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Instructor (Stephen Boyd):We’ll start with an announcement. It should be kind of 
obvious anyway. You should start reading Chapter 5. So I’ll go fast, not that fast, on our 
next topic, but you should be reading if you want all the details and things. You should be 
reading along with or even maybe ahead of us, Chapter 5. Okay. So we’re really gonna 
start this topic of duality. I think last time I did nothing but say a few things about it. 
They were kind of incoherent, but maybe I’ll make them coherent today. One way to 
think about duality is it’s a way to handle the constraints by incorporating them into the 
objective. That's the basic idea. So let’s see how that works and it fits in exactly with 
what I was talking about last time, which had to do with this concept of irritation versus 
value for a function and the idea of a hard constraint where you go from completely 
neutral to infinite irritation as opposed to a soft, something like an objective, and an 
objective, it’s just a linear irritation function or something like that that means the larger 
the function is the more irritated you get and the smaller it is, the happier you get. That’s 
gonna tie into the idea of duality. All right. So first we start with a couple of definitions. 
We start with a problem like this so minimize the objectives, some inequality constraints 
and quality constraints. We are not going to assume this is convex and in fact, some of 
the most interesting applications of the material we’re gonna talk about now, occur when 
this problem is not only not convex, but it’s a problem known to be hard. So that’s gonna 
be some of the most interesting applications. We form a lagrangian and the lagrangian is 
simply this, I mean, it’s really kind of dumb. You take the objective and to the objective, 
you add a linear combination of the constraint functions and the equality functions.  

So that’s it. Here you say, for example, that lambda three is the lagrange multiplier or 
dual variable or price, I’ll justify that term soon, associated with the third inequality, so 
FI of X less than zero, that’s what lambda three is. And in fact, you can even sort of get a 
hint at what’s going on here. If, for example, lambda three were six that would mean the 
following: up here this says that if F3 is less than or equal to zero, it’s perfectly okay; if 
it’s bigger than zero, it’s infinitely bad. When you replace this constraint by this charge, 
lambda becomes the price or you can call it a penalty and it basically says FI can be 
positive, that’s not a problem now, but you’re gonna pay for it, and for every unit that FI 
is positive, you’re gonna pay six here, whatever those units are in. Now, the flipside is 
actually quite interesting. You actually get a subsidiary for coming in under budget. Up 
here, as we said last time, there’s absolutely no difference between F3 of X, for example, 
being minus .001 and minus 100, absolutely no difference, both are feasible and you have 
no right to say that you like one better than another because it’s not an objective, it’s a 
constraint. Now, when you convert that one constraint to this sort of thing, something 
interesting happens. When F3 is less than zero, you actually get a subsidy because it’s 6 
times whatever margin you have, so when you convert this constraint to a term in a 
lagrangian, you actually get a subsidy for coming in under budget and you do like F3 
equals minus 100 more than you like it minus .0001. You get a subsidy. I’m just hinting 
at what you’re gonna see soon. That’s a lagrangian. Then we look at the so-called dual 
function or the lagrange dual function, it’s got other names, but let’s look at it. So the 
lagrange dual function is actually very, very simple. It just says minimize this lagrangian 
over all Xs. That’s what it says. So you just minimize the lagrangian. Now, actually it’s 



very interesting because what it’s really saying is this, and by the way, it’s a function now 
of these prices or dual variables. All sorts of ways to interpret this. You can interpret this 
as sort of the free market approach or something like that.  

This is the constrained approach where you simply say by fiet FI of X has to be less than 
zero, HI of X has to be zero then you could say, no, you know what, we’re gonna let FI 
float above zero, no problem, we’ll charge you for it the lambda I’s are positive. That 
would be the meaning here. But if FI goes less than zero, we’ll actually pay you for it. 
You’ll be subsidized and this is sort of the optimal cost under these sort of market prices. 
All of this will become clearer as we move on with this. Now, here’s an interesting fact. 
If you look at this function as a function of lambda and nu, what kind of function is this 
as a function of lambda and nu for each X. It’s affine. Yeah. It’s linear plus that’s a 
constant. Okay. So it’s affine. And the [inaudible] of a family of affine functions is of 
course concave. So this function G, you can think of it as the optimal – we’ll get to it 
later – as a function of the prices, even if the original problem – even if these things are 
not convex, sorry, these are affine, that’s not convex. This dual function is absolutely 
concave so that’s – all right. Now, we get to something very simple, but it’s one of those 
things where you get a sequence of 12 simple things and you know the right sequence of 
12 simple things will lead you to a very interesting thing. So trust me, that’s what we’re 
doing here. It looks very complicated, it’s quite profound. It says, basically, if you can 
evaluate G as a dual function, you’re gonna get a lower bound on the optimal value of the 
original problem. That’s what it says. So the argument is just embarrassingly simple. 
Look at this thing and imagine X is feasible. For any feasible X FI of X is less than or 
equal to zero, but if lambda I is bigger or equal this term is less than or equal to zero so 
therefore, this whole thing is less than zero. If you’re feasible, HI of X is zero so it 
doesn’t even matter what the side of new I, this is zero and, therefore, it says that the 
lagrangian is less than F0 of X or any feasible X.  

Now, for infeasible Xs that’s false, but for feasible Xs it’s absolutely true that L of X, 
lambda nu is less than or equal to F0 of X because that’s zero and that’s less than or equal 
to zero. By the way, note the level of the mathematics being employed here. It’s quite 
deep. It relies on the very deep fact that the product of a non-positive number and a non-
negative number is non-positive, and also that you can add such numbers up and you still 
have something less than or equal to zero. So I just want to point out nothing has been 
done here. It’s just embarrassingly simple. Okay. Now, if you then [inaudible] this over X 
well then obviously it’s less than F0 of X tilde. This is true for any feasible X tilde and 
there’s no conclusion possible other than this. Okay. So let’s look at some examples. 
Let’s do least norm solution of linear equations, so here’s – now, of course this is stupid. 
We know how to solve this problem analytically, you know how to, it doesn’t even 
matter what the solution is. It doesn’t matter. We know everything there is to know about 
this, but just as an example let’s see how this works. Well, the lagrangian function is this; 
2X transpose X, that’s the objective, we add new transpose AX minus B so here, by the 
way, you have to write this as AX minus B = zero. You have to decide what H is. H is 
either AX minus B or something that’s B minus AX so all that would happen there is the 
sign on nu would flip or something, but it wouldn’t matter. I’ve written it this way, AX 
minus B = zero so. We’re gonna minimize this over X, that’s completely trivial because 



that’s a convex quadratic, that’s affine in X and you just take the gradient, you get 2X 
plus A transpose nu = zero and this is the optimal, that’s the X that minimizes the 
lagrangian here. All right. Now, we take that X and we plug it back into here to get G so 
when you plug this in here that’s the X that minimizes the lagrangian, you get this and 
you get some – well, first of all, let’s take a look at it.  

Evidently, this function here is concave because that is a positive semi-definite quadratic 
form. All we care about is a positive semi-definite quadratic form, but it happens to be 
positive definite. No, actually it doesn’t matter in this case because I’m making no 
assumption about A whatsoever in this case; everything is true no matter what I assume 
about A. Okay. So this whole function is concave quadratic so there it is, which we knew 
had to happen because the dual function is always concave. Now, here’s what’s 
interesting. And we’ve already learned something. It’s not a big deal because I know how 
to solve this problem, but look at this. What it says is the following; if you come up with 
any vector nu at all, which is I guess the size of B, the height of B, let’s call that M, you 
come up with any vector nu at all and you simply evaluate this function then whatever 
number you get is a lower bound on the optimal value of this problem. In this case, it’s 
totally useless. If that’s a small problem – say, X has a thousand variables or something 
like that, this is goofy because we know how to solve this problem extremely efficiently, 
get the optimal solution, we don’t need a lower bound on it. This is actually immediately 
useful. Let’s look at a standard form LP. So I want to minimize C transpose X subject to 
AX = B X figured or = to zero. Just standard LP. Okay. The lagrangian is C transpose X 
plus, and I’m gonna add a lagrange multiplier for this, that’s nu, transpose AX minus B 
and then here – to put this in standard form you really want to write it. You have to write 
it as minus X is less than zero so these are the FIs over here. Okay. So if I simply form 
this thing and that explains the minus sign here on the lambda. Okay. So that’s your 
lagrangian. What kind of function is the lagrangian in X? Hey, look at that, that says 
linear doesn’t it? And it seems to me that that is false, I believe. That’s the name for 
something that’s not true. Isn’t that correct? You agree with me? The lagrangian is not 
linear in X. That’s ridiculous. Is that affine? L is affine in X. It’s affine because there’s 
this constant term minus nu transpose B here. Okay. Now, this leads us to something. It’s 
actually related to something on the homework from this week, which was – here’s a 
very, very simple linear program. Ready for it? No constraints. How do you minimize an 
affine function? How do you minimize an affine function? More than a small number of 
people were stumped by this because it’s such a stupid question, I think. Actually, it’s not 
a stupid question, sorry, it’s just that they wanted to make it more complicated. How do 
you minimize a linear function?  

Student: 

[Inaudible]  

Instructor (Stephen Boyd):What’s that?  

Student:[Inaudible]  



Instructor (Stephen Boyd):What’s the minimum of a linear function? Just in R2 I have a 
linear – what’s the minimum of X1 minus X3?  

Student:[Inaudible]  

Instructor (Stephen Boyd):X2. Sorry. Go ahead. What is it?  

Student:It’s minus infinity.  

Instructor (Stephen Boyd):Of course. It’s minus infinity. You have level curves which 
are hyper planes and you just go as far as you can in the direction minus C, it’s minus 
infinity. So there’s nothing, there’s no mystery here and what’s the minimum of an affine 
function. There’s no mystery here. Okay. By the way, notice that that’s a valid – so if G 
is minus infinity, it’s cool, it’s just minus infinity and note that it is indeed a lower bound, 
however it’s an informative lower bound because if somebody comes up to you and says, 
“Can you help me get a lower bound on this,” you can just automatically say minus 
infinity. Exactly one. What’s that? When the function is zero. And that’s it. That’s the 
only way. So in fact, if you minimize this over X, you will get minus infinity. One 
exception. If C plus A transpose nu minus lambda is zero then this whole thing goes 
away and you get that. So the dual function for the standard form LP is a very interesting 
function we’re going to look at it very closely. It’s this. It is a function which is linear on 
this weird affine set and it’s minus infinity otherwise. By the way, that function is 
concave. Right? You can just visualize it. I mean, it’s kind of weird. It would be an R2 
like my drawing a line like this and here are the values, 0, 1, 2, -1 and then you have to 
visualize this so if you want to make a graph coming up. Slope this line up and now what 
I want to do is everywhere off that line the function guy is minus infinity so just make it 
fall off a cliff everywhere else. That function is concave. Well, it has to be concave 
because we know the G is always concave. Okay. But if you want to visualize it, that’s 
what it looks like so it’s a weird thing, it’s linear, but then off this thin affine set, it falls 
to minus infinity. Okay. So that’s what G is. Is there a question?  

Student:[Inaudible] LP is affine [inaudible]?  

Instructor (Stephen Boyd):Okay. So actually the question is this function, which I write 
this way. You just have to blur your eyes because I’m asking you what kind of function 
of X is it? Okay. So let’s look. That’s is a constant. That is a constant vector, but well, if I 
include the transpose here, it’s a constant roe vector, therefore, this is linear in X, I add a 
constant so it’s affine. Does that make sense? Okay. Okay. Now, this is really interesting. 
We can actually say what the lower bound property is. So the lower bound is this. This 
function is the dual function. It is always the lower bound on that LP. Now, of course, if 
you randomly pick lambda and nu, you’re gonna get minus infinity. Just minus infinity. 
Okay. In which case it’s still a valid lower bound, but it’s just a completely uninformative 
lower bound. It’s the lower bound that works for all problems. It’s the universal lower 
bound. So let’s see what we’ve come up with. It says the following. If you have this 
linear program here and someone says what is the optimal value of it, well, it depends on 
the context. If a person has a specific A, B, and C, and actually just wants to know solve 



my problem, you can run some code and solve the problem if it’s not too big and if that’s 
what they’re interested in. Okay. However, you can make a very general statement. You 
can say the following. If you find any vector nu by any means, it doesn’t matter how you 
find it, it’s no one’s business how you found such a nu, if you found a vector nu such as 
A transpose nu plus C is a non-negative vector, then you evaluate minus B transpose nu, 
that’s the lower bound on this LP. That strings together three or four totally obvious 
things, but I think you come up with some – that’s not obvious. Okay. Let’s do a quality 
constrain norm minimization. So here you minimize the norm of X subject to AX = B.  

By the way, we’ve seen that – in fact, I guess we just did that problem two examples ago 
– not quite. We did the case where this was norm squared and where this was the two 
norm, now, it’s completely general. Well, the lagrangian is the [inaudible] of norm X 
minus and then some horrible thing here, which is affine and here we have to be able to 
minimize norm X minus nu transpose AX, this is a constant so it’s totally irrelevant and 
you have to be able to do that. Now, this goes back to the idea of a dual norm and let me 
go to that so let’s look at that and if I want to minimize this thing – the question is what is 
this thing, what do you get here, right? And the answer is actually pretty [inaudible] 
straight from dual norms. In fact, we can do it for the two norm first just as a warm up. 
So for the two norm you’d say, well, look, if norm Y is bigger than one in two norm then 
I can align X with it in that direction and then this thing sort of over powers, it has 
enough gain to overpower this one and I can make it go to minus infinity. Okay. Now, on 
the other hand, if norm Y is less than or equal to one [inaudible] tells me that this thing is 
less than that and, therefore, this whole thing is bigger or equal to zero. So I could never 
ever make this thing negative. On the other hand, by choosing X equals zero, I can make 
it zero, so that’s clearly the optimal.  

So this is equal to and this generalizes now to a general norm. It’s either equal to minus 
infinity if the dual norm of Y is bigger than one or at zero otherwise. Okay. And in fact, 
that’s the dual norm. It’s from the definition of the dual norm. So this is what you get. All 
right. So applying this up here gives us exactly this. This is our Y and here you have it so 
once again, this dual function is not totally obvious. I mean, it’s not an obvious thing. It’s 
something, it’s linear, it’s a linear function, but it’s got a weird domain and in this case, 
it’s the set of points nu where the dual norm of A transpose nu is less than or equal to 
one. Okay. That’s that. Okay. And then you can go through the argument here and I 
won’t go through it, but actually now you’ve got something totally non-obvious. It 
basically says if you can come up with a vector nu, for which A transposed nu is less than 
or equal to one in dual norm, then B transpose nu is a lower bound on the optimal value 
of this problem. Here’s an example: ready for a dual feasible point? Nu equals zero. Well, 
let’s check. That’s zero. Zero is definitely less than one and now we have a drum roll to 
find out what lower bound we’ve come up with. The lower bound is zero and that’s 
actually not particularly interesting here because the objective is zero. Okay. So that’s 
what it says here. Okay. Okay. This gives you a parameterized lower bound. It’s 
parameterized by nu. Okay. Now, we’re gonna look at a problem and we’ll see it a whole 
bunch of times. It’s actually just a simple example, it’s a perfectly good working example 
of a hard problem. It’s two-way partitioning. It’s embarrassingly simple. It goes like this. 
I want to minimize a quadratic form subject to XI squared equals one and this means XI 



is plus or minus one. Okay. And let me first just say a little bit about this problem. We’re 
gonna see it a lot and just so you get a rough idea of what it means.  

So XI is plus minus one so we can really think of this as the following is you have a set 
of points, like, M points and what you want to do is you’re gonna partition them into two 
groups. Okay. That’s one group and then the other group will be this, okay. And we 
encode that by saying here’s where XI is plus one and here’s where XI equals minus one. 
So we’re gonna use the variable here, which is XI, which is the plus minus one vector, to 
basically encode a partition. It’s a partition. It’s just that it’s a numeric data structure to 
encode a partition, okay. All right. Let’s look at what the objective is. The objective is 
sum XI XJ WIJ and let’s just see what it is. So you sum over all pairs. If XI and XJ are in 
the same partition, what happens, what is XI XJ?  

Student:One.  

Instructor (Stephen Boyd):One. Okay. And then you add this to this thing. Now, this is 
something we want to minimize. Okay. Now, if XI and XJ are in opposite partitions, this 
is negative so I think that means that WIJ is a measure of how much I hates J. Did I do 
that right? I believe so because if W is very high, it means that if XI and XJ have the 
same side, you’re gonna be assessed a big charge in the cost. I mean, if XI is high and 
they’re in opposite things, you’re gonna decrement the cost a lot and happiness is gonna 
go up. Okay. So WIJ is basically how much I annoys J, but it’s symmetric so it’s the 
average of how much I annoys J and J annoys I. Okay. Now, if WI is small, it means they 
don’t care much. So in fact, this now makes perfect sense as you have a group of people, 
you have social network or something like that and you want to partition it. There would 
be obvious ones. If the sign pattern in W were such that like everybody liked everybody 
except one then it would be very simple; you’d just isolate that one nod. But in general, 
actually finding a solution to this problem is basically extremely hard. You can’t do it. So 
if this was a hundred or a couple of hundred, you can’t do it. It just cannot be done. Okay. 
So that’s the partitioning problem and for us, it’s gonna be a canonical example of a hard 
problem. By the way, there’s instances of it which are easy, I just mentioned when there’s 
some obvious solution, but I’m talking about the general case here. Okay. By the way, it 
comes up in tons and tons of other – my interpretation was sort of a joke, but the point is 
it comes up in tons and tons of real applications, it comes up in partitioning, it comes up 
in statistics, I mean, just everywhere. So my interpretation was a joke but it’s a very real 
problem with real applications. Okay. Now, the dual function is this. We simply take X 
transpose WX, we add as the lagrangian tells us to a linear combination of these 
functions. I write them as XI squared minus one so I get this and I have to calculate – this 
is the lagrangian and the lagrangian is quadratic. Okay. It’s a quadratic function. We’re 
gonna have a very short discussion about how do you minimize a quadratic function. The 
first thing you do is let’s talk about how do you minimize a quadratic form? So what is 
the minimum of a quadratic form so what is the minimum of a quadratic form?  

Student:[Inaudible]  

Instructor (Stephen Boyd):What is it?  



Student:[Inaudible]  

Instructor (Stephen Boyd):It can be negative infinity. I agree. When would it not be?  

Student:Within [inaudible]  

Instructor (Stephen Boyd):If the quadratic form is positive semi-definite then the only 
values it takes on are non-negative so it couldn’t be minus infinity then so that’s exactly 
the condition. The minimum of a quadratic form is minus infinity if that matrix is not 
positive semi-definite so if it has one negative eigenvalue, the minimum is minus infinity. 
Okay. Otherwise, if it’s positive semi-definite the minimum is zero because it can’t be 
any lower than zero and it can be zero by plugging in zero. Okay. Let me tell you what 
the lagrange dual function is for you right now. It is a lower bound on an optimization 
problem, gives a lower bound. It of course can give you – it’s parameterized by lambda 
and nu by these dual variables. Now, in some cases if you plug in some lambda nu you’re 
gonna get the following lower bound minus infinity. But it’s always a lower bound. In 
some cases, you plug in lambda nu and you’re gonna get actually an interesting lower 
bound that’s not obvious. So right now, you should just think of it as a lower bound. 
Lower bounds can be good, they can be tight, they can be crappy, we’re gonna get to all 
that later. Okay. Okay. I just want to tie together the idea of the [inaudible] function and 
lagrange duality. So if you have a function with just linear inequality and equality 
constraints, a problem, and you work out what the dual function is, it’s a minimum of F0 
plus – I collect this together and multiply by X and then that’s, of course, a constant. And 
what this means is the following. If I focus on this and then go and look up what the 
conjugate function is, which was the conjugate over X of Y transposed X minus F of X, 
that’s the dual, if you plug in also all the right minuses, you get this. It’s equal to that. 
Now, what that means is the lagrange dual function of this thing is exactly equal to this.  

It’s equal to that. Now, recall the conjugate functions often have domains that are not 
everything. It was actually the probability simplex was the domain of it. So that’ll 
automatically impose some inequality constraints in here when that happens, but here’s 
an example. The maximum [inaudible] problem is maximize sum minus XI log XI 
subject to some inequalities and equalities. And by the way, that’s already a really 
interesting problem because it says lots of things. It says find me the maximum entropy 
distribution that has these expected values – these are just known expected values. These 
can be moments, it could be probabilities, it could be anything and these are inequalities 
on expected values. So it’s really quite a sophisticated problem to ask. What’s the 
maximum entropy distribution, for example, on these points that, for example, has the 
following variance and has the probability in the left tail less than that. You could go on 
and on and make it a very sophisticated thing. That’s the maximum entropy problem. 
That’s this thing. And if you work out what that is when FI of X is the negative entropy 
here, that’s minimized negative entropy, you will actually get the sum of exponentials. So 
the dual function for a maximum entropy problem is gonna involve a sum of 
exponentials. Now, if you’re in statistics – and I said statistics not probability, this will be 
very familiar to you because it’s a connection between exponential families and 
maximum entropy and we’ll see more of this later. Just a hint. Okay. Now, we get to the 



dual problem and to write down the dual problem – I mean, it’s the dumbest thing ever. If 
someone walks up to you and says, “I have a lower bound on my problem, but it’s 
parameterized by this vector lambda and this vector nu,” and then you say the only 
interesting thing about lower bound is, “Well, that it’s a lower bound,” and if someone 
has multiple lower bounds, obviously the higher the lower bound, the more interesting it 
is.  

So you can just say okay, what’s the best lower bound, on the original problem, that you 
could establish by lagrange duality? What is the best lower bound? We don’t know if it’s 
sharp. We’re just saying what’s the best one and it kind of wouldn’t make any sense to 
really examine any other anyway. All right. That leads you just to this problem right here. 
Now, I want to point something out. This is always a convex optimization problem no 
matter what the primal problem was. Oh, by the way, this is called lagrange dual and 
sometimes it’s just shortened to the dual problem here. In fact, people say “the dual 
problem,” the same way we say “the optimal point,” even in situations where we don’t 
know that there’s an optimal point. We’re actually gonna see this multiple dual the way 
the word is used on the street. There’s lots of dual, but we’ll get there. For now, it 
actually really is “the lagrange dual problem.” And it says simply maximize the dual 
function subject to this. The subject to the lambda’s being positive, that’s all. Okay. Now, 
often what happens is G is minus infinity for some values of lambda and nu. We’ve 
already seen that a couple of times. That is a not interesting lower bound and it’s sure not 
gonna help you maximize something. To find a point where it’s minus infinity, you 
know, this thing could actually be minus infinity, that can happen, but the point is it’s not 
an interesting value. So in fact, often what happens is you pull the implicit constraints in 
G out and make them explicit. Okay. Now, here for example, let’s go back and look at 
this. The dual function for this LP is this weird thing that looks like this. I drew it 
somewhere. It was this sick thing here where this thing is kind of going up on a line, but 
off that line, the thing falls off to minus infinity and we’re just simply going to maximize 
that subject to lambda positive; however, it’s easier to simply take the implicit constraint 
out and you end up with something that looks like this.  

Okay. So here’s the so called standard form LP and then this is what it looks like when 
you have actually pulled out this implicit constraint. Technically speaking, this is not the 
lagrange dual of that. However, people would call this the lagrange dual so you’re given 
a little bit of license to form the lagrange dual and do a little bit of trivial rearrangement 
and people would still call it the dual or something like that. This is equivalent under a 
very, very simple equivalence of this. The lagrange dual of this thing is that where G is 
the sick function. I just want to point this out. Okay. And by the way, let’s see what 
happens here. That is also an LP and let’s see what it says. Here I can say something 
about this problem. If you have a feasible nu here then minus B transpose nu is a lower 
bound on the optimal value of this problem. This thing says, “Okay, you have a family of 
lower bounds, please get for me the best lower bound.” That’s what the meaning of this 
problem is. This also has beautiful interpretations in a lot of cases. So for example in 
engineering design, it’ll make a lot of sense. X will be a sub optimal design, for example, 
sorry, any X here, if it’s feasible, it satisfies the constraints, but something that’s feasible 
here would be a sub optimal design. Okay.  



The nu will have a beautiful interpretation. A dual feasible nu in that case is a certificate 
on a limit of performance. That’s what it is. That’s the meaning of nu here. Okay. 
Actually, we’ll see that when you look at a real problem, it will have physical 
significance. We’ll get lots of examples. If this is a question of how bad could something 
be bad, if, let’s say you’re at a bank and they want to know, okay, what’s the worst thing 
that could possibly happen, then a lower bound actually gets interesting. Yeah.  

Student:Could you please say why that was not, technically, a lagrange dual on the 
right?  

Instructor (Stephen Boyd):This?  

Student: 

Yes.  

Instructor (Stephen Boyd):Sure. That’s the lagrange dual, that’s why.  

Student:I mean, relative to the LP.  

Instructor (Stephen Boyd):No, they’re not the same thing. They’re not the same thing. 
This is minimizing a function, which is a weird function. It’s equal to minus B transpose 
nu provided that A transpose nu plus C minus lambda equals zero, okay, something like 
that and it’s minus infinity otherwise. Okay? So that’s what this is. And by the way, if 
you were very careful, it would make a different. Let me explain that. For example: 
suppose I throw in a nu for which A transpose nu plus C is not a non-negative vector, 
okay? Then in this problem when I say how about this nu, how do you like that, what is 
sent back to me is actually the infeasible token is sent back to me saying your nu is 
infeasible. Okay. Over here, it’s actually more interesting. Over here, if I throw such a nu 
in or whatever, what comes back to me is the object function sends me an OOD token, 
Out of Domain. Now, that’s a concave function and that means it’s minus infinity. You 
get two slightly exceptions are thrown in this thing. But I want to point out that these are 
just – you can call this just silly semantics and all that if you like, but it’s very important 
to understand these are not the same problem. By the way, don’t focus on these minor 
things. That’s something you can think about, you can read this, think about it on your 
own. Don’t let silly little technical things get in the way of what the picture is. The big 
picture is you have an optimization problem and you form another one called the 
lagrange dual. That lagrange dual problem, essentially, is saying what is the best lower 
bound on the optimal value of the first one I can get using the lagrange dual function. 
That is what’s important. Okay. So now we get to the idea of weak and strong duality. 
Now, weak duality says that “D” star is less than “P” star. Now, here, let me see how this 
works. Okay. So in this context, the original problem is called the primal problem and the 
lagrange dual is then called the dual problem. Okay. So that’s the primal and the dual and 
we’ll call – well, we’ve already assigned the symbol P star to mean the optimal value 
here. We’re gonna let D star be the optimal value of the dual problem. Okay. So optimal 
value of this is gonna be denoted D star. You always have D star as less than P star. 



Why? Any dual feasible point is a lower bound P star so the best one is also a lower 
bound. This is called weak duality. It’s called weak duality because let me review the 
deep mathematics required in establishing this, right, it hinged on properties such as the 
product of two positive numbers is positive in the sum of positive numbers.  

So it’s weak because you can explain it to somebody in junior high school. I mean, they 
might not have taken those 14 steps, but the point is it has nothing in them that’s hard so 
it’s called weak. Okay. All right. That’s weak duality. All right. It always holds. Convex, 
non-convex. It’s absolutely universal. It could be stupid. You could, indeed, have D star 
equals minus infinity in which case your best lower bound is of no interest what so ever. 
Okay. That can happen, but this is always true. Okay. Now, if we go to the partitioning 
problem and we ask what is the best lower bound on the two-way partitioning problem 
you can get from the lagrange dual you will form this problem. That is a semi-definite 
program. And now, things are interesting because, although this is something that was not 
known 15 years ago, and absolutely inconceivable 20 years ago, I can tell you this, this 
SDP, you can solve it, people can solve it. You can solve it like that for a thousand 
variables. No problem here. And if you knew what you were doing you could go, easily, 
to problems with 10,000 and 100,000. The point is, you can solve this SDP and you will 
get a lower bound on the two-way partitioning problem. That is fantastically useful if you 
couple that with a uristic for partitioning. So you do some crazy uristic, there’s lots of 
uristic; some of them work really well by the way. Now, you don’t expect it to work all 
the time because you are solving, after all, an NP hard problem in general, so you don’t 
expect it to work well all the time, but what happens is you’ll do a partition and you’ll 
say, “Here’s my partition and here’s the number I got,” whatever it is. It’s the X 
transpose WX and you want to know could there be a better one. You can solve this SDP 
and in fact, you’ll see in a lot of times the numbers are pretty close. Okay. At least it’s a 
good thing to know. You would know I have a partition, but there’s no partition that’s 
more than – I’m at most such and such sub optimal.  

And you might just say, okay, that’s good enough. All right. Okay. Strong duality, this 
will not rely on junior high math, okay. Strong duality is going to be that that lower 
bound is tight. That says, there’s a lower bound that goes all the way up to the optimal 
value. That’s strong duality and we’ll see what its equivalent to, but that is not trivial. 
And by the way, it often doesn’t happen. Okay. So in two-way partitioning problems, by 
the way, if it were true there, you’d have P = NP because this problem we can solve in 
polynomial time and so in fact, if P star were equal D star – and in fact, there’s even 
approximation. If you know about complexity and you have something that’s not even 
approximable or something like that then that tells you that you can’t even get something 
where you can bound the gap or something like that but I won’t go into that. Now, here’s 
an interesting part. When a problem is convex, you usually have strong duality. Okay. So 
that’s actually amazing. That’s gonna actually have a lot of implications. It’s gonna be 
equivalent to, by the way, it’s gonna involve the separating hyper plane something. We’ll 
see what it connects to. There are multiple books, multiple courses, not here, but at some 
other schools; you can take entire courses, read books, thousands of papers that 
elaborates on this one word, usually. Okay. Now, basically these are called constraint 
qualifications. So a constraint qualification theorem goes like this. It says if the primal 



problem is convex and then you insert your constraint qualification here, okay, then P star 
equals D star. That’s a constraint qualification. You could devote your life to this. On 
occasion, these issues actually do come up, but maybe less frequently in applications than 
the people who devote their lives to it would like to think. I’m saying that of course 
because their grad students will watch this and then alert them to it.  

So I’m just making trouble. Now, by the way, if you’re in this industry, sub industry of 
constraint qualifications, then this like the big, the sledge hammer, the most 
unsophisticated one there could be possibly be, this is the basic one that everybody 
knows. Okay, this is the least squares or something like that of the constraint qualification 
worlds, its Slater’s Constraint Qualification, although, actually, the correct name here 
would probably be Russian, but we won’t get into that. So let’s call it Slater’s Constraint 
Qualification and it says this, if you have a convex problem like this, it says if there is a 
strictly feasible point, if there exists one, then P star equals D star. Strictly feasible means 
not just that you met the inequality constraints, but you do so with positive margin for 
each one. That’s the condition. Okay. Now, I should add that basically, it’s completely 
clear, that for most problems that covers everything in engineering, pretty much, I mean, 
as much as people would make fun of Slater’s Constraint Qualification and give you 
reasons and they could make examples up why it’s not sophisticated enough and sure 
enough, there are problems where you don’t have a strictly feasible point, but for most 
problems that come up in engineering, anything in machine learning, pretty much 
anything, this makes perfect sense, right.  

For example, if the third inequality was a limit on power, it doesn’t make any sense to 
say – just think about it, right? If Slater’s condition failed to hold, it means their existing 
circuit dissipates 100 milli-watts, but there’s no circuit that dissipates 99.999999 because 
if there were, Slater’s condition would hold. Everybody see what I’m saying here? If 
solving that problem relied on these most fantastically subtle facts as to whether strict 
inequalities held or weakened equalities and one, but not the other held, then I got news 
for you, you’re not doing engineering, you’re not doing statistics, you’re not doing 
economics, you’re doing something like peer analysis. Okay. So that’s my little story on 
it. Again, there are actually cases where these come up in practice, but they’re pretty rare. 
And mostly, I’m saying this to irritate at other universities, my colleagues, who will be 
alerted to this, watch this tape and be very angry. But I thought I’d mention this. Okay. 
All right. So let’s go to the inequality form linear program. Here you want to minimize C 
transpose X subject to X less than B. G of lambda is C transpose X plus lambda transpose 
AX minus B because I put the B on the left-hand side to make this F less than zero. I do 
this and I infamize this, but we know how to infamize a affine function. You get minus 
infinity unless the linear part vanishes so I get this and so this is the dual problem. Notice 
this is actually not the dual problem. So if there’s lawyers present, you would say, “This 
is a problem that is trivially equivalent to the dual problem,” okay, but after a while if 
there are no lawyers present you’d just say that’s the dual problem or something like that. 
So that’s it. Okay. Now, Slater’s condition says that if the feasible set – of course the 
feasible set is a polyhedron and by the way, one possibility is the feasible set could be 
empty, which in fact, is a polyhedron. What Slater’s condition says geometrically is very 
simple. It says if that polyhedron has non-empty interior, that’s what this means, it 



means, basically, that there’s an interior point, if it has a non-empty interior then you 
have strong duality so you have P star equals D star. Okay. So that’s the picture.  

Let’s look at a quadratic program. Let’s minimize X transpose PX subject to AX less than 
P. That’s minimizing quadratic form over a polyhedron, the dual function is this X 
transpose PX and we’re gonna assume P is positive definite. Actually, that’s so that I can 
avoid the horrible way to write down – it’s not that big of a deal, but the horrible to 
infamize a general quadratic function with a linear term because I don’t feel like doing it 
so this will work out. So here the dual function is you infamize over XX transpose PX 
plus lambda transpose AX minus B here like that and now I minimize over X. Now, the 
nice part is P is positive definite so I know how to minimize this. It’s P inverse times 
whatever something. I’m not even gonna do it because it’s easy to minimize a strictly 
convex quadratic function so I minimize it. I plug that X back in here and I get this thing, 
okay, which is I get minus one quarter lambda transpose A, P inverse, A transpose 
lambda something or other and my dual problem then looks like this. By the way, this 
really is the dual problem because in this problem, up here, notice that the dual function, 
the domain is all of our – let’s call it RM, it’s all of RM. Okay. So in this case, the dual 
function is domain is everything, which is to say, you get a lower bound for any – if you 
plug in random numbers lambda and you’re not gonna get a trivial lower bound. Okay. 
You might get a rather stupid one. For example, you might get the lower bound minus 
seven. Let’s talk about the lower bound minus seven here. Why is the lower bound minus 
seven valid for this problem? Because the objective is always non-negative, but the point 
is, you get a lower bound and you get this. So that’s the dual problem. And by the way, 
what we’re saying here is not obvious at all. What we’re doing is we’re saying, you want 
to solve this quadratic program – we haven’t yet told you how to do it or how it’s done or 
anything like that, but we’ll tell you this, if you come up with any vector lambda that’s 
non-negative and you evaluate this concave quadratic function, you get a lower bound on 
the optimal value of this thing. This has lots of uses. For example, suppose someone says 
I know how to solve this problem and you say, “How did you do it,” and they go, are you 
joking, – that’s, like, “If I told you, I’d have to kill you.” I’m patenting it right now in 
[inaudible]. Okay. I can’t tell you how I did it.  

And you say, “Well, why should I believe that that’s the optimal X, how do you prove it? 
You say, “Well, watch this.” You say, “Check out this lambda, notice that it’s bigger than 
or equal to zero,” and you go, “Yeah,” then you evaluate that number and that number is 
equal to the value up here of the point. That, by the way, ends the discussion. That X is 
feasible and by the way, you would call that lambda a certificate proving it. Everybody 
got this? And notice that you didn’t have to say how you did it. Everyone got this? And 
then you’d say, “Hey, how’d you get the lambda,” and you go, “Like I’m gonna tell you 
that either.” Now, Slater’s condition says the following: If this polyhedron has non-empty 
interior, then these are absolutely equal then their always exists a certificate proving 
optimality of the optimal X. Always. So okay. By the way, a very small number of non-
convex problems have strong duality. I’m not gonna go into it because it’s complicated 
and so on. This is actually covered in an appendix of the book and I would encourage you 
to read it. This one is not obvious. And actually, there’s a whole string of these. There’s, 
like, 15 of them or something like that and they’re just weird things that have to do with 



specific problems that are non-convex and just happen for deeper reasons to have zero 
duality gap.  

The quadratic ones are the ones we collect at the end of the book in one of the 
appendices. There are others, you will see them, they’re kind of weird and some of them 
are quite strange. One I’ve seen recently where it involves complex polynomials of 
degree four. Right? And then something that should have zero duality gap and it comes 
down to something in algebraic geometry, but that’s always the way these are. These are 
not simple. This is just to say there are non-convex problems with zero duality gap. A 
few. Okay. Let’s look at the geometric interpretation. All right. So let’s see if we can do 
this right. So we’re gonna do a problem with just one constraint so what we’re gonna do 
is we’re gonna minimize – I’m gonna write the graph of the problem. What I’m gonna do 
is for each feasible X or each X in the domain, I’ll evaluate this pair. So although the 
problem may be happening in a hundred dimensions, for every X, I’m gonna plot a point 
which is in this plane; and one, basically, this tells you the objective value and this tells 
you the constraint function. So, basically, everything over here corresponds to feasible. 
Okay. And then the height corresponds to the objective value, so quite obviously, that’s 
the optimal value. Any point that ends up being colored there is optimal. Okay. So that’s 
the optimal value, P star. Everybody see that. So that’s the idea. So that point really has a 
very nice objective value, but it’s infeasible because it’s constraint function is positive. 
Okay. So that’s P star. Now let’s see what the dual is. How do you get lagrange duality in 
this picture? Well, lagrange duality works like this. You minimize F0 plus lambda F1. 
Now, on this plane, that corresponds to taking something here like this an it’s got a slop 
of – is it one over lambda or something like this, let’s see, it’s slope minus lambda so I 
take something like that.  

So for example, if you fix lambda and then ask me to evaluate the dual, what you do is 
this. You fix a slope here and you march down this way until you just barely leave this 
set, and that would be right there. Okay. And then when you work out what G of lambda 
is, it’s this intersection here. Okay. So this is G of lambda and now the dual problem 
says, “Optimize over all lambda,” so if lambda is zero, you get this. You go down there 
and G of zero is this number right here, which is indeed a lower bound on P star, it has to 
be. Okay. Now, I crank up the slope and as I crank up the slope G is rising and it keeps 
rising until you just hit here, this point, at which point here its right there. Okay. Now as I 
keep increasing lambda what happens is the optimal point is actually here and this thing 
is rotating around – it’s not a fixed point, it’s rolling the context, but because it’s got 
sharp curves, it’s just rolling just slightly. It’s rolling along here and as I increase lambda, 
G gets worse and worse. In fact, if lambda is huge, it looks like this and G is very 
negative. It’s still a lower bound, just a crappy one. Everybody see this. So D star is that 
point. Questions?  

Student:[Inaudible]  

Instructor (Stephen Boyd):We’re gonna talk about that, but it depends very much – so 
for example, in a non-convex primal in two way general partitioning problems, NP is 
hard, but the dual is a SDP. That’s easy. In that case, it can be infinitely far away. Now, 



in the case of a convex problem, now it gets interesting. So in a convex problem, you will 
see later that they both solve the problem and a lot of people get all excited and they go, 
“Oh, how cool, I can solve my problem by the dual.” It turns out that if you really know 
what you’re doing, the complexity of the primal and dual are equal if you really know 
what you’re doing. You will in about four weeks. Three. Whatever it is. Yes?  

Student:How did you rule out the bottom point for P star? You can’t just say it was that.  

Instructor (Stephen Boyd):How did I do it?  

Student:Yes.  

Instructor (Stephen Boyd):Well, the first thing I asked is I asked – this shows you the 
objective and the constraint function for every possible point in the domain, okay, now, 
that points not good, for one thing, it’s got a high objective, but it’s also infeasible. 
Anybody who landed on the right here is infeasible. So in fact, these are very interesting, 
but they’re not relevant as far as the optimization problem is concerned so we simply 
look at these. Now, every point that got shaded in here is feasible. Okay. The height tells 
you the objective value and so you want the lowest point among these. That’s clearly 
right there and you go across here and that’s P star.  

Student:Why would the right-hand be infeasible?  

Instructor (Stephen Boyd):Because your first coordinate here is your constraint function 
and F1 has to be less than or equal to zero. That’s what it means to be feasible. Okay. So 
that’s the picture. So here you have a gap. By the way, this thing strongly suggests 
something very interesting and you can see why convexity of the problem is gonna come 
in. When F1 and F0 are convex, this weird set G – now, what I’m about to say is actually 
not true, but it’s close to true – that weird set G is convex, okay, when something is 
convex, you have a gap here because this blob is non-convex so if this thing had to be 
convex you can’t have a gap. Everybody see this? That’s what is gonna happen. Now, I’ll 
tell you the truth. G is actually not convex, but its lower left corner, which is what we 
care about, is. Now I’ve corrected it and said the truth. By the way, you can also see how 
Slater’s condition works so if you take not G, but A, that’s the set of points that you can 
meter beat in a bi-criterion problem, so basically, if you take A then color in all these 
points here and now you can see A will actually be convex if that’s convex and that’s 
convex so A will have to look like this. Slater condition says that somewhere A goes a 
positive amount or it goes into the left side. These are the kinds of things you would 
study in a one of these whole courses on this topic. So that’s the idea. So you can even 
get how Slater’s condition connects to all of this. Okay. I’m gonna mention one more 
thing. We’ll get to one more topic. It’s a complimentary slackness. So let’s assume that 
strong duality holds and actually, I don’t care if the problem is primal or feasible. Okay. 
Convex. What I said made no sense whatsoever so let’s start over. What I meant to say 
was I don’t care if the primal problem is convex. That’s what I meant to say, but it just 
came out a weird permutation. Okay. So I don’t care if the primal problem is convex, of 
course the dual problem is always convex. So let’s assume strong duality holds and let’s 



suppose X star’s primal optimal and lambda star and nu star are dual optimal. That says 
this. By the way, this is basically what it comes down to, it says X star is an optimal 
point, lambda star and nu star, you can think of then as a certificate establishing 
optimality of X star. Okay. By the way, these ideas, we’re gonna use them from now on. 
They’re gonna come up computationally. All algorithms are gonna work this way. All 
modern methods – you haven’t done it yet, but whenever you solve a problem, it doesn’t 
just say here’s X and you have to trust the software or whatever.  

It doesn’t work that way, although you haven’t seen it return you yet. They also return, 
no exceptions, a certificate proving that it’s the solution so you don’t have to trust the 
implementation. Everybody see what I’m saying? These ideas are gonna diffuse through 
everything we do. So basically you think of that as an optimal point, optimal design, 
whatever you want to call it, this is a certificate proving that’s optimal because that’s 
what it is. That’s a lower bound on P star, that’s a point that’s feasible and satisfies and 
has objective value equal to this lower bound of P star, therefore, it is P star. Now, by 
definition this thing is the infinium over all X of G with these optimal lagrange 
multipliers. Okay. But if it’s the infinium over all X, it’s certainly less than or equal to 
this when I plug in a particular X and I’m gonna choose to plug in X star. Okay. So I plug 
in X star and I have the following. Very interesting. This says F0 of X star is less than or 
equal to F0 of X star plus something where every term in that is less than or equal to zero. 
Okay. And every term in that is zero. So this one is not relevant. Okay. We’ll get to that. 
Okay. Yes, everything here is zero. And now you say, wait a minute here, if this thing is 
less than or equal to that thing and that’s the same as that, then they’re all three equal and 
we have no choice but to conclude that the sum of lambda I star times FI of X star is zero. 
Okay. But there’s more than that. Wait a minute. This is a sum of numbers, all of which 
is less than or equal to zero. If you have a sum of numbers, which are less than or equal to 
zero and it’s equal to zero, there’s only one conclusion; every single one of those 
numbers has to be zero. And that says the following: lambda I star times FI of X star is 
actually equal to zero for all of these. Okay. And that’s known as complimentary 
slackness and what this means is the following: it says if you have any primal optimal 
point and any dual optimal point, the following must hold; if the optimal lagrange 
multiplier is positive or zero then that thing has to be tight. If a constraint is loose at the 
optimal point, these lagrange multipliers have to be zero. Okay. So this is gonna have lots 
of implications and when we give other interpretations of what all this means, it’s all 
gonna tie in, like, with these things being prices for example. But we’ll quit here for 
today.  

Student:[Inaudible]  

Instructor (Stephen Boyd):Exactly.  

[End of Audio]  
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