was all 
wrong. Minus and this should be g h. Okay? So this is – that’s your just default basic 
method. This will simply treat this matrix as dense. It is true there’s a block of things here 
that are zeroes and this is fine. It’ll do whatever pivoting it needs to make this stable and 
it’ll – it may even do the right thing. One thing it cannot possibly do is, it can’t do a 
Cholesky factorization on this This matrix is symmetric but it is, for sure, not positive 
definite because the zero’s on the diagonal here. And in fact, your homework which we – 
I forgot to announce that. We’ve backed off and said that you don’t have to do prob – is it 
10.1b, I think it is? Yeah, so. Some people have already done it and we heard from them, 
last night. Anyway. Were you one of them?  

Student:[Inaudible]  

Instructor (Stephen Boyd):No, okay. So all right. So it’s certainly not positive that you 
can’t use a Cholesky factorization because this has negative eigen values. Okay so if you 
– one way to do this, probably the simplest, is just an LDL trans – I mean sort of the 
correct method, if you’re just gonna solve the equations, is LDL transpose factorization. 
That’s a generic factorization for a matrix which is symmetric, but not positive definite. If 
it was positive definite, of course you’d use a Cholesky factorization and you’d use a 
LDL transpose. Now in fact, there are – there’s a whole sub-field now on KKT solvers. 
And you can go to Google and type “KKT solver,” you’ll get maybe 30 papers on it, and 
codes if you want.  

So this comes up enough that it’s studied, carefully. But if you wanted to use a generic 
methods, you’d use something like an LDL transpose factorization. By the way, this 
might not be a bad idea, if this is sparse like crazy, here. So if your a is huge and sparse, 
if h is sparse – and what does h sparse mean, in terms – about f? I mean, actually it’s not 
all uncommon that h is diagonal in these systems. In fact, I guess that’s your homework. 
In your homework, h will be diagonal. Okay? So then this thing has just got tons of 
sparsity; it’s a screa – I mean structure; it’s just screaming at you. If you have a di – you 
know, ignoring it, that’s a little block of zeroes. You’d ignore that; that’s maybe okay.  

But a giant, like diagonal matrix just sitting, there and if you ignore that structure, that’s 
kind of irresponsible. That’s over the line, I think. Anyway, LDL transpose factorization 
will probably work quite reliably here and would take you up to some very, very, very 
large systems at this work. You can also do it by elimination and the elimination is 



interesting. It works –it’s – well you eliminate the first block and you get this. So the first 
thing you have to solve is this equation. This is the – one of these you’ll see is the Schur 
complement is going to come up, somewhere. Well, I guess this is the Schur – well, one 
of these is the Schur. That’s the Schur complement.  

This is zero minus – it’s zero minus this times the inverse of that times that. So that is the 
Schur complement. Actually, it’s the negative Schur complement because there’s a minus 
sign there. Here’s what’s interesting if you do this method. This is interesting in cases 
where h is easily inverted. If h is dense, and there’s 1,000 variables and 100 inequalities, 
this is actually not at all a good method to use. You might even just use LDL transpose, 
here. Well, I don’t know. This would be equivalent to it. However, if h is, for example, 
diagonal, meaning that f is separable, then this is – h inverse is a non-issue, if h is banded.  

If h is sparse enough, h inverse is something very, very easily computed. Actually, I 
should say correctly. Although, that’s what people would say; they don’t mean it. You 
don’t actually compute h inverse, obviously. What you’d do is you’d have a Cholesky 
factor of h sparse Cholesky factor, hopefully. And you would back substitute the columns 
of a transpose. Okay, but you know that, so I won’t say that. So people would still say 
form this, when you’re not really – you do form this matrix. What you don’t form is you 
don’t form that, for sure.  

Okay. I mean, unless h is diagonal, then you would form it. But if h is banded, you would 
not because h inverse is full. Okay. So you’d form this. The interesting thing is that, the – 
when you solve the reduce system, you get a negative definite system of equations. I 
flipped the sign on it because if it’s negative definite, it means you flip the sign, it’s 
positive definite. And this is the Schur complement – well, assuming h is invertible, then 
this can be solved by Cholesky. So in fact, if you solve this by elimination method, you 
will have two calls to a Cholesky factorizer.  

The first one is the h, itself. By the way, that might not even be a real call, if h is diagonal 
then there’s no call because diagonal is trivial. But in other cases, there’d be a call that 
you’d do a Cholesky on h. You’d form this matrix; that’s the Schur complement and 
then, you’d actually solve this by some kind of Cholesky factorization. So that’s the – so 
I guess people – so that’s another way. So people would call that, maybe, the elimination 
in Cholesky, would call – but you’re gonna make – you may make – you may be making 
up to two calls to Cholesky factorization.  

Okay. Now, in some cases, h is singular. But in this case, you can do things like this: You 
can add any multiple of a transpose a with a q in the middle like this. Solve this equation, 
and it’s the same. So sometimes, it’d be something like h would be all positive and, like, 
one or some little block of zeroes, it doesn’t matter. But this can be done. That’s all 
subsumed in solving this set of equations intelligently. So let’s look at an example. It 
happens to be exactly the example that you’re gonna solve on your homework. Of course, 
that does imply that all of the source code for this, you can find because it’s all posted. 
So. I think every example in the book, all the source code is there for you. If you want to 
see how we did it, you can but we’d encourage you to try to do it yourself. But there’s no 



reason for you to bang your head on the wall, so you’re welcome, at some point, to look 
at ours. See if you like ours. Actually, you can find it anywhere; it’s tons of places. Okay. 
So let’s look at – so here, you want to minimize minus the sum log x i. That’s the so-
called log barrier for x strictly positive subject to a x = b. We have a point x, which 
satisfies a x = b and x is positive. So we start with that, if we do the prime, the whatever 
you call it, the standard Newton method. Now, the dual problem for this is this. It’s 
maximize minus b transpose new plus sum log a transpose new plus n. So. The n, of 
course, doesn’t matter but if you want the optimal value of this equaling the optimal 
value of that, then it matters. And in this case, the function in the Legrangean, which 
involves log – it’s a x plus – it’s actually the sum of the logs plus nu transpose a x minus 
b. That Legrangean is strictly convex in the x i and that means you can, if you solve the 
dual, you can recover the primal optimum from, by minimizing the Legrangean. Okay? 
So that’s how that works here. So I this case, you can solve either one – either one you 
can reconstruct the solution, in fact basically, if you solve the primal problem, you’re 
gonna solve the dual one, whether you like it or not and vice-versa. By the way, this is 
quite interesting, this topic because – in fact, I even for a long time, was sort of ignorant 
about this. A lot of times, people get all excited or bent out of shape over, like the dual or 
something like that, because what will happen is this. They’ll have a problem. I don’t 
know; they’ll have this problem here. X i will have size, you know, I don’t know, 10, 000 
– x will have the size 10,000 and there’ll be 100 equality constraints. And they’ll say, 
“Wow, you could solve a problem with 10,000 variables, or look at that, you could solve 
this dual and it only has 100 variables. Boy, I would really rather, like, I’d really rather to 
solve a problem with 100 variables, than 10,000.” Okay? And that would be true, if you 
don’t know what you’re doing, speaking with respect to numerical linear algebra. It’s 
absolutely true, for sure. In that case, if everything cost you n cube or n is the size of the 
system, there’s no doubt you want to be solving 100 variable systems, not 10,000. Okay? 
What’s actually gonna work out here is, it turns out is, it’s actually absolutely identical. 
Solving the primal, dual, any of these, all of these methods, the order is the same. It’s 
only the same if you know what you’re doing with respect to linear algebra. If you don’t, 
if you don’t exploit sparsity, then you will find gross differences. By the way, if you’re in 
that – if you make that mistake, and I’ve been there myself, so I speak as a reformed 
someone who once didn’t know the subtleties. You can make stunning claims. You can 
say things like, “Wow, I found the best way to solve this problem. It’s amazing. You 
solved the dual instead. Isn’t that genius, isn’t it?” Right? Now by the way, there are 
cases where there might be some convenience to solving the dual, like it might – you 
might end up with a distributed algorithm. But in terms of numerical linear algebra, 
you’re – it’s just wrong. Solving the dual is the same as the primal, if you know what 
you’re doing. Okay. So. These are the two problems. You’ll solve this one. Well, you can 
solve whichever one you like. So here’s some examples. The first is – and they have 
different initialization requirements, and these are quite interesting. And in fact, that is 
actually the only thing that should drive the choice of method, assuming you’re gonna do 
everything right. Initialization. So if you’re gonna do Newton method with equality 
constraints, that requires a positive x that satisfies a x = b. Now by the way, this is 
checking whether a linear program has a strict – a set of linear – well, a certain, a 
standard form of linear program has a strictly feasible starting point. That can be hard as 
– that can be hard. There’s no reason to believe that’s simple. If I just walk up to you and 



say, “Here’s a; here’s b; please find me a positive x that satisfies x = " That’s as hard as a 
linear program, basically. Because I’m basically saying, “Find me – check feasibility of 
the standard form linear program.” So on the other hand, it depends on what the problem 
is, right? If this is some resource allocation problem, or something like that, it might be 
completely easy to say what – to get a point like that. For example, if it’s a portfolio 
allocation problem, I mean, it might be that, here’s an initial x zero. Put – if you have ten 
assets, $1.00 to invest, ten cents on every asset. It might be a stupid portfolio allocation 
but one thing is certain; it’s feasible. I’m just saying that, you know, depends on the 
situation there. It can easily be – in some cases, it’s easy to get such an x zero and others 
to stop. Okay. So if you do this, here’s what happens. This is a plot of f minus p star so 
it’s, in fact, this is the sub-optimality. And this scalar, you can see is extremely broad; it 
goes from like, whatever, 300 down to 10 to the minus 10. And this is the thing you want 
to look for. If you don’t see this – if you don’t see that – if you don’t see these plots 
rolling over, then you haven’t achieved quadratic convergence. So by the way, sometimes 
well, you can get things where it’s much more subtle. I mean these, it’s just sort of very 
much in your face, here. These are the right numbers, you know 10, 15, 20 steps. These 
are, you know, big problems and let me say a little bit about this. Sometimes, it’s much 
more subtle and it just curves a little bit. And if you’re banging your head, that’s enough. 
But if it kinda looks straight, then you really can hardly claim that you’ve reached – that 
you’re achieving quadratic convergence. It probably means something is wrong. So by 
the way, out here, what would the step-length be? What would you expect the step-length 
to be out here?  

Student:[Inaudible]  

Instructor (Stephen Boyd):1. Right. So real quadratic phase is characterized by unit 
steps and quadratic convergence. That would be out here. What would you expect the 
step-lengths to be here?  

Student:[Inaudible]  

Instructor (Stephen Boyd):What? Well they might – they certainly could be less than 1, 
but they can also be 1. You don’t – I mean, you don’t – the answer is you don’t know. 
But you wouldn’t be surprised if you started some, seeing if there were lots of steps out 
here where you were less than 1. Okay? So this is just four different – four different, 
maybe, starting points, here. It’s the four different trajectories. Okay that’s the first. This 
is the method you’ll implement. Now you can also – you can also solve the dual here, but 
totally different size. The dual has got far fewer variables, right? Well, not far fewer; it’s 
got m and I’m assuming sort of here, well m has to be less than n, but it’s got fewer 
variables.  

So it’s got m variables. Okay. Oh by the way, here’s an extreme case. Well, let’s go all 
the way to the caricature. Ready? Here’s the extreme case. Find the analytic center with 
one inequality – one equality. So that’s just a transpose x = b x positive. Okay? Here, I 
guess there’s a couple of things you could say. Let’s see how to solve it. The dual has 
how many variables?  



Student:[Inaudible]  

Instructor (Stephen Boyd):One. How do you solve a one-dimensional convex 
optimization problem?  

Student:[Inaudible]  

Instructor (Stephen Boyd):How?  

Student:[Inaudible]  

Instructor (Stephen Boyd):No, you could a line – I mean you could do it by section, if 
you like. I mean, you could do anything you like at that point. Okay. And you’d think, 
“Oh, wait a minute, wait. I’ve got a 1,0000,000 variable problem with 1.” So this might 
be an image; that’s an equality constraint. By the way, it’s a stupid problem, but anyway, 
you have an image with an equality constraint and you want to calculate the analytic 
center, which would be some – and you could wrap some big story around it, like, “It’s 
the maximum entropy image.” or something with this – just something, who knows, 
satisfying one equality constraint.  

Now, you could do it by bisection, here. Your dual has one variable and you’d say, 
“That’s ridiculous. How could the primal, that has 1,000,000 variables – how could that 
be as easy to solve as the dual?” It seems suspicious, doesn’t it? So we’ll get to it. 
Actually, it’s pretty straightforward, how that works out. The KKT system would then 
look like this; the Newton system would look like this, where that’s diagonal. Right? So 
it would look exactly like that. Indeed, it is 1,000,000 by 1,000,000. I would not 
recommend storing it as a full matrix, just so you know.  

But if you stored this exactly in this form, you should look at that and say, “Well, that 
might be 1,000,000 equations by – with 1,000,000 variables.” How fast can you solve 
this, roughly?  

Student:[Inaudible]  

Instructor (Stephen Boyd):It’s in m steps, okay? So actually, what are we talking about, 
for 1,000,000?  

Student:[Inaudible]  

Instructor (Stephen Boyd):Milliseconds, at most. Okay? So anyway, so these are very 
important to know, these things, and to recognize them. I guess, there’s a lot of people 
who know you could solve that fast. Although, a lot of them haven’t totally internalized 
it. But what they haven’t also done, they haven’t, like, propagated this knowledge into the 
rest of their life. So they’re doing signal processing or statistics, or whatever, and they 
haven’t put it all together. They don’t know what a statistics problem looks like, that 
happens to be one that you can solve unbelievably efficiently, like that.  



So, okay. All right, let’s look over here. So this is a Newton applied to the dual. By the 
way, this is interesting, totally different initialization requirement. But you need to – here, 
is you need to find a vector nu for which a transpose nu is a positive vector because that’s 
how you need to initialize this problem. It’s completely unconstrained. Okay? And you’re 
gonna – so you need this, totally different problem, initialization requirement. And this 
one has, you know, nine steps to converge, and again, you see this thing roll over. That’s 
the good – that gives you that good Newton feeling.  

Okay, if you apply infeasible start Newton method to this problem – so I initialize it with, 
let’s say x = just all ones. Okay? Just all – I just plug in all ones. You’re very happily in 
the domain, here but you don’t satisfy a x = b. And that takes – here are the four things, 
here. Oh, what I haven’t marked here is where primal feasibility is achieved. And so let’s 
make some guesses. If I told you that primal feasibility was first achieved on this run 
here, what would you tell me?  

Student:[Inaudible]  

Instructor (Stephen Boyd):You believe that? When do you think it was achieved? I’ll 
go back; you say when. Probably somewhere around here. Why would I say that? Well, 
I’d say it for this reason. Let’s – if you put everything together, it works like this. If you 
take a step of 1, you will be primal feasible at the next step and you will remain so. So 
you’ll satisfy a x = b, if you take a step of 1. We associate quadratic convergence with 
two phenomena. No.1) Quadratic convergence. That’s this rolling over of this – that’s 
this thing. That’s the famous doubling the number of digits of accuracy at each step. 
That’s this roll-over. And we associate it with a step of 1. So when you sort of start 
seeing this roll-over, you have taken a step – you’re probably taking steps of 1, in fact, 
almost certainly. That means you’re feasible. So although I haven’t marked it here, a 
primal feasibility is probably achieved somewhere in here. You know, it could be up 
here, I don’t know. And same for this one. Primal feasibility, maybe, is achieved like 
here, I’m guessing. Maybe here, I don’t really know. Maybe I’ll go back and replot these 
with filled and open circles, to indicate when primal feasibility is achieved. By the way, 
number that the – note the number of steps is not, you know, it’s changing within a factor 
of 2. You know, it’s 9 steps vs. 15 and 20 and there’s one that’s 21 steps. This is not 
worth getting all bent out of shape about; it’s not worth anything. Okay. Now, let’s look 
at what’s required in each of – to solve for the step in each method. If you use the first 
method, this is the one – by the way, this is your homework problem. You have to solve 
this system here. Now, in this case, you end up solving a times the diagonal matrix times 
a transpose w = b. That’s the only step here that costs you anything. That’s diagonal, 
here. So this is – you have to form this matrix and then solve this system. Okay? Now, in 
the second case, for the dual problem, the dual problem is completely unconstrained. 
Here it is. It’s this right – you just simply maximize this function. You calculate the 
gradient and the hessian; you calculate the hessian inverse times the gradient, end of 
story. Now the hessian of this, I think you know actually from the last homework. The 
right way to do it is, really under no circumstances, should you sit down and start 
calculating partial squared this partial nu i partial nu j. That works, in theory; it’s a huge 
pain. Instead, you use a composition rule. The hessian of this is the hessian of a function 



which is a sum of logs that’s gonna be diagonal hessian. Then you multiply on the left 
and right by a and a transpose, and I forget which one goes where. But one of them goes 
on one side and the other on the other. That’s the chain rule for the hessian. Well, there’s 
the answer; you do this. Now, so to compute Newton method for the dual, you get this. 
Now, what’s kind of cool about this is, it’s actually quite interesting. To solve this primal 
1 – sorry, this primal Newton, and Newton diagonal and see I have to be very careful. 
This is the – if you’re applying Newton to the dual, here, this is applying Newton to the 
primal. You don’t solve the exact same set of equations, but the structure of the equations 
is identical. They all have the – they both have the form. They’re different matrices, but 
they have the form a diagonal a transpose. Down here, a diagonal a transpose, different 
diagonal. Everybody see this? So you solve the same thing. In this extreme case, that I 
talked about, a is a row vector that’s, you know, 1 by 1,000,000, then when you solve this 
system, this is basically a number and – but then it’s here, too. So it’s identical. Okay. If 
you use block elimination, to solve the KKT system here, that’s to solve the infeasible 
start Newton method, it’s the same story. You solve the same thing here, but the right-
hand side is different, but the matrix is the same and that’s what determines how fast it is. 
So in each case, you have to solve a d a transpose w = h, with a diagonal positive 
diagonal. So that’s actually all that’s gonna happen in all of these cases. So if a is sparse, 
then it basically says the computational complexity of the three methods is absolutely 
identical, per Newton step. If you add to that, the fact that the Newton method is gonna 
take somewhere between five and 20 steps or something like that, and you call that just a 
constant, then it means that all the methods are just the same. There’s no – and in 
particular, it means there’s no dramatic – there’s no dramatic improvement you’re gonna 
make here, just none. So, okay. Everybody get all this? So by the way, if you don’t know 
how to solve these linear equations, it’s everything’s different. Right? The three methods 
are dramatically different but all you’re doing is displaying your ignorance of how to 
solve linear equations.  

Student:[Inaudible] apart from history of solving [inaudible] problem, you don’t have 
any constant. Is it a benefit because it’s easier to find the starting point?  

Instructor (Stephen Boyd):No, no, no. Not at all, I mean, you could use the infeasible 
start Newton method. [Crosstalk]  

Instructor (Stephen Boyd):You don’t have a feasible point.  

Student:Because you could have a feasible start point then you’d have more [inaudible] 
conditions.  

Instructor (Stephen Boyd):No, I’ve been – I know what you’re saying. I would like – I 
mean, I also had this urge and, in the past, did not know these things. Yeah, you want to 
say one of these is – you would like to say one of these methods is better, right? Well, 
we’ve just discussed the computational complexity issue. If you know – if you know 
what your doing, that’s a big “if,” it’s identical. So the cost per Newton step is the same 
in all cases, not because you’re solving the same set of equations. Because you’re solving 



– you’re not solving the same set of equations. What you’re doing is, you’re solving a set 
of equations with exactly the same structure. That’s why it’s comparable. Okay?  

Then, you could ask, “Does one take more in steps than another?” Well, I don’t know, 
you know. No not really, I mean within a factor of 2, they’re all the same. Okay? So you 
know, if you – here, in this example, the dual method looks, you know solving Newton to 
the dual looks better. I can make another example where it’s worse. Okay? Okay. So 
then, everything comes down to initialization and, there, I can think of situations, 
practical situations, where all three methods are the best one. So or there’s just no 
difference between them.  

So I hate to say it, but I think they all have, at the moment, they all have equal status. The 
main thing is the initialization, as to which one is better or whatever, depends on the 
situation. If you have an obvious dual feasible point, fine. If you have an – if there’s an 
obvious primal feasible starting point, fine. If you have a guess of a point, which is nearly 
feasible, but not quite, you might want to use infeasible start Newton method and so on. 
So okay.  

So now, we’ll look at some other examples. They’re fun and they all have the same 
theme, which is, you know, you look at a Newton method and then we’ll talk about 
forming it. And, but what you’re really doing is, you’re looking for structure to solve 
here. So let’s look at network flow optimization. So network flow optimization is, this is 
a single commodity flow; it’s a beautiful problem. You should all know about it. So you 
have a network, a directed graph like this; it doesn’t really matter, I mean. And you have 
flow on the edges. And a flow – these arrows actually only tell you the orientation of the 
flow.  

So it’s like an electri – in a circuit analysis, you make an arrow here and that tells you 
that, if current flows that way, you will regard it as positive. If current flows this way, 
you’ll regard it as negative. So that’s the – now, it could be that, in fact, things can only 
flow this way. There are many cases where that’s the case. But generally, when I mark 
these, this is what you have. So you have – and you have things like you – this could be a 
single commodity network or something like commodity flow. So these – then you have 
external inputs to the network. Oh, you have one very important requirement. The 
requirement is that in elect – in circuit theory, you call it KCL, which is Kirkoff Current 
Law and it basically says that, at each point, flow is conserved. The sum of the flows at 
any node, is zero. Okay? So that’s what it says. And sum of the flows means, if things – it 
says, some people would say the sum of the in-flow is equal to the sum of the out-flow. 
Another – but this is the same and you get this in lots of things. You get in physics; you 
get it all over the place, in anything. It’s mass conservation, for example, or it’s just a 
conserva – it just basically says the flow is conserved at nodes. And if it’s a differential 
equation, I guess you’d say it’s a divergence free or something like that, whatever it is 
there. Okay. So and you could think of this as any way you like. These could be flows of 
packets on a network, and the fact that it’s conserved says the buffer is bounded or, you 
know, there’s either no buffer or the buffer’s bounded and it’s not growing or something 
like that. And it’s in steady state. It could be actual current; these could be amperes and it 



says you’re in steady state, or something like that. Okay. Okay, so this is – that’s flow 
conservation. You have some external sources and syncs. So it’s generally, if you’re 
pumping stuff in, you call it a source. If you’re pulling stuff off, it’s called a sinc. 
Actually, I’m just drawing these as if all the variables were positive here, for example. 
But of course, this could be a source if this flow is negative. Now, in this case, you have 
to have the sum of the source as zero. That’s very easy to work out. Otherwise, it doesn’t 
make any sense. So this is – that’s a network. Now, there’ll be lots if you fix the external 
flows. So if this is a distribution network or a current network, or something like that – 
we’ll make it a product distribution network. If this one is pumping in something, this is 
pumping in something; this is pumping in something, then what you’re pulling off , here 
at the sinc has to be equal to the sum of these. But there are lots of flows in here that 
satisfy the flow conservation equations. So you can actually route the flow any way 
you’d like. Routing the flow, basically means, what comes in here, some you ship there; 
some you ship there; some you ship there and so on. Okay? So that’s the picture. 
Anyway, this is just written as a x = b. B is the source vector here, at each node and a is 
the incidence matrix. So that’s the matrix – you’ve seen this, should’ve seen it, that looks 
like this, where you have nodes and edges like that. And you have a plus 1 or a minus 1 
to indicate where that edge goes, the from and to node. So that’s just a x = b. Now, 
among all the possible feasible flows – by the way, there’s all sorts of interesting things 
you can say . The Null space of a, for example, is called the circulation because, if I add 
something to Null space here – so the circulation might be something like that. Notice 
that it does not affect the external flow. It adds to this flow, adds to this one, subtracts 
from this one and subtracts from that one. It subtracts because I’m going – my circulation 
is going against these things. So that’s an element of the Null space. You might ask why 
on earth would you want to have anything to do with one of these? Well, we’ll see why. 
What you want to do is, you have a cost now, on every edge, and you want to satisfy the 
flow equations, and you want to minimize the total cost. So by the way, let me just 
quickly ask something. Right here, there’s something that should pop out if you’re fully 
trained in all the neural pathways or hooked up correctly. Created. You should be able to 
look at that and without even thinking, 50 milliseconds later, a picture of the KKT 
structure should show up in your head. And what is it?  

Student:[Inaudible]  

Instructor (Stephen Boyd):Okay. When you see that sum of scalar functions, what is the 
hessian?  

Student:[Inaudible]  

Instructor (Stephen Boyd):Thank you. So you should just look at that and see in your 
head, this, without anybody saying anything else. That’s what you should see, when you 
see this. Okay? So I mean, it should be just an autonomous response. Okay. All right. So 
anyway, we’ll go through this; this is the reduced incidence matrix. And let’s look at the 
KKT system for this. The KKT system looks like that. So h is diagonal. That’s the 
important part, is that of course, you should always see this when you see an equality 
constraint minimization problem, but in this case, that’s very important; that’s diagonal.  



You can solve this via elimination. You have a h inverse a transpose a transpose w = this 
thing. Now, of course, when you actually go to write the code, you have to get all the 
right-hand sides correct, and all that stuff or it’s not going to work at all. But in your first 
pass over a problem, you want to think about the structure. And so basically, in this 
problem, the inverse shouldn’t bother you at all because that’s a diagonal matrix. So it’s – 
although normally an inverse would set up a green – a red flag, which is, you need to 
look at that. Is that hard, easy to do and so on? In this case, it just goes away. It just – 
yeah, of course, you have to actually carry it out correctly in your code. But non-issue.  

All right. So basically, what it says is, if you want to solve a network flow problem, each 
step of Newton’s method is gonna require you to solve a systems of form a diagonal a 
transpose. By the way, that’s a theme; you might have noticed it. You will hear about a 
diagonal a transpose, actually just everywhere. You might ask like, you know, what do 
you do when, you know, if you wanted to ask, “What does spice do?” You know what 
spice is, right? Circuit simulator program? You might ask, “What does spice do?” Would 
you like to know what it does if you profile it? It’s solving systems that look like a d a 
transpose. That’s the only thing it does.  

Everything. And I’m talking about for all calculations it does. Everything, you know, 
[inaudible] as if it – actually, how many people know what I’m talking about? Anyway, 
or know about spice? Okay. So you get the same, you know, if you do a thermal 
simulation, right, you’re solving a d a transpose, with a finite element method. If you 
solve a Poisson equation, what do you think you’re doing? You’re solving a systems 
perform a d a transpose. So it’s just, you know, there’s no reason – I mean, you might as 
well accept the fact that it’s everywhere. And you will – you have seen it; you will see it; 
you will use it. You’ll use it, many times when you don’t even know you’re using it.  

Okay. So I’ll have to think about where you’re using it in the machine learning, or 
something like that, but I’m sure you are somewhere. I just don’t know where exactly, 
right now but I’ll think of it and tell you. I’m sure there’s somewhere where you do this, 
some base network calculation or something. But anyway. Okay. So you have to solve 
that. By the way, the sparsity pattern of a diagonal a transpose is extremely easy to work 
out when a has a graph incidence matrix. It’s very, very easy. It turns out that a diagonal 
a transpose i j is not zero, if and only if – that’s a nodes by nodes matrix that you’re 
solving  

And that’s true, if and only – that’s non-zero if and only if it finds j r connected by an arc. 
So that even tells you, now, about the sparsity pattern you’re gonna see. In fact, I can ask 
you some questions now and we’ll see how well you’ve entered – this isn’t – I just want 
you to guess or whatever and you tell me. Suppose I have a network. I want to do 
network flow optimization. On my network, the fan-out or the, sorry, the degree of each 
node on the network is like small, like 3 or 5. But it’s got 10,000 nodes. Do you think we 
can solve – we can do optimal flow fast on it? Yeah, probably because if you form a 
transpose a, it basically says – it tells you something about the number of row – non 
zeroes per row in this thing, right? And the answer is, you know, each row’s got only – 
you’re only – if each node is only connected to, like, three others, that’s the number of 



non-zeroes per row or column. Okay? So that’s a, you know, how fast can you do it? I 
don’t know; it depends on the gods of heuristics sparsity ordering methods and whether 
they’re smiling on you that day or not. But the point is, it’s likely you can solve that 
problem very, very fast. Now, let me ask you this. Let’s do a – let’s have a node, a single 
node is connected to a huge number of others. What does that do in sparsity pattern in a h 
inverse a transpose? Everybody see what I’m saying? So in fact, let me draw my 
network. I have a network here, which is kind of sparse; everybody is connected to just a 
few others, you know. I don’t know, it doesn’t really matter. Okay? But I’ve got some 
super node here and it’s actually connected to a whole bunch of them. What does it do?  

Student:[Inaudible] it to the bottom, won’t it just preserve your arrow structure?  

Instructor (Stephen Boyd):Okay, as you permute it. Okay, very good. So your proposal 
is that this should be ordered last. Okay? And what is the sparsity pattern on a h inverse a 
transpose, if you order this last? In this case, what’s the sparsity pattern on this thing? It’s 
arrow – yeah, well no, it’s like sparse arrow or something like that. It’s – you get a 
sprinkling of entries from these guys. But from this one guy attached to all of them, that 
is gonna give you a dense row and column in this matrix. Okay? Now by the way, you 
could order it to be the end, but in fact, any decent heuristic for ordering is gonna put that 
guy at the end, anyway.  

So but you’ll know it’s gonna work. In fact, you’ll know that if you had a network with 
10,000 nodes, 10,000 nodes and the degree of most edges is 3, but 100 of them are 
connected to giant piles of nodes – we’ll call those “super nodes” or whatever. It doesn’t 
matter, whatever you want to call them, right? Because you’re maybe optimizing the flow 
on a peer to peer network or something like that – you would know what the structure is. 
The structure will be dense, with 100 much denser rows and columns and you’ll know, 
actually, that can be solved very, very well. Maybe you’ll know, but anyway. Okay. So.  

I didn’t expect everyone to follow all of this, but this is – actually, this is the kind of 
thinking you want, I think you want to do for this stuff. You want to just be on your toes, 
connecting sparsity and structure to the actual problem at hand. And the problem at hand, 
it’ll be things like, you know, bottlenecks – you know, bottlenecks, super nodes, that’s 
for this one. But for every problem, there’s gonna be something like that.  

Okay, we’ll look at one more. It’s an even more advanced one, but it comes up in a lot of 
things. You want to calculate the analytic center of a matrix inequality. Let me, just first, 
motivate it a little bit. This comes up all the time, but I can tell you what this is. This is 
the following problem. I have a co-variance matrix and I tell you some things about – 
well, let’s see. I have a random variable z, let’s say, and let’s make it galcion or 
something like that; let’s just say it’s galcion. Okay? So it’s n zero x – actually I’m gonna 
call this co-variance matrix x. Okay?  

And here’s what I’m gonna tell you: I’m gonna tell you some variances of linear 
functionals of z. So I will tell you, for example I’ve got a vector c, c i and c i transpose z. 
I’ll tell you the variance of that. Now this is nothing but c i transpose x c i. Everyone 



agree with that? It’s nothing but that. Therefore, that’s the same as the trace of x c i c i 
transpose. The linear – the trick – the variance of this linear combination is a linear 
functional of x, a co-variance matrix. Everybody agree? Okay.  

And now, so I’ll give you an example. I have a random variable and I say, “Well, the first 
component has variance 12; the second has variance 3; the fourth has this variance; the 
fifth has that. Oh and by the way, the following, you know, the sum – this linear 
combination of them has this variance.” You can even do things like give the off-
diagonal elements. I can say – I can say, actually element 3 and 5 are correlated 37 
percent; element 6 and 12 are correlated minus 19 percent. So I just give you a bunch of 
partial information about a co-variance matrix. And then I say, “Please compute for me 
the maximum entropy distribution that satisfies galcion; that satisfies those known 
constraints on the distribution.” Everybody understand that? Well, that would be this 
problem. Maximize the determinant, subject to some equality constraints. Okay. I 
mention this just to say this problem comes up. Okay? This comes up. Okay, so now, 
let’s talk about, let’s solve this problem. Well, first of all, you look at it naively. You 
would say how many variables are there? Well, let’s see, x is a matrix variable; it’s 
square; it’s n by n. And so, therefore, the number of entries it has is this in it. Okay? 
Now, if there’s p of these equality constraints, it basically says that if I form the KKT 
conditions or whatever, I’m gonna have a matrix that’s this big. Okay? So and therefore, 
our baseline cost is that. Okay? Now that grows like n q, n to the 6th – I’m sorry that’s n 
to the 6th. Everyone agree? Because this is n squared inside a cube. This would be – this 
would start getting tough. You can’t do a matrix bigger than 100 by 100 with this 
scheme. Not to mention, by the way, this scheme would be an enormous pain in the ass to 
actually write up. Because, here, you’d have to find some way that, to encode, you know, 
this thing, the vec operation there. Okay? Everybody see what I’m saying? You could – I 
could assign this problem. You could write a Newton method on it, just like that, 
theoretically. It’s be a pain in the ass, so we wouldn’t do it, but you could – this is like, no 
problem. However, the complexity is gonna be n to the 6th, which is not a great 
complexity. Okay? So let’s actually see how you do this the intelligent way, you know, 
exploiting all the structure in here. By the way, the structure, at this time, is not going to 
be sparsity. So this is just an example. I mean, I wouldn’t expect you to know this. A lot 
of people don’t know it, actually to this date, don’t know it. But we’ll go through it. 
We’ll do a little bit of it just to give you the flavor of it. The Newton step is solving a set 
of – well, look, the Newton step solves a set of n, basically, n squared over 2 plus p 
equations in n squared over 2 plus p unknowns. The unknowns are delta X Newton and 
the dual variables nu, of which there are p of them. So that’s what you end up – you have 
to solve a set of equations like that. It’s a dense set of equations, by the way, completely 
dense in general. Right? So there’s no sparsity trick is gonna help here. Those equations, 
however, look like this. They look like that. So that’s a matrix equation, here. So it’s x 
inverse delta x x inverse. This is, in fact, something like the hessian, or it’s complicated 
but it looks like that. And there’s a very simple way to derive this, actually. What you do 
is, you just write out the optimality conditions, which is this, here. Then you linearize this 
at the current x and the current nu and write out that equation. If you do that, you’ll get 
this. This – you’d get the same thing if you looked up and figured it out what the hessian 
of log dead is, and you’d, I don’t know, get a big headache and stuff like that. But then, 



ultimately, you’d find out the Newton step can be expressed as a set of matrix equations 
that looks like that. So that’s how – and you have to solve for this and that. Now, this 
doesn’t look good. However, there’s a block in this system that we can solve fast, and I’ll 
show you what it is. If I fix w, can you now solve fast for delta x, here, if I fix this part? 
If I fix this part, then I’m just solving x inverse delta x x inverse is equal to a fixed 
matrix. How do you get delta x? That’s a set of n n plus 1 over 2 equations in n n plus 2, 
n plus 1 over 2 unknowns. If you just go to your generic backslash solver or whatever, 
that’s order into the 6th. However, in that case, it’s very easy. You simply take this thing 
minus that, and you multiply on the left by x, on the right by x. Okay? All of those 
operations, matrix multiplication, those are order n cubed. So if you know what you’re 
doing, you can get – if the ws were fixed, you could get delta x here in n cubed 
operations. N cubed is a whole lot more favorable than n to the 6th, just for the record. 
Okay? So that tells you that there’s – although there’s a dense block in this system, it’s 
one that is easily solved by special structure. By the way, if you’re curious what the 
matrix structure is, it’s called kronecker. It’s a kronecker product structure or tensor 
product structure, something like that. So that’s why this is fast to solve. So you solve it 
by block elimination. You eliminate delta x to get this. You substitute this into the second 
equation, and you get this. And now, you look at this and you realize that’s a set. This, 
you can write this. This here is something that looks like this. It’s, here, g w = b. The 
entries of g are this thing. If you work out what the computational complexity is – you 
have to calculate every row, every entry of g and then, solve this. That’s cheap; that’s p 
cubed. But the computational complexity comes out to be this. That’s gonna be one of the 
leading terms is gonna be this. It depends on the order of m – n and p, but they all look 
like this. The cool part is, it’s order n cubed. I mean, so whatever the complexity is, it for 
sure beats the generic one because this thing actually starts out with an n cubed term; it’s 
n to the 6th. It’s also got a p cubed term. We’ve got p cubed here, but our complexity 
clearly is way, way, way better. So. So I didn’t expect people to follow all that, but it’s 
just to show you that these – once you learn these ideas of looking for structure, and 
block elimination, and things like that, it will come up in lots of places and it’ll be 
surprising. By the way, I didn’t know – there’s been periods when I didn’t know this. I’ve 
solved problems without [inaudible] and that was a mistake. In other words, I’m saying I 
made a mistake. We did it for years and so on, before we knew all these things. I do want 
to articulate these things because sometimes, you see these things and they just look like 
some secret trick. And you think, “Why would anyone think to do that? It’s just some 
one-off little trick.” Anyway, so that’s – it’s not. It’s just block elimination, with some 
sophisticated methods for solving structured equations. Okay, so that finishes our 
discussion of Newton method. And we’re on to our last topic, which is interior point 
methods. And let me explain first the big picture, how that’s gonna go. It’s gonna go like 
this. You’re gonna have a problem with inequality constraints. Let’s forget the equality 
constraints because they don’t matter. So we’re gonna have a problem with inequality 
constraints, here. We’re gonna solve it, that’s our next step, by reducing it to solving a 
sequence, we’ll solve a sequence of smooth unconstrained problems. By the way, I’m 
gonna put something above it. Like, I’m gonna put a little node above it. I’ll fill that node 
in later. But we’re gonna have an inequality constraint problem. We solve it – we’re 
gonna solve it by solving a sequence of smooth unconstrained problems. How do we 
solve smooth unconstrained problems? Newton’s method. What does that mean? We 



actually are solving a sequence of – this arrow means solve this one by solving a 
sequence and I mean a small number, like 10 or 15, or something like that. I don’t mean 
some huge long limit. I mean solve a sequence of these. So you solve 5, 10 smooth ones. 
The smooth ones we do by Newton’s method. Newton’s method is the same as solving a 
set of quadratic unconstrained problems. Now to solve a quadratic unconstrained 
equation, that’s the same as – these are linear equations. Oops, there you go. These are 
linear equations. Okay? So and we know there’s lots to say about this. By the way, this 
node up here, would be – we have a non – you might start with a non-differentiable 
constrained problem. Right? Like you want to minimize the L 1 norm subject to a x = b. 
Let’s say you wanted to do that, for example. Okay? The objective is not differentiable; 
you can’t solve it. I mean, you can’t use Newton’s method on it or anything like that. It 
doesn’t fit this category. So there, we do a transformation. So this one is a transformation. 
To minimize the one norm, you do a transformation that goes like this. You’d minimize 
the sum of the t i subject to absolute value x i is less than t i, which you’d write as, I 
guess, x i less than t i minus x i less than t i. Right? Everybody knows that. And so you 
take a problem which is non-differentiable unconstrained – no sorry, equality constrained 
and you convert it; you add new equality constraints. Now you’ve added all these new 
variables and constraints and you might start getting all nervous and weird about it. But if 
you just remember that, I guess you know, the size of the problem is not what matters. 
What matters is the structure. Then you’ll be okay. And actually, you’ll even have a 
sense, when you’re doing this, that when your adding these inequalities, they’re very 
local. And so they’re gonna contribute to sparsity in very, very favorable ways. Okay. So 
but I’ll assume you start here. So smooth unconstrained, you do that by Newton’s 
method. In each step of Newton’s method, you are actually solving a quadratic 
unconstrained problems, otherwise known as solving a set of linear equations. So this is 
how this – this is the hierarchy. The first thing is just to know how it’s done. The second 
is to understand that, at the end of the day, when you profile a code running it, it’s only 
solving linear equations. That’s why you need to know how to solve linear equations. 
And the more you know how to solve them and about exploiting structure and things like 
that, the better off you are. Because the equations you get down here are gonna inherit 
structure all the way up from this one at the top, I mean L 1 optimization being a perfect 
example. Okay? So you’ll – so. A lot of people don’t know this, but this is – but you will. 
So. We’re now going to talk about this step. How do you solve an inequality-constrained 
problem by solving a sequence of smooth unconstrained problems? Or equality 
constrained, I mean they’re basically the same. That’s what we’re gonna do. So we’re 
gonna solve this problem. All the fs are twice differentiable. By the way, to get to this 
point, you may have to do [inaudible] in an L 1 problem; you may have to do a 
transformation, to get to this point. So if your fs are not differentiable, you might have to 
do a transformation. But I’m assuming you’ve done that and now, we have the inequality 
constrained, smooth inequality constrained minimization problem. Okay. Well, we’ll start 
by assuming that we have – the problem is strictly feasible and so I can find a point that 
satisfies equality constraints; all the f is are negative. So that’s Slater condition, and that 
means that optimal – the – if I write down the primal and dual – if I write down the KKT 
conditions, they’re necessary and sufficient conditions for optimality. So what’ll be 
examples of problems like that? Well, obviously l p, q p, q c q p, g p, there are all 
obvious, g p and convex 1, of course. Examples that are not quite like this, you have to be 



careful with. Things like s d ps and s o c ps, you can actually formulate them this way, 
but it’s quite tricky. And it’s better to this by cone programming, which we’ll get to soon. 
Okay, another example would be entropy maximization. So entropy maximization says 
this: Minimize negative entropy, subject to some inequality constraints and equality 
constraints. Right? So if x really is a distribution here on some finite set, then one of the 
constraints, of course, is that x is a base sum to 1. So one row in a is all ones. And then, 
the other rows in a, these are just expected value of any function of a random variable. So 
I can have a random variable on 10,000 points and I could say – I could give you some 
moments. I could give you some probabilities that are fixed. I can give you inequal – I 
could give you intervals. I could say the probability that x is in this set is between point 2 
and point 3; those would translate to this. I could tell you all sorts of things about the 
skewness, and the kurtosis, and whatever else I like. Those will all translate to linear 
equality and inequality constraints. And then, I might say, “Please compute for me the 
maximum entropy distribution that satisfies those conditions, those prior conditions on 
the probability.” And that would be this problem. This is a good example of a problem 
like that because here, the inequality constraints are affine here. So they’re obviously 
smooth and the objective is also smooth. Okay. All right. So we’ll get to this idea of the 
log barrier. And if – it’s actually an embarrassingly simple idea. It works like this: I want 
to convert that problem q a to one I can handle. What can I handle? Well, we just finished 
looking at equality constrained smooth minimization. So what I’m gonna do is take this 
irritation function, associated with a hard constraint. I mean, it looks like this. It’s zero 
and then it goes up to plus infinity. Okay? It’s the indicator function of the feasible – of 
actually r minus. Okay? And what I’m gonna do is, I’m just gonna replace that with a 
function that goes to infinity as you go here and then, but it’s otherwise smooth. And 
what we’ll do – I mean a typical example would be like a log function. Right? So this is 
called a barrier function, something like this. And basically, what it says that, instead of 
being totally cool until you hit zero – this is for a constraint, and then basically, going 
totally insane because that’s what this – but that’s just semantics of the original problem. 
It basically says that it depends on which one you want to pick here. But the point is, you 
start getting nervous when a constraint starts getting close to infeasible. That’s what this, 
you know – then how close do you get before you get before you start going nuts? Well, 
that depends on how good your approximation is. And over here, you might feel more 
and more comfortable the more margin you have. I’m just anthropomorphizing this, but 
that’s kind of the idea. So the idea is, you get the someone who, instead of someone who 
goes insane, is totally cool until a constraint is violated and then goes insane. You want 
something where, the more margin you have, the cooler you are, moderately. But and you 
start getting nervous when you start getting close to this. Of course, you still go insane if 
you’re – it it’s infeasible here. Right? Okay. So that’s called a barrier. The most common 
barrier is something like – the way to write it out is this. Is you have 1 over t – you have a 
parameter, 1 over t times the sum of the log of the negative things. That is a smooth 
convex function. You know that, sorry. There, at the minus sign, that’s a smooth convex 
function. And the parameter t simply sets, basically, the scale of how nervous you are, 
depending on how close something is to getting feasible. If t is big, it basically says that 
you’re get – that you’re logarithmic barrier here is actually giving you a very good 
approximation of the true function here. It’s, you know, it’s very flat, near zero, then 
shoots up to plus infinity. If t is smaller, like 1, it means it might be this one, out here. 



Something like that. Okay. Now that is a smooth problem, this thing. This is – sorry, that, 
well this is. But this is a smooth problem. We can solve that by Newton’s method. Okay? 
Now, so we can solve this. And now, you can think of all sorts of things. You could set t 
– you’d set t high enough. I mean, so there’s a lot of things to do. I mean, one thing you’d 
want to do is prove, for example, that as t gets bigger, the solution of this actually 
approaches the solution of the original problem. I mean, that’s really what you want to 
do. All right? I guess this is the original problem, here. I minus is the one that goes, like, 
zero and then plus infinity. So that’s the original – you want to show that this 
approximates that and it kind of makes sense that it would. The other thing is there’s 
obviously something fishy here. If someone proposes to solve this by this, it’s got – it 
should raise up all sorts of like red flags for you. Let me tell you how. Suppose some 
says, “Look, I can’t solve,” it’s kind of like this. And this actually happens. There’s lots 
of like grown people who say stuff like this, words like this. There’s an L – here’s an L 1 
function, and they go, “I can’t – you can’t solve that.” And you go, “Why?” And they go, 
“It’s non differentiable. Look.” Now let’s leave alone the fact that you solve it precisely – 
what’s interesting about L 1 is precisely that point. It’s that point there that makes, when 
you solve these things, lots of the entries zero. Okay? So let’s leave that alone. So the 
standard method, I call “the sandpaper method.” So “the sandpaper method” is this. I’m 
not gonna say who does this, or anything like that, but there’s still like, you know, grown 
people who go around and say this stuff. They go, “Well, everyone knows you can’t 
solve that. Well, what you do is, you get out your sandpaper and you go towards this tip 
and you sand it off. You go like that.” I mean, a typical one would be to say, “Look, I’ll 
write it this way. There and then, minus there, there’s my function.” Everybody cool on 
that? Okay? Now this function, on the right hand side, analytic, totally smooth. Okay? 
However, the corner has been sanded down at the scale of 10 to the minus 5. Everybody 
agree? And they go, “Cool. That’s like – that’s just not – it’s not that – that’s not twice 
differentiable, that’s like 5 times differentiable; it’s like 48 times differentiable. So I can 
use Newton on it.” Now, do you go for that? You’re applying Newton method to 
something that looks like the absolute value function with just a little bit of light sanding, 
to get rid of the that corner. What’s gonna happen? What is the Newton step, for 
example, like right there? What’s the Newton step on a sanded, absolute value function?  

Student:[Inaudible]  

Instructor (Stephen Boyd):Well, the gradient. What’s the gradient? Like, minus 1. 
What’s the hessian there? Oh, by the way, please don’t calculate anything, just use your 
eyeball. What’s the hessian?  

Student:[Inaudible]  

Instructor (Stephen Boyd):What is it? Is it zero? I don’t think so. The hessian of the 
absolute value’s function is zero. It’s not – the hessian of this is not zero, but you’re very 
close. What is the hessian?  

Student:[Inaudible] Instructor 



Almost zero. Thank you. It’s almost zero. What’s the Newton step, at that point then? It’s 
like some insane huge long step, right? Okay. But more than that, how well is Newton’s 
method gonna work on a sanded-down absolute value function? Well, what do you have 
to ask yourself? You have to ask yourself this question. If you form a quadratic model of 
this function at a point, how good an approximator of the function is it? Well, what do 
you think? Do you think Newton method is gonna work on this? Well, of course, our 
theorists tell us, yes it will. And, indeed, it’s a proof, of course it will. But how well do 
you think it’s gonna work in practice, Newton’s method on a sanded absolute value 
function? You get two guesses and then, we’ll quit. The first is, like, super-well. And the 
second is the opposite. It doesn’t work, like at all in practice. So which do you think it is?  

Student:[Inaudible]  

Instructor (Stephen Boyd):The second one, you’re right. Okay.  

Student:Why?  

Instructor (Stephen Boyd):Because it’s obviously – and if you – and then you say, 
“Well, how does that work in the theory?” Right down here, the hessian, this third 
derivative, goes insane. Right? Because the hessian goes from, you know, it goes through 
something where it goes super high; it’s super low; it gets way high then it gets low 
again. You have to get down to the scale of 10 to the minus 5 to actually see this 
curvature. So the point is you’re right. Newton’s method, on a sanded down thing, isn’t 
gonna work at all. So I’m just saying that you shouldn’t – when people do this business, 
where they go, “Oh, it’s non-differentiable. Not a problem, give me my sandpaper.” you 
shouldn’t – generally speaking, you shouldn’t believe stuff like that. This one’s gonna 
work out, but this one does not. Yeah?  

Student:You were saying, before, that if we’re solving a problem like that, that we have 
to do something to make it differential before we even start this process.  

Instructor (Stephen Boyd):Right.  

Student:So if that’s not how you do it, then what would you do to make it.  

Instructor (Stephen Boyd):No that is what you would do and that’s the correct way to 
treat L 1 constraints, in most cases. You do exactly what I said; you add new variables, 
new constraints and then, use these types of methods. So okay, we’ll quit here.  

End of Audio]  

Duration: 79 minutes  


