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Instructor (Stephen Boyd):So, let’s start with a couple of announcements. I think we’re 
a little bit behind on updating the website of the readings. So it should be kind of 
obvious. You should read the chapter on geometrical problems. That’s kind of obvious, I 
guess because we’re going to start that today. The other is you should read this appendix 
on numerical linear algebra. It’s not very long; it’s like 15 pages, just because we’re 
gonna hit this material next week, and what’s that?  

Student: 

[Inaudible].  

Instructor (Stephen Boyd):Oh, it’s more like 15, yeah, not 50. You wanna read this 
because the fact is you don’t want to hear all this material for the absolute first time when 
I cover it like next Tuesday or something. So that’s just a hint that we’re not gonna be 
moving slowly on this material.  

Okay, I want to finish up something about an experiment design which actually relates to 
our next topic, which is geometrical optimization problems, so experiment design, you 
recall from last time is this. You’re gonna make a number of measurements and you have 
a pallet of possible measurements you’re allowed to take.  

That’s V1 through VP, parameterize these things, and you’re given a budget, for 
example, just a total number. You’re just told, you know make 40 measurements out of 
this pallet of 50 possible measurements. Which 40 would you take?  

And we talked about that last time. When you commit to a set of 40, which is actually 
nothing, but a set of integers on you know, M1 thorough MP that add up to 40. When you 
decide on your allocation, you’ll be scored on a covariance matrix. That’s your error 
covariance matrix.  

Now, that’s obviously a vector optimization problem because one person’s error 
covariance matrix could be very small in one direction, big in another and then you could 
have the opposite, so that’s kind of obvious.  

The first thing is you have to scalerize. Then the second is there is this issue, it’s a 
smaller issue, it’s the issue of a relaxation from an integer problem to a continuous 
problem, and we talked about that last time.  

So the most common scalerization is de-optimal experiment design. So in de-optimal 
experiment design, you minimize the log determinant of the covariance matrix. So this is 
a covariance matrix. This is, of course, convex clearly in the [inaudible] here. And this 
corresponds geometrically to minimizing the volume of the corresponding confidence 
ellipsoid.  



This is sort of like if you’re doing a problem involving positive definite matrices where 
you want it small, log determinant or determinant is something like the least squares 
there. It’s kind of like if you can’t come up with and defend another measure, then you 
might as well just go with log volume or something like that. So it’s something like least 
squares.  

Okay. So this is the de-optimal experiment design. Now, one of the things is when we 
start doing applications, it gets extremely interesting to do things like taking out a 
problem that comes up as an application. This is an experiment design. This is the 
optimal experiment design and you actually worked out a dual for this problem.  

What’s often the case is that a dual of a practical problem will actually turn out to have an 
interpretation, which is another practical problem, and it can be one from a totally 
different field or something like that. After the fact, everything will make sense, but it 
will not be remotely obvious at first that the two things are connected.  

So in this case, a dual, which I’ll work out shortly is this, so these two are duals, and of 
course, what I mean by that in the loose sense, what I mean is that I transform this 
slightly, formed a Lagrange dual, and then made a few more small transformations of that 
one.  

Maybe I solved a [inaudible] variable. Maybe we’ll get to that. This is called – so these 
are duals in the loose sense. However, they are duels in the following sense. Any feasible 
point here provides a lower bound for this problem period.  

Okay, there’s an easy transformation – if you solve this problem, you can solve that one 
and vice versa. There’s zero duality gap here, absolutely zero in this case, because the 
weak form of Slater holds. Slater condition says you have to have a point that’s strictly 
feasible.  

Well, sorry, the strong form of Slater’s condition hold here because I’ll just take all the 
[inaudible] to be one over P, okay? And then the strong form holds, but anyway, so zero 
duality gap between these.  

Now, this problem actually has a very simple interpretation, [inaudible] as a constant, so 
you’re maximizing log det W or if you like, you’re minimizing say log det, say, W 
inverse. That’s the log of the volume with a constant multiplier of the half or something 
like that.  

And then also an additive constant, but then an additive constant and a factor of a half or 
something like that, that’s the log of a volume of an ellipsoid, and this would be K 
transposed W inverse parentheses inverse DK less than one, and this is the problem of 
computing the minimum volume of ellipsoid that covers the points VK.  

Okay, so I mean this sort of, by the way, this problem comes up a lot as, well. In fact, I’ll 
mention statistical application of this right off the bat. Actually we’ll get to some of that 



in the next lecture, so maybe I’ll wait. So what this says, and you can work out what 
complimentary slackness is. Complimentary slackness says that if [inaudible] is positive, 
that means you actually carry out an experiment of type is [inaudible] three is positive, 
that means you’ll actually use B3.  

You’ll actually do a positive number of those experiments. Then you must have one 
minus VK transposed W VK 0. That means VK is on the boundary of the smallest 
enclosing, the minimum volume enclosing ellipsoid. So the picture is this – a very simple 
one. We looked at this last time, but very briefly. You have something like 20 choices of 
experiments to carry out here.  

Okay, now these experiments are pretty much the same as these, I mean there’s a 
negative sign; it doesn’t matter. But the vector V is smaller and that corresponds to, you 
know, twice these measurements are the same as these and have twice the signal to noise 
ratio.  

So it would be foolish to choose any of these and indeed, none are chosen. Now, over 
here, all the weight is put on these two, and this sort of makes sense because the only 
difference among these is the angle and given the choice of measurements, you would 
take measurements that are to the extent possible orthogonal. Okay.  

So it’s actually short of chosen, this point and this point and this is actually put a weight 
of .5 on each of – meaning if you were do to some, if you were to give an budget of 
experiments, half should be here and half should be here.  

That’s what it means and it kind of makes sense. There would be no reason to skew them 
because they’re approximately, they’re 30 degrees apart or 35 degrees. I mean they’re as 
close as you’re going to get to orthogonal. They’re the most mutually – they have the 
largest angle and so they give the most mutual information or whatever, not any 
information [inaudible], but they’re maximally mutually informative if you take ones that 
have a high angle, so that’s what these are.  

Now the interesting thing is the dual has a perfect interpretation. You take these 20 points 
and you compute the minimum volume ellipsoid that covers them centered at zero and 
that is, in fact, the one drawn here, and sure enough it touches two points. These two 
here, and these two actually are gonna be the ones you use in the experiment design, so 
that’s another way to understand in the experiment design you’re choosing points that are 
far.  

Now, it’s not as simple or as – it’s not as simple as choosing the points that are farthest. 
Now, that would be a greedy scheme to choose the experiments that have the highest 
signals to noise ratio. That’s not the case because in that case, if one sensor had a very 
high signal to noise ratio, you’d basically only take that one. You actually compute the 
minimum volume ellipsoid that covers these points and then these give you the other ones 
that fill in other directions and so on.  



Okay. So that’s that. And I think I’ll skip the derivation of the dual, other than just to 
mention a few things about it. It should be straightforward for you now. There’s no way 
you could look at this and just say, “Oh, okay.” But, you know, it’s something that in a 
few minutes you should be able to trace through. It’s quite straightforward.  

The only interesting thing here, I don’t know if we’ve done enough problems on this or 
we’ve gone over this enough, is actually when you have a matrix problem like this, you 
actually have to calculate the gradient of the log determinant of inverse of a matrix.  

That’s complicated. The gradient is a linear function on matrices, and you actually have 
to, I mean don’t just take, the formula is basically it’s minus X inverse. But you have to 
be very, very careful to understand what that means.  

That’s actually covered in an appendix in the book, so I’d recommend reading that. In 
fact, let’s add that to our list, and I don’t remember what appendix this is. Okay, so it’s 
the one that covers, let’s say, that, what does it mean and so on and so forth.  

Okay. All right, so how do you form, when you reformulate it this way and have a matrix 
constraint here, it’s quite straightforward to introduce a Lagrange multiplier. Normally, it 
would be new transposed times you know, X minus B. Here it’s the matrix equality. The 
transpose is an inner product. In inner product for matrices is traced in general [inaudible] 
Y. These are some metrics of trace XY. So you write this as Trace Z times the matrix 
residual here.  

Okay, so that’s the origin of that. Otherwise everything else kind of works out the same 
and I’ll skip the details. Just to say the bigger picture is, basically for any problem you 
look at, and have time to actually think about carefully, it’s actually worth your while to 
work out the dual because the dual often has a very interesting interpretation, give you 
some better idea about how it works and all that sort of stuff.  

Okay. We’ll move on to our last sort of generic family of applications and these are in 
geometry, so geometric problems. These came up actually all the time, and we’ll start 
with some of the ones that are least obvious, the extreme [inaudible] volume of ellipsoid. 
So we’ll look at that. These are some of the most interesting and least obvious 
applications. In fact, it’s the least obvious what you can do in these cases.  

So the L’ owner John ellipsoid of a set C, which need not be convex, I mean, at all, is the 
minimum volume ellipsoid here that covers the set. Okay, so that’s the definition of the 
L’owner John ellipsoid. Actually it’s unique. We’ll actually by formulating it as a convex 
problem, we’ll prove that right away.  

So here it is. We’ll parameterize the ellipsoid as the – this is the inverse image of the unit 
ball under an affine mapping, okay? And that’s a parameterization. I should point out 
there’s at least like four or five totally different parameterizations of an ellipsoid, right 
and you can write it as a quadratic form. The forward image of an affine mapping of the 



unit ball, you can write it as the sub level set of a quadratic function. You can write it all 
sorts of different ways.  

Which of these methods you use to describe an ellipsoid, to parameterize the ellipsoid 
will completely change the convexity properties, and so when you have different 
problems, you’re gonna have to choose one of these. So it’s not like this we could not, 
this will not work out, if we parameterize for example, it this way, X minus XC, a set of 
X, such as that.  

X minus XC transposed, say P inverse, X minus XC is less than one. That’s another 
parameterization of an ellipsoid. And the data structure to describe this ellipsoid is a 
center point, XC, and a positive definite matrix P. Now, it’s easy to go back and forth 
between this and this. It’s just linear algebra, okay. It’s easy; however, when you 
formulate the problem here, you’ll end up with a non-convex problem for the L’owner 
John problem.  

Here it’s gonna end up being convex, so you have to choose the right parameterization. It 
makes a great deal of difference which one you choose. So this is the inverse image of the 
unit ball under an affine mapping. It’s an ellipsoid. And you know, it’s not hard to go 
from this to this. It’s not a big deal. You know, A transpose A is P or something.  

Now, in this problem here, it turns out you can assume without loss of generality that A is 
positive definite. And that’s not at all hard to show. I mean one is this; it’s got to be non-
singular. If A were singular here, then it would, of course, have a null space and in fact, 
this would be called a generalized ellipsoid or a cylinder because anything in the null 
space it would have an infinite dimension here.  

That’s what this, it would have a directional along which was infinite. It wouldn’t be 
bounded in that case. Nothing wrong with that, by the way. Sometimes that comes up. 
That corresponds to A being positive semi-definite and not positive definite.  

Now the question is why can we assume A to be positive definite? Does someone have 
any suggestions about why? If someone gave you an A here that was non, not symmetric, 
not positive definite, how can I compute, how can I determine the same ellipsoid with an 
A that is positive symmetric and positive and definite? How do you do it?  

Student:You just flip the side of the eig indice.  

Instructor (Stephen Boyd):You could flip the side of the eig indice. A might not even 
be symmetric, but you’re on to the right track. What would you do, so let’s right the SVD 
of A. Let’s write A here as U, sigma, V transposed times V less B, this is less than 1, all 
right.  

So this is the set of V for which this is true; right? And I need a suggestion. This is A, and 
I want to write this in a new form where sort of the new A and the new B are symmetric, 
A is symmetric positive definite.  



So they’re all writing the skeleton. So I need a suggestion.  

Student:[Inaudible].  

Instructor (Stephen Boyd):What’s that?  

Student:[Inaudible].  

Instructor (Stephen Boyd):You’re gonna choose what?  

Student:U equals V.  

Instructor (Stephen Boyd):Okay, choose U equals V, yeah, I mean that’s kind of what 
we want to do, but you can’t say that. I mean somebody just gave us this description with 
A and B. Their A is not symmetric. So we don’t have the right to say choose U equals V. 
They said, “No, no, no, this is the A I'm giving you.”  

So one thing you can do is this. This is a vector and if I multiply that on the left by any 
orthogonal matrix, it doesn’t change the norm. That’s the same. So I could multiply, let’s 
just do this in our heads; let’s multiply this vector on the left by first U transpose.  

Student:Mm-hmm.  

Instructor (Stephen Boyd):And then by V, and because I was multiplying by matrices, 
the first was whatever, so we’re gonna write it this way. V, U transposed times U sigma 
V transposed V plus V. Everybody cool with that. I'm mean that’s identical. This is equal 
to that because that’s an orthogonal matrix. Everybody cool with that? Okay, and what do 
you have now?  

Now we’re done.  

Student:You have V.  

Instructor (Stephen Boyd):Yep, now you have this and everything’s cool. This V, 
sigma V transposed plus then something here which is V, U transposed B –  

Student:[Inaudible].  

Instructor (Stephen Boyd):Yeah, I did, yeah, somewhere; where here?  

Student:Yes.  

Instructor (Stephen Boyd):There we go. Thank you. Okay. And I'm gonna call this A 
tilde and I'm gonna call that B tilde, and I'm done because I just took the original 
ellipsoid. I mean this would be the code you’d write at the top of something where you 



decided in a group of people doing whatever development that the data structure of an 
ellipsoid is the inverse image of an affine mapping, okay?  

However, you don’t put in the specifications that the matrix should be positive definite. 
Okay. Somebody passes in this, but for your method, you need this. This is the stuff you 
write at the top that translates it to an equivalent one with positive definite A. Okay. 
Everybody okay on this?  

Student:You could have [inaudible] right?  

Instructor (Stephen Boyd):No, it’s a singular value decomposition. It’s not eig in value 
decomposition, singular value decomposition and it’s non-singular with the original 
matrix A, so they’re all positive, so we’re cool.  

Student:[Inaudible] A is not singular, then A tilde is. If A is singular –  

Instructor (Stephen Boyd):Oh, pardon me, right if A is square and non-singular and 
therefore U and V are square orthogonal – they’re orthogonal matrices.  

Student:The whole point of this was that A was not squared.  

Instructor (Stephen Boyd):No, no, no, no. The whole point – A is squared. Good 
question. Actually you can do this, by the way, if A is not squared, too, but you’d have to 
– you can do this in that case, too.  

What A has to be in that case is, well, let’s see, it has to be fat and full rank or skinny, 
mini fat and full rank, I think is what it – it has to be; sorry, skinny and full rank is the 
most general. If you want to allow people to describe an ellipsoid in this way in the most 
general way, A, I believe can be skinny and full rank. That’ll do the trick.  

Student:You’re not losing information [inaudible].  

Instructor (Stephen Boyd):Yeah, exactly, so in that case we’re cool because and in 
everything I did here was kosher, so let’s just, you know, in that case you have to check, 
go back and check that U has the right – well, I guess U transposed to U was always cool. 
So, okay. Question?  

Student:Why did we embark on this journey in the first place?  

Instructor (Stephen Boyd):Well, I haven’t said yet.  

Student:Not the journey of the ellipsoid, the journey of positive symmatrizing the 
matrix?  

Instructor (Stephen Boyd):Now, would we embark on a journey – well, we shouldn’t 
answer that. I was gonna say, “Would we embark on a journey that was not needed?” The 



answer is yes, we do that every day, but they’re kind of weird things. I don’t usually have 
it in writing, those weird little journeys and side trips. So obviously, this is gonna come 
up, right? Indeed it will in two lines, so, but thank you for putting the posting the sign 
there which is, you know, why are we doing this? Okay, so let’s move on.  

Student:Why does it have to be – so you’re assuming A is not singular?  

Instructor (Stephen Boyd):That’s right – oh, why? If A is singular, this doesn’t describe 
an ellipsoid; it describes something called the generalized ellipsoid. It’s called a cylinder, 
in fact, because it will be infinite in some directions, in fact, specifically in the null space 
of A. Along the null space, any point in the null space of A can get infinitely big and 
satisfy this, and everything’s cool; right.  

So in that case, so that’s not an ellipsoid. By the way, such a thing has infinite volume. 
And if we’re minimizing volume, it’s not gonna be something. It’s sort of infinitely bad; 
its not gonna be of interest. So that’s why.  

Okay. Now, I'm gonna use this parameterization and yes, I wanted a symmetric positive 
definite for a reason and now you know why. Here is it. By the way, you see this problem 
here; this problem is actually correctly the L’owner John ellipsoid problem even when A 
is not symmetric; okay. It is because I assure you, log det A is gonna be the volume, it’s 
gonna be the volume while multiplied times the volume of the unit ball on that space. If 
that’s gonna be the log of the volume, actually it’s already added to that of this ellipsoid 
period, or one over it is, all right.  

So, however, the log of the determinant of some non-symmetric matrix is some insane 
function that is not in general convex; in fact, it’s never convex – just not. So however, if 
I assume A has symmetric positive definite, then this problem here is convex and that 
means we can solve it.  

So that’s it. So here I minimize log det A inverse, and you have to check about the 
volume and things like that, but I mean that does transform – the volume transforms by 
the factor det A inverse here.  

Now, to say that – I mean I can rewrite this way. I don’t have to write it this way. I can 
write this, right, for all B and C. This just basically says that for every point in C, you’re 
in the ellipsoid. You’re in the ellipsoid if and only if AB plus B, when you take the norm, 
is less than 1.  

To say that the ellipsoid covers C is to say that for any point in C, norm AB plus B is less 
than or equal to 1. So that’s this statement. Now, by the way, we know immediate that 
it’s a convex problem.  

Some people, by the way would glorify it and make it very complicated and call this a 
semi-infinite problem. Why? Because that is a convex constraint – in fact it’s a two-norm 
constraint on the variables. By the way, the variable here are A and B. So actually 



reading this kind of stuff requires serious concentration because it’s a very standard 
convention that symbols like A and B and C and alpha and beta are parameters.  

And variables are things at the end of the alphabet like U, V, W, X, Y. So this is totally 
turned around and the variables are A and B and the parameters – well B is a dummy 
parameter, but nevertheless.  

Okay, so you have to read this correctly. That is a two-norm constraint. It’s nothing more, 
but it’s 1 for every point in C. Oh, if C is infinite, this is a so-called semi-infinite 
problem. Okay. Now, you may not be able to have a tractable representation of this semi-
infinite constraint. In some cases you can. I mean one is a finite set, so here I give you a 
bunch of points and you have to calculate the minimum volume ellipsoid that covers 
them.  

Now, in this case, it’s easy to say this because you just write that. This is a convex 
problem. So now you know something. And of course, it’s not just the L'owner John 
ellipsoid for the set consisting of these points. But in fact, the convex [inaudible] those 
points and that’s a polyhedron described by vertices.  

So you just learned something which is by no means obvious, and that is that if someone 
gives you a polyhedron defined by its vertices, then computing the minimum volume 
ellipsoid that covers those points is a completely tractable problem. Okay. Everybody got 
that?  

And in case you think, you know, sort of this is obvious and everything works and all 
that, watch out, because if I give you a bunch of points like this and I give you a 
polyhedron described by the vertices and I ask you for example, to solve a variation on 
this which is please compute the maximum volume ellipsoid that fits inside it, that’s 
actually MP hard, okay?  

So I’ll show you, of course, I’ll focus on the ones that actually we can do, but watch out. 
One step off this path and things get very complicated and these are not obvious facts. 
They’re just not obvious period. Okay. Let me mention a couple of things about this one. 
This has huge applications, sort of choosing maximum volume ellipsoid around some 
points.  

And let me sort of just give you one or two, they’re beautiful applications. Here’s a really 
very nice one. Suppose you just simply have V1 up to V, doesn’t really matter, you 
know, 10,000. It doesn’t matter. These are measurements – they’re vector measurements. 
They’re in our tenth.  

That’s it; they’re vector measurements. And what you want to do now is check are there 
any measurements that like stand way out. In other words, are there outliers. That’s the 
question here. Are there gross – are there some measurements here that are big and 
somehow don’t fit with the set; okay.  



So how would you solve a problem like that? It’s vague, comes up all the time. I want to 
identify outliers in a bunch of samples. What would I do? Make some suggestions, 
actually. Let’s start with unsophisticated ones. So what would you – what would be the 
first thing you might do?  

Student:[Inaudible].  

Instructor (Stephen Boyd):Sure, yeah, absolutely, so the simplest thing is you might – 
let’s subtract the mean of these from here. So no they’re sort of centered roughly around 
zero. That would be reasonable. Then actually at that point, you might just look at the 
norms of all these things, and if all the norms were on the order of you know, half, one, 
two and a handful of them have the norm of 50, then there’s your outlier problem solved, 
right?  

So basically you have a cloud of points like this and a couple of just way out there, okay. 
Everybody agree? So that would be the first thing you might do. Then you might say 
well, no, no, that’s not right. What I’ll do is I’ll take these points; I’ll subtract the mean. 
That will center them and now I’ll calculate the empirical covariance matrix of them. 
That gives you the ellipsoid that kind of covers the cloud the best. Everybody cool on 
that?  

Then I might even change coordinates so that ellipsoid was uniform, was a ball. That’s a 
very hard change of coordinates – the one I mentioned before. I don’t recommend it 
without a lot of practice.  

So you change coordinates and the ellipsoid becomes a ball, came out right. And now it 
means roughly speaking the data kinds of varies equally and now if you start seeing 
points that are way out these could be your outliers. Everybody okay on that?  

Now, the problem with that is that that one – well, that would actually, that would, sorry, 
that would actually work – that would probably work okay. Turns out a much more 
sophisticated method than that is actually to compute the minimum volume ellipsoid that 
covers these, okay.  

The points that are on the surface of that ellipsoid actually are ones which you would 
declare as candidates for outliers, okay? And in fact, the way this often works is you take 
those points and you remove them and then you redo whatever you were doing, some 
lead squares problem, some singular [inaudible]. It really doesn’t matter; you do the 
processing.  

What you’re looking for is something like this. You want to remove a small number of 
points, do whatever signal processing or statistics you were doing before and have the 
answer all of the sudden get way better; right?  

So you want to remove eight points from the set of 10,000, do some signal processing 
and all the sudden have like an excellent fit. This is a hint that at least that those eight 



included the ones that were messing you up before. Everybody see what I'm saying? That 
would be outlier [inaudible].  

Okay, so this is called – the method. This is called in statistics – it’s called ellipsoidal 
peeling. It’s the greatest phrase, right, so you have a giant pile of data. You stick an 
ellipsoid around it and you remove those points. Once you remove those points, by the 
way, if you’re quality of estimation of whatever signal processing or statistics you’re 
doing didn’t get like really good, you do it again.  

You’ve removed those points and the ellipsoid shrinks down to fit the next one and this is 
called ellipsoidal peeling and you do this in waves or whatever until you like what you 
get or until you have no data points anymore, in which case you went too far. Yeah?  

Student:I was gonna ask a question. Let’s say you do it, you peel like two or three layers 
and you don’t see any substantial change. Does that tell you that maybe, you know, you 
didn’t have any variable outliers before?  

Instructor (Stephen Boyd):Yes, it might tell you that, yeah. Generally, when that 
happens, when you do a couple of cycles of ellipsoidal peeling and it doesn’t get better, 
generally you don’t admit to people that you ever did that.  

So yeah, you just go back and say, “It’s not working.” That’s what you do, although 
you’re prepared if someone says, “How do you know that there’s not – maybe there’s just 
like five or six outliers, just like bad data points that are completely messing up your, you 
know PCA or whatever you’re doing, or your imagery construction or whatever it is?”  

That’s how, and then you’d say, “Well, you know, I did do some, I did some ellipsoid 
peeling. And nothing got better.” By the way, we’ve already talked about it last time, but 
what’s another method for dealing with outliers – I mean just grossly? What?  

Student:[Inaudible] different norm?  

Instructor (Stephen Boyd):Yeah, you’d go to an L1-type norm or a Huber norm, or 
something like that – Huber is not a norm, but you’d go to a robust norm. By the way, 
you could do the same thing there, the peeling thing.  

Student:[Inaudible].  

Instructor (Stephen Boyd):Take all of them out. You take all the ones that are on the 
boundary. If you don’t want to take as many out – if this is 10,00 and these are an R10, I 
forget how many are gonna be on the boundary, but it’s generically something like 50, so 
50 out of 10,000.  

Student:[Inaudible] do it again.  



Instructor (Stephen Boyd):Yeah. I do minimum volume ellipsoid. I think generically 
about 50-55 or something like that would be on the boundary. By the way, if you take out 
the 55 and all of a sudden, like your image appears and that’s like somebody’s head. 
You’re doing medical imaging, then you know the following, you know that A, there 
were some outliers, No. 1 and No. 2, they were within the 55 year removed.  

Now, if you care, you can go back and start putting points in one at a time until the head 
goes away, okay, and then you say, all right, that, you know, so if you care, but on the 
other hand if you have 10,000 measurements and you throw away 55, you know, it would 
seem unusual if suppose instead you threw away 22 outliers and whatever, 33 non-valid 
data points.  

Loss of 33 points, I mean I'm just talking – this is very hand-waving, but loss of 33 points 
out of 10,000 or I should say 9,950 is not gonna really make a big difference, so that’s 
what you do, so you can add them back in or whatever you like.  

These are actually fun methods. They can be shockingly effective, and I should add 
actually on the whole issue of outlier detection – I should make one comment about it. 
When an outlier is like totally off scale, anybody can do it. So if like you’re getting a 
bunch of measurements, you know, and a bunch of them are like you know, 1, 2, 3, 
minus 5, minus 6 and all the sudden, one is like 1E plus 37, okay. You don’t need 
advanced methods to detect that as an outlier.  

That’s because a bit flipped in a floating-point representation or something, you know, in 
the exponent. You don’t need this for that, okay. On the other hand, if the outliers, you 
know, basically don’t – if an outlier is just like it’s just off a little tiny bit. It’s just like 
some like 1 over [inaudible], and you know, it’s not Gaussian, but it’s not huge, not big 
enough to mess up your algorithm or you have enough data that it gets averaged out 
nicely, then you don’t have to remove it.  

But there’s a band of situations right in the middle where being smart actually is gonna 
pay off. It’s that band in the middle, it’s when the outliers – the outliers are small enough 
well they don’t really hurt anybody. If they’re big enough, anybody can spot outliers, but 
there’s a pretty big band right in the middle where being smart is gonna make the 
difference between successful signal processing statistics or whatever this is, whatever 
application it is and not. So that’s just my comment on this.  

I guess this is silly – that’s the case for all problems, this band. Yes.  

Student:[Inaudible] continue all the measurements. It’s just to [inaudible]?  

Instructor (Stephen Boyd):Yeah, so you’re removing outliers and so the argument, so 
first I’ll tell you the truth. The truth is say you’re allegoristic, so it cannot be defended; 
however, you can say in its defense, the following: if I simply moved, it removed the 
values of V with large norm, that would be something that is not scale invariant.  



If you were to rescale the data or transform the data, I would remove a different set 
because I can make a difference out of points look big. Okay, the interesting thing is if 
you do minimum volume ellipsoid, that’s actually affine invariant.  

You’ll select the same point because think about it, if you have a bunch of points, and 
you transform them, you know, like by any linear mapping, you wriggle them all around 
and you re-calculate the minimum volume ellipsoid, you get a commutative diagram. So 
the minimum volume ellipsoid that covers a set of points is affinely invariant. It 
commutes with an affine change of coordinates.  

Therefore, if someone says why are you going to the trouble, why not just take the norm 
and remove the ones with the largest norm, right, you would say, I'm doing something a 
little more specific, I'm minimizing the one that is large, but my measure of large doesn’t 
depend on the coordinates used or the scaling used; it’s more sophisticated.  

Funny, if you draw that story out long enough, people won’t notice that it actually 
doesn’t answer the question, which is why. It’s merely a justification. Okay.  

All right, so that’s an application of this. There’s sort of a dual problem, that’s maximum 
problem inscribed the ellipsoid. So here I have an ellipsoid – we’ll get to this. Here we’re 
gonna describe the ellipsoid, by the way, as the forward image, not the backward image 
of – it’s the forward image of a unit ball under an affine mapping.  

And again, I can assume, I won’t go through the details that B is positive definite here. 
Now the volume is proportional to det B and the problem is to maximize log det B 
subject to this.  

What this says is another way to say this. It basically says that the [inaudible] over the 
norm ball of BU plus D is in sync, so that’s another way to say it. If you want the semi-
infinite representation, you would write BU plus D is in C for all norm U less than 1.  

Now we know, by the way, that is a convex constraint on B and D. Why – because for 
each U in the unit ball, this is a convex constraint. And remember what the variables are 
here. It’s B and D. This is not obvious. U is fixed. That’s an affine expression. It’s affine 
in B and D. Actually, it’s linear in B and D, in fact.  

And so you have the constraint that a linear function should be in a set. Sorry – this is the 
case of C is convex; sorry. If C is convex, this is a convex constraint. Okay.  

Now, you still have to be able to evaluate this to make this interesting, and there’s 
actually a very simple case when you can and that is when this simplest case is when this 
thing – when the set C is a polyhedron because I can tell you whether an ellipsoid 
described this way lies inside a half space.  

That’s easy. And the way you see that, that’s an easy calculation. We want to know is it 
true that BU plus D – let’s write a half space, so the half space is the set of the X such 



that, let’s say, F transposed X is less than G, okay. That’s our half space, and I want to 
know is it true that BU plus D is in H or all U norm less than 1. That’s the question, okay.  

And the answer is easy. Yeah. We can calculate that. The question is whether F 
transposed BU plus D less than or equal to with a question mark like that for all U less 
than 1. Everyone agree?  

Now, by the way, we’re focusing on this as a function of B and D. We’re getting there. 
Now, the second term is this, F transposed D. It has nothing to do with U like that, and 
here I'm gonna write this in a different way. I'm gonna write this as B transpose F, 
transpose U. And t his should be true for all norm U less than 1.  

Now, if someone walks up to you and says, and you form an inner product with a vector 
and says, “You know, I need the inner product of a vector with U, U ranges over the unit 
ball. We know exactly what these numbers range over. They range between plus/minus 
the norm of B transpose F.  

Okay, in fact to be quite precise, that’s [inaudible], but in the general case, general norm, 
it’s plus/minus the dual norm, the dual of that norm. So the maximum value this can have 
is this period, and that is with the choice U equal B transpose F divided by norm B 
transpose F. That’s the worst thing that can happen. So these are all if and only ifs. I 
haven’t drawn them, but it’s that. Okay.  

And then you have that, and that’s it. We’re done. Okay, because now this is tractable. 
That is a convex function of B. This is a convex function of something happened there – 
D, thank you. That’ a linear function of D. The whole thing – this is clearly convex and B 
comma D. Okay, so that’s the condition and that’s what we have here.  

Maybe I have it wrong here, or did I assume B is symmetric – yeah, sorry. I assumed B is 
symmetric, so the transpose isn’t needed here. Okay, so I get that. By the way, just let me 
point out, you’re used to it. I don’t know – we’re six weeks into the class. There’s 
something like that. It’s not a big deal to look at that and say that’s a convex problem in 
B and D.  

These are things that if you don’t know this material, that looks like a hopelessly 
complicated problem, I mean hopelessly complicated just because, you know, it’s got the 
log of the determinant and all that. You wouldn’t know anything. This is non-
differentiable; you know that. The norm – that’s not norm squared; that’s norm, right, but 
you look at that and say that’s like a second order of constraint. It’s nothing, the second 
order of constraint.  

So all right, this allows you to calculate, to compute efficiently the following. This says 
that if you have a polyhedron described this time not by the vertices, but by the 
inequalities, so basically you have these things, AI, like that. You can now calculate 
efficiently the maximum volume of ellipsoid that sits inside it; okay.  



And that you can do efficiently. Now, interestingly, if I take a polyhedron described by 
inequalities and I ask you to calculate the minimum volume ellipsoid that goes, you 
know, the minimum volume that covers it, that’s MP hard, again. So you have to watch 
out with these things. They’re not – I'm just casually mentioning them here. This is not 
simple. Things that are – you know, easy problems and just minor variations on them are 
very hard.  

Question?  

Student:Is the MP hardness because you’re using the representation of the polygon, 
which doesn’t actively constraint?  

Instructor (Stephen Boyd):Something like that.  

Student:[Inaudible].  

Instructor (Stephen Boyd):Yeah, MP hardness is actually very easy to see. It turns out, 
you wanna hear something hard, is just the following. Forget finding the minimum 
volume of ellipsoid that covers a polyhedron described by inequalities. They this much 
easier problem. Suppose someone just asked you the following.  

Here is a specific ellipsoid. Can you please tell me if it covers my polyhedron? That’s the 
feasibility – not even the feasibility problem. That’s not finding the polyhedron that’s 
feasible. It’s basically check if a specific polyhedron is feasible.  

That’s MP hard. Turns out it’s maximizing a convex quadratic function over an ellipsoid. 
And I can easily embed that to all sorts of MP hard problems.  

Yeah, but I don’t know that I really answered your question. I don’t’ know that I really 
have a good answer for why is it easy to go from – if the data structure for the ellipsoid is 
vertices, why is it easy to calculate the minimum volume in covering ellipsoid, but hard 
to calculate the maximum volume 1 inside. And why does it reverse here? I don’t know; I 
don’t really have a good story for that, so I don’t know. Question?  

Student:So given this description, for example, we have this [inaudible] can you actually 
envision and find vertices?  

Instructor (Stephen Boyd):Excellent question. Now, of course, if you could efficiently 
go, if you could transform between these two data structure to describe a polyhedron, 
then of course, right here, right now, we would have shown P equals NP. Now that – I'm 
not ruling it out. Could happen someday, maybe around Week 8 or something like – no. 
But it – no, I'm glad you pointed that out because in fact, there’s a catch there.  

So the question is given a polyhedron described by inequalities, can you describe it by its 
vertices, and the other way around? And in fact, these are just two different data 
structures, to describe the polyhedron, right. That’s no problem. Now it’s interesting 



because, for example, ellipsoids, we were just talking about multiple data structures 
describing ellipsoid. Those are all equivalent. They’re all about the same size. They all 
involved like some sort of a matrix and they involve a vector.  

You know, roughly, you know, in that – you know, transforming from any one to any 
other is just linear algebra. That’s all very straightforward and everything is polynomial. 
It’s all like N-cubed or whatever, right.  

So those are sort of equivalent, they’re different, but equivalent parameters; they’re 
polynominally equivalent parameterization. Now, in general, there’s some pretty 
shocking things, I’ll just mention some of them. If you have a polyhedron described by 
inequalities, it is possible to list the vertices. It’s possible. There’s algorithms that just 
work, just lists them.  

Here’s the problem. The number of vertices is exponential in the problem size. Okay, so 
even, you know, if you have a – I mean thing s you can just write down in a minute, you 
could just write down, for example, take 100 dimensions, 200 linear inequalities, okay.  

So that’s nothing, right. You can solve an LP of that size, well, in three weeks, you’ll 
write a code for it, and that can be solved literally in milliseconds. Okay. So you know, 
everyone has the right visualization skills. When I say minimize [inaudible] where A is 
200 by 100, we’re all visualizing the same thing. We’re visualizing a polyhedron and a 
direction and you kind of find the vertex or whatever that’s most in that direction. 
Everybody got that?  

Now, here’s the problem, the number of vertices of a polyhedron in R100 defined by 200 
linear inequalities is absolutely immense. I mean it’s some number that, you know, it’s on 
the order of like 100 factorial or something like that. I don’t know what it is, and by the 
way, if I'm not quite right, and that’s not equal approximately to the number of sub 
atomic particles in the universe, I have to change those numbers very slightly and it will 
be. Trust me, okay.  

So that’s the problem. It’s the going from inequalities to vertices can lead to a huge 
increase in the size of the problem. That’s the first problem. Now, by the way, for certain 
cases it’s not. I mean if everything is an R2, anybody can figure out a way to transform 
between these two representations, vertex versus face or in that case, edge.  

Anybody can do it in R3, as well, and if you go to Google and type things like transform 
vertex face blah, blah, blah, you’ll find tons of papers, but it’ll be for specific cases like 
R2 and R3 is what you’re gonna find.  

You’ll even find for example, in some RKs that they’ll be polynomial algorithm. But K 
has to be fixed, the dimension, so you’ll even see that. By the way, the other way has the 
same problem going from one to the other. So anyway, let me summarize all of this 
because there was a weird, random walk, so let me summarize it.  



The change in data structure to describe the different parameterizations of ellipsoids, 
that’s casual, it’s linear algebra. It is just linear algebra. It has taken, you know, some 
square roots, a couple of singular value, inverses, nothing, okay.  

Changing the data structure described a polyhedron from vertex to inequality description, 
that’s not casual. So that’s a very important thing to note, I mean unless you’re in R2. In 
R2, there doesn’t seem to be any real problem anyway because your eyeball can solve all 
of them and it hardly matters; okay.  

So I didn’t even consider those to be real problems.  

Student:[Inaudible] the problem we just solved earlier before we got this example, not 
correlate with what you’re just saying about covering [inaudible] finding the minimum 
[inaudible].  

Instructor (Stephen Boyd):In the problem before, you’re given the vertices and you’re 
asked to find the minimum one. That’s easy. In this problem, you’re given the faces and 
you’re asked to calculate like the minimum, maximum volume of ellipsoid that sits inside 
it.  

Those two are the easy problems. You flip those two, or re-match them and they’re 
actually essentially infinitely hard, not only infinitely hard, but they’re basically you 
don’t even get to this point. Just if someone just alleges an ellipsoid covers a polyhedron, 
you can’t even verify it.  

You wouldn’t know, let alone optimize over such an ellipsoids. So there’s a – I mean 
these are subtle and you have to look at them carefully, think about them. Okay, now 
there’s an amazing fact here and it’s actually beautiful – it’s the sort of fact about 
geometry.  

Its’ absolutely beautiful and it’s this. If take a convex bounded on [inaudible] interior set 
and compute the L'owner John ellipsoid so that might be say this polyhedron here and 
you compute the L'owner John ellipsoid, so you find the minimum volume ellipsoid that 
covers it, okay. And that’s this one.  

The following is a fact, comes right out of duality. I won’t derive it, there are derivations 
in the book, comes right out of duality. If you take that ellipsoid and you shrink it by a 
factor of N, then you’re guaranteed to be inside the set.  

Okay, by the way the same is true here. If you take the maximum volume of ellipsoid that 
fits in a set and you grow it by N, it covers the set. Okay, now, you might say N is a big 
factor. Well, yeah, but at least it’s a factor.  

And it basically says the following, by the way, if you split the difference, I can say it this 
way, I can approximate any convex set, you know, bounded [inaudible] interior and that 
kind of stuff, any convex set in RN within square root N.  



That’s what it means because I would split the difference here, right, I’d shrink this 
ellipsoid by square root N, and then I’d get one where if you scale it by square root N, 
you cover, you shrink it by square root N, you’re inside.  

By the way, if this set is also symmetric, you can sharpen it to square root N, in which 
case I can even say I can get it into the one quarter approximation. The importance of this 
is extreme, both theoretically and practically and let me say why. This basically says that 
ellipsoids are universal geometric approximators of convex sets.  

That’s what it says because I can bound sort of – you know, I can get a bound and there’s 
a fixed factor whereby I can shrink and expand and fit inside and outside the set. 
Everybody got that?  

Now, that’s gonna come up; it’s gonna have lots of implications, but what about this. 
What is someone says, how about a ball. A ball doesn’t have that property obviously 
because for example, here’s a convex set. I can make it as skinny as I like, but sort of the 
minimum size ball that fits this is quite big and the minimum sized ball is like that and 
there’s no bound on these.  

So I could hardly say that I cannot approximate a convex set in RN by a ball. How about 
a bounding box? How about a rectangle? Can I do it by a rectangle? The answer there is 
N, sorry, that’s got N parameters. The ball has only, well it’s got N. A bounding box has 
like two or three N or something.  

That’s not enough either because in this case, for example, the bounding box can look 
like that. That’s the bounding box, the smallest box that covers the set. The biggest box 
that fits inside is gonna be tiny period. And there’s gonna be no bound on the ratio.  

So ellipsoid is sort of the first time when you get enough sort of degrees of freedom to 
carry out universal approximation of a convex set and let me just ask you another one just 
for fun. How about simplexes? That’s the convex held of N plus one point. By the way, 
the answer is not obvious here, so you’re just gonna have to guess, but I’d say you can do 
it, so how about simplexes, what do you think?  

Can you approximate any convex set by a simplex; what do you think? You can, yeah, 
you can. There’s enough – you have enough free parameters in a simplex to do that and 
it’s easy because you approximate it by an ellipsoid, transform the ellipsoid to the unit 
ball or something like that and then stick a simplex around that and you can even bound 
the ratio or all that. It won’t be N; it’ll be N-squared or something. It doesn’t matter; it’ll 
be something. It’ll be bounded. Question?  

Student:[Inaudible] rectangle instead of –  

Instructor (Stephen Boyd):Oh, you mean a rectangle that can rotate? Yeah, then you 
can do it. Right. Then you can do it. Of course, we don’t know how to calculate such a 
thing, but if you could do it, that gives you enough degrees of freedom to cover it. Okay. 



So ellipsoids are not just sort of convenient things that describe shapes of things. It’s 
actually very worthwhile to understand and remember that there’s a sense in which they 
capture sort of the, let’s say, yeah, something like the first order approximation of any 
convex set, as an ellipsoid.  

By the way, let me mention one more property of this. Suppose you took, let’s say, 
ee263. Let’s just suppose you did. Okay, and someone says, “What are you doing?” Or 
you take a control class or for that matter you take a statistics class. And someone says, 
“What did you do all quarter?” Everything you did involved quadratic norms, right? 
You’d have quadratic functions.  

In control you’d have X trans plus QX. In statistics, it would be hidden by something else 
or whatever, and someone would then ask a question like, they’d say, “What did you 
learn in two seasons?” “Well, I can minimize a norm.” And they’d say, “A two norm, 
really and then they’d say, “Does the sum of the squares actually come up in your prop? 
Is that really what’s important in your helicopter design?”  

And you could look at them and see how gullible they are and if they look gullible you 
could try to go, “Oh, yeah, absolutely.” Yep, sum of the squares of the vertical 
acceleration, pitch rate, absolutely.” That can’t be more than 1.3. If they go for it, the 
conversation is over. If they don’t go for it, then you’d say, “All right, I’ll tell you the 
truth. No. We don’t care about sums of squares of things. It’s just because we can do it 
and because that’s the only class I took so far.”  

So that’s generally the truth about [inaudible] squares. Okay, so all right. How does that 
have to do with this? Well, let’s suppose that there is something you really care about like 
maneuverability or ride comfort of something. It doesn’t really matter. And suppose what 
you do now is you go around and you run huge tests, wind tunnel tests. You have pilots 
write things out and say whether they like the ride or not.  

And anyway you end up with some weird set that looks like, you know, some kind of 
weird convex set that looks like that. That’s like nothing’s happening and this is sort of a 
set of ones judged by, you know, wind tunnel simulations, actually getting pilots to ride it 
and all that and they’ll say this is okay. If you’re – this is of course, in a multi-
dimensional space, but you know, and if you’re in that set, you know, one of these things 
is like pitch rate, one’s this, one’s the RMS. It doesn’t matter.  

If you’re in that set, everything’s cool; that’s it, okay. That’s the real set, and this is not 
an ellipsoid. Let me tell you it is not an ellipsoid period. That’s the real – this is the set, 
okay.  

Now, this actually – now what you know now allows you to do something that would let 
you sort of go back and in a posterior way justify 263 material. For that matter, you could 
go back and justify ordinary regression and here’s how you do it, like somebody 
suggested.  



That’s actually the set of acceptable ride qualities as judged by horrible long simulations, 
questionnaires with pilots and blah, blah, blah and whatever, you know, so all right.  

This is where people like threw up and stuff over here. This is where they crashed 
actually. This is where they threw up, but anyway, so what do you do next. Precisely, you 
just make an ellipsoidal into an approximation. Probably in this case, you might want to 
make this one. Again, it’s you know, you might want to make the inscribed ellipsoid.  

Then you take this and you go back to the intern who has only taken 263 and you say, 
“This is the norm you’re going to use. And they, yeah it’s a stupid 6 X 6 matrix or 8 X 8 
matrix of a bunch of entries, and they go, “Where did all those come from?” And you 
say, “Last year’s intern,” right.  

It was a lot of work to get it, but you see my point here, that you can actually – by the 
way, the ideas I'm talking about as far as I know, like no one actually uses them in 
practice, but everyone should use these ideas in practice, right. I mean this just comes up 
everywhere. I mean if you’re in control, a lot of the methods actually fielded involve 
quadratic forms like Q and A: and S, then you ask the truth is where do they come from. 
People make them up.  

They don’t have to be made up. You can actually do something intelligent and actually 
get things to do shape the way you really – that do actually capture, not exactly, 
obviously not exactly. But crudely, they capture the shape of the set.  

By the way, over here, this sufficiency was a factor of N. That’s something that only 
matters to a theorist. Okay, and by the way, can anyone guess what’s the worst set to 
ellipsoidally approximate? Just in R2.  

Student:Something like –  

Instructor (Stephen Boyd):Let’s first talk about ellipsoidal approximations in R1. 
That’s a short conversation. How does it go? How well can you approximate a convex set 
in R1 by an ellipsoid in R1?  

Student:[Inaudible].  

Instructor (Stephen Boyd):Oh, very well because they’re both intervals. Okay, so that 
was the N equals 1. Let’s do N equals 2. Well, you know it can never be worst than 2. 
Can it be as bad as 2, a factor of 2 – that’s if theory says 2. And the answer is sure. A 
simplex is like the absolute worst thing you could be asked to approximate because in 
that case, you’re outer ellipsoid looks like that. Your inner one looks like that. They’re 2 
to 1. That’s the end, and that’s general.  

So this N here cannot be made better. Now, a simplex is kind of a weird sick thing. It’s 
got all sorts of corners, you know it’s got corners on it. In fact, it’s a sort of, it’s as pointy 
as a convex set can be roughly, okay.  



Now, most what [inaudible] a lot of convexes that come up in practice. The 
approximation number is definitely not N. It’s often much, much less, and for example, if 
we actually went out and rode and worked out ride qualities or things like that for a 
vehicle or anything like that, you would find most sets that arise through natural causes – 
what I'm about to say is, of course, just total hand-waving, but I believe it to be the case.  

Well, actually since I'm not making a statement, it cannot be disproved; however as a 
rough idea, I will say this, most of the convex sets that come up through natural causes 
can actually be approximated by ellipsoids stunningly well. Nothing close to square – to 
N. Okay, so I just mentioned that. That’s for those of you who are worried about that 
factor of N; you needn’t be. Okay, so that’s our discussion of that.  

Centering – that’s an interesting thought. So in centering, it works like this. You have a 
set and you want to find a point that’s deep inside the set. By the way, we’ve already seen 
one application of this, which is design centering, which is yield maximization.  

So in yield maximization, this set describes the set of acceptable values. In other words, 
the point that you’re looking for is what you tell people to shoot for and manufacture. 
That’s what you want to do.  

I mean you can also think of less socially positive applications. This could be the range of 
points where if you’re within there, you take out a target. And then you want to ask 
somebody you know, “Where do you put your sight?” Right, and that’s another question. 
The answer is you don’t put it there, and you know, you put it right in the center, what 
center. You want to maximize the probability now that you’re in the set.  

But we’ll go back to manufacturing, okay. So here, now the simplest, actually the yield 
[inaudible], we already talked about that, that’s actually a convex problem provided the 
probability distribution is log concave. Doesn’t mean you can solve it. You can, but not 
by methods from this quarter, but you can solve it. Abstractly it’s a convex problem.  

So a lot of people use a various eurisitc for that. They work unbelievably well. One is this 
– you find the center of the largest ball that fits inside the set depending on what the set 
is, I mean if it’s a polyhedron, for example, we already looked at that like Day 1 for 
linear programming.  

This is a linear program to calculate the maximum volume, but the largest ball that fits 
inside the polyhedron. That’s an LP. By the way, I can say largest because you would 
only say largest ball if this were – you’d only use the word largest if there were linear 
total ordering.  

For balls, there is because – at least if you’re talking about the size of a ball, it’s the 
radius and so the totally ordered. You would never say what’s the largest ellipsoid inside 
a set because that makes no sense. You have to put in something like largest volume 
ellipsoid or something like that.  



Okay, so that’s an LP, and we just worked out this.  

Calculating the maximum volume ellipsoid in a set is also a tractable problem and this is 
call the maximum volume ellipsoid centers. So it’s called XMVE. This is X [inaudible], 
and you can think of lots of others. One, this one has a very important property.  

It’s affine invariance. That affine invariance means if I transform the whole problem by, 
for example, scaling the coordinates, if I stretch it some way, that will change radically 
the [inaudible] center.  

But it won’t change the maximum volume ellipsoid thing because everything will 
transform by the fact the determinant of T where T is the linear part of the 
transformation. So this is affine invariant. Now as to which is better; which is not.  

It just means that if someone’s calculating in [inaudible] center, you should ask them the 
following question. How well do you trust your choice in coordinates, you know, have 
you scaled everything properly? You know, this king of thing. Is it true that X3 being on 
the order of 1 is about the same as X2 being on the order of 1.  

If they don’t immediately answer that question with, “Oh, yes, I’ve been very careful to 
scale everything here, very carefully so they’re all on the same order,” they don’t 
immediately answer it that way, then you need to poke them and bug them and say you 
better check your scaling, because it matters here. Here it doesn’t matter at all, those 
affine invariant.  

So, okay. Another center is the so-called analytic center of a set of inequalities 
[inaudible]. That’s a typo. So this we’re gonna look at in great detail in two weeks from 
now so when we actually talk about [inaudible] point methods and how do you solve all 
these problems. So we’ll save that for then mostly.  

But it’s this. What you do is you set up a problem. You have some equality constraints 
and you have some inequalities, and these don’t really matter. You want the margin here 
is actually minus FI of X. So for example, if minus FI of X is 0, you’d say it’s tight. 
Minus FI of X is 1, would say you have a slack or margin of 1 and you kind of want to 
minimize the margin.  

And there’s lots of ways you could maximize the minimum margin, but an interesting 
one is to maximize the product of the margins, which is the same as minimizing the 
negative sum of the logs of the margins, okay. So that’s another weapon.  

It sounds odd, but we will get to what it means later. We’ll also see that although this 
looks rather complicated, it turns out it’s shockingly low complexity, so we’re talking 15 
lines. Indeed 15 lines that you will write soon. So, and it turns out here by the way in this 
case, there’s also an ellipsoid inequality about if you calculate this you’ll get an inner and 
outer ellipsoid. Yeah.  



Student:[Inaudible].  

Instructor (Stephen Boyd):Yeah.  

Student:How would you extract that center?  

Instructor (Stephen Boyd):That’s part of the data. I mean I forget how we parametize it 
with B or D; does anyone remember. Yeah, so that’s easy. Yeah, you might have to do 
some calculations, but whatever it is it’s very, very straightforward. You just transform it. 
I don’t know where I was – no, forget it; it’s easy enough. It’s a quick linear algebra 
calculation to get the center.  

Okay. So here’s an example – this will be important later, so I don’t mind going over it. 
Also, by the way, just the idea of an analytic center is something that in many 
applications should be propagated. You’ll see lots about this in the next two or three 
weeks and related problems, but it’s something that should just be propagated because 
anytime you find a problem where someone says, “Here my specifications. Here are my 
inequalities. Pick me a point in them.”  

And you say, “Really, any point? Like what if I picked a point just barely in them,” and 
they go, “No, if you’re going to pick a point in them, you might as well get one that 
satisfies a bunch of them, you know or something like that.” Analytic center is actually 
probably a good choice and it actually comes up in a lots and lots of already comes up in 
things like maximum [inaudible] estimation and we’ll see all those connections; okay.  

So percent of linear inequalities, we have a polyhedron, and these are the level curves of 
this – this is a so-called log barrier function for this thing, this set, and you can see the 
level curves here. When you get really high curves, they kind of hug the shape of the 
polyhedron.  

At the minimum, it’s a smooth convex function. So it’s got a minimizer here. That’s the 
analytic center and the analytic center here, this is a smooth convex function near that 
minimum, this thing looks like a quadratic period. Therefore, the levels sets near the 
analytic center are ellipsoids.  

That ellipsoid is a pretty good approximator of the shape of this set and indeed there’s a 
bound. Now, the bound is interesting. The bound, so you can puff it up by, well a factor 
of M, that would be M-squared. You could puff up the ellipsoid by a factor of M, but M 
is not the space dimension, it’s the number of inequalities, so it’s a worse than the 
maximum volume ellipsoid or L'owner John ellipsoid. So that’s it.  

We’ll get to these ideas later. Okay. Let’s look at another topic is the idea of 
discrimination classification. It’s got lots of names, and let’s see how that works and so 
you want to separate. Here I have a bunch of points in RN, and they’re labeled. They 
have binary labels. They’re binary classification, so I can think of it this way.  



These, I'm labeling them actually by the symbol, so X is one set; Y is another. This could 
be a bunch of vectors of something where there actually was something present and this 
could be a bunch of vectors where something was not present or something like that, but I 
know which is which here. I'm told which are which.  

And what I want to do is this. I mean the oldest problem and by the way, linear 
discrimination, this goes back easily to MIT in the ‘40s and probably earlier than that, so 
this has a long, long history of linear discrimination.  

So what you really want to do is find out is there a separating hyper plane for this data 
set, very basic question and if there is, it means is the following set of inequalities 
feasible, that the X is lying on one side and the Y is on the other. Now, the variables here 
is A and B.  

Now, there is one difference here. These inequalities are strict; okay. In fact, we haven’t 
dealt with strict inequalities yet, and we’re going to now and you’re going to see a trick. 
By the way, let’s work out the non-strict classification – let’s have that discussion right 
now. Under what circumstances can two sets of points in RN be non-strictly separated? 
That means when does there exist an A and B for which let’s say this is true. When?  

Student:Always.  

Instructor (Stephen Boyd):Always and by what choice of A and B?  

Student: 

Zero.  

Instructor (Stephen Boyd):That’s right; zero. If I choose A equals 0 and A and B equals 
0 and this always works, even if the points are all like messed up and next to each other. 
In fact, what if they’re identical. So that’s why it doesn’t make any sense to look at that 
problem. We have to look at the strict problem. You haven’t – we haven’t looked at strict 
inequalities yet.  

So now I’ll just tell you the trick is very, very simple here. These inequalities – take a 
look at them. They are equivalent to a set of non-strict inequalities. They are equivalent 
to these. Right, put a 1 and a minus 1 there. Okay. This trick you will be carrying out this 
trick. You need to get it. Okay.  

Here’s the argument. Watch this. If there existed any A and B, where a strict inequality 
held here, and strict inequality held here, this is homogeneous in A and B. So is that. So 
suppose the A and B you give me that satisfies this has this. These are, you know, 1E 
minus 5 and these are minus 1E minus 5. I can multiply those A and B by ten to the 5 and 
make the gap plus and minus 1. Okay, so I can make it this way.  



Now, conversely, if A and B satisfies these inequalities, obviously these imply that. So 
that’s how you do this, so these are tricky and you have to – and if you do these wrong or 
casually, just you know, normally, there’s a lot of cases where it is strict inequality can 
just replace it with a non-strict inequality, and no one’s gonna get hurt and in fact, the 
original one didn’t even make any sense.  

Here’s an example. If someone says to you, I'm designing a circuit and the power can’t 
be more than 50 milliwatts and you say, “Really,” and then later you get a design 
document and it says as Item No. 1, P is less than 50 milliwatts, like that. It probably 
means whoever made this up hasn’t thought very much or whatever, because you’d say, 
“Really, could it be exactly 50,” anyway.  

This is silly. But they probably meant that and there’s no engineering difference between 
the two. Makes absolutely no sense because you’ll judge this by spice or something like 
that and your error will be, you know, it won’t be that good anyway.  

Anyway if you’re manufacture, it’s gonna be plus or minus several percent anyway. Just 
change the room temperature and it’s gonna change. So the point is, that’s a case where 
the distinction between strict and non-strict is totally irrelative. This is just due to the 
ignorance of the person who wrote the specifications. They didn’t know there was a 
difference, okay. So that’s this one.  

This is not one of those cases because if you just casually make these non –strict here, the 
answer is 0, okay. If you’re using some tool to get the answer, you’ll not get an answer, 
because if you give a problem to a solver like that, it’ll be very, very happy to give you 
the answer and it won’t be the one you want.  

So there are cases where the strict versus non-strict inequalities actually matter in 
practice. They matter a great deal. I mean also this all matters conceptually, too. So you 
should not confuse the two ever frankly, but okay.  

Now, to check if there’s a set if there is a separating hyper plane is actually just a set of 
linear inequalities. That’s this, okay – in A and B. So for us it’s an LP feasibility 
problem. There’s nothing more to say period. Okay, we will say more; we’ll say it next 
week, but that’s it.  

Let me just mention something that you might use this for. You might use it this way. 
You might actually take a whole bunch of snapshots of stuff where something actually 
happened like a target was present or something. Or a disease was present or something. 
This can be gene expression data.  

This could be the gene expression data, giant piles of gene expression data where disease 
was not present. Okay. These of course, would have a dimension. These Xs could be a 
million dimensional. For example, something like that. Okay, then what you want, I mean 
if, then supposed there were a separating hyper plane. There wouldn’t be.  



But let’s imagine that there were one. If there were a separating hyper plane, you could 
actually now do something quite interesting. Somebody shows up, you do the gene 
expression or array. You get the data and you plug it in and this number here will either 
be positive or it’ll be negative.  

If it’s minus 3, you might guess with some confidence, depending on if you believe any 
of this, that some disease is present. By the way, if it comes out about 0, what would you 
– that’s a good time to say we don’t know. So we’ll get to the shades business. So that’s 
the kind of thing you would use separating hyper planes for so it would be to basically 
predictions of new points where you don’t know which of the two outcomes actually will 
happen you want to predict. Okay, so we’ll quit here.  

[End of Audio]  

Duration: 77 minutes  


