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Instructor (Stephen Boyd):All right. Now I guess I’ll take that as the – as a sign that 
we’re on. So actually, first of all, embarrassingly, I guess I have to introduce myself even 
though it’s the second week. And I have to apologize for not being here last week. I’ve – 
actually, for the record, I’ve never done that before.  

I’ve never missed an entire first week, and I promise I won’t miss any more classes, 
maybe, mostly, it’s – anyway, I’ll make a very – if I miss anymore classes, it’ll be for a 
really, really good reason.  

Anyway, you were in very good hands with Jacob, so that’s okay. A couple of 
announcements [inaudible], I’ll start with a bunch of administrative things. The first is 
that we have two more TA’s. This is Argerio Zimnus, who is sleeping, as most senior 
PhD students would be at this hour, and Cwong Mo Co is over here.  

What we’ll be doing is adding more office hours both for them. We now have – since we 
now have essentially like an army of TA’s, we’ll – we can have – we were joking about 
just having office hours like 24/7. I don’t think we can pull that off yet, but we’re going 
to do something like that, and in fact, I do have some questions. Also I’m going to add 
office hours for myself, and we don’t know – we’re trying to figure out what – I don’t 
know, if people have opinions about where we should distribute the office hours, so I 
don’t know. We have our own conjectures, but if anyone has any other?  

For example, in my case I might add them Tuesday and/or Thursday afternoons. What do 
you think? Yeah? Oh, that was a yes, oh, okay. Okay, all right, fine. Then I’ll do that. I’ll 
add office hours for myself, and for the TA’s.  

Now this week, of course, is chaos week, otherwise known as the equals’ week. If you’re 
not in this department you’ll – you actually – you cannot even imagine what this week is 
like, but just look around you and you’ll get the idea.  

If you’re in this department, you know full well. So those office hours, at least in my case 
will kick in – have to kick in next week, but look to the website for that. Let’s see, a 
couple of more administrative things. Here’s one, and I – it has to do with the homework.  

What we’re going to do is we actually did a little bit of planning for the homework, and 
the way it’s going to work, and actually it’s a good excuse for me to say a little bit about 
how the course is gonna go for a while, and this is actually substantive.  

Homework 1 and Homework 2, Homework 1, which you’ve already started – yes? Okay, 
so Homework 1 and Homework 2 are going to be just these big long slogs through – I 
don’t know, it’s – you’ll have nightmares about it, and people coming up to you on the 
street and saying, is this set convex, is this function convex, and things like that for years.  



But the nightmares will subside eventually. They’ll always be there to some extent, so 
there’ll be little triggers later in your life that will set it off again. Someone will say 
something like, which of the following, and you’ll – something will remind you of it and 
you’ll get all on edge.  

But seriously, what we’re going to do is this; we’re trying to go fast over the first 
material, which is actually a little bit, I mean, it is interesting. We’re going to use all of it 
eventually, but it’s sorta the mathematical basis of what we’re gonna do, and so the idea 
is to actually not cover it as well as we should.  

Meaning, we’re going to go fast. Faster than you – there’s no way you could kind of 
absorb every subtlety. So what we’d like you to do is read the book. I mean, that goes 
without saying. Read the book, you’ll do the homework, listen to the lectures, and you’ll 
get maybe 75 percent of it, something like that.  

Actually, that’s enough because what’s going to happen then is in – by Homework 3, it’ll 
actually get interesting and we’ll be doing a lot of applications from then on, kinda mixed 
in with new material, and at that point it gets interesting. So the idea is to avoid having 
something which for four weeks, non-stop, is essentially just a math course, so that’s 
sorta the rational behind this.  

On your part what it means is this; if you think we’re going fast, you’re right, we are. But 
it also means don’t worry about getting absolutely everything. All the things we’re gonna 
to see you’re gonna get lots more chances, and it’ll be more interesting later because it’s 
gonna be in an applied context.  

Having said that though, this is your time to kinda get down some of the basics. Okay, so 
that’s our plan for how the course is gonna go. I should also say that there was one 
change. I don’t know if it was announced yet, and that is that the homework we’re gonna 
try to have graded a little more seriously.  

So the – then for example 263; in 263, the homework’s were graded on a scale of 0 to 4, 
very crudely. That’s nominally two bits. The actual amount of information from the 
entropy was on the – of .2 bits. We haven’t worked out actually what the entropy is, but it 
was something like that.  

So we’re going to try to do – at least give you a little more feedback and make this 0 to 
10. It’s going to be imperfect, but we’re going to attempt that. So it’s going to look 
something like that. The idea is if it’s perfect, that’s a 10, if you – anyway, we’ll – when 
we – we’ll get into that later.  

Another admin – maybe just two more admin things and then we’ll move on to real 
material. The other is that we posted another reading assignment, and so right now you 
should be reading Chapter Two, and when you finish Chapter Two, keep reading, just go 
right on to Chapter Three, and four for that matter after that.  



And then let’s see, one more admin announcement. This is a bit specific, but it’s a good 
excuse to mention something. We got several questions about what do inf and sup mean, 
and that’s a good excuse for me to say a little something.  

So, you are welcome – if you don’t know what these mean, you’re welcome to treat these 
as min and max, okay? So, two – one thing is actually for questions like that. When we 
get more than 10 or 15 questions, we’re going to start a FAQ, on the website, so please 
let – what? Unknown Speaker: 

It’s already there.  

Instructor (Stephen Boyd):Sorry, it’s already there. Okay, it wasn’t there two minutes 
ago, but anyway. So there’s a – there’s going to be a FAQ section in the website. Already 
pushed over? Okay. So there is a FAQ section in the website. And so please check there 
if you have some sort of basic question first. And this is anything ranging from, I can’t 
get this software to work, to what do inf and sup mean, or when is Homework 3 due, or I 
don’t – I guess that’s posted on the website, but that kind of stuff. We’ll just post stuff 
there.  

And if you have suggestions, actually, for us to add stuff there, just send us an email. 
Okay. And on this topic, I should say a little bit; if you have had analysis, of course on 
mathematical analysis, then you know what infimum and supremum mean. If you 
haven’t, I would simply substitute min and max.  

And the way the course is going to work is something like this; the book, by the way, is 
not – I mean, there are many more mathematical books, so if that’s your interest on your 
website as pointers to other books, you can go insane. And it can be as formal as you like.  

By the way, outside the lectures you’re happy to hunt me down. I’ll tell you what I know, 
if this is your interest. Frankly that’s not really the whole point of this class, but I’m 
happy to answer any question about that.  

And I’m talking about things like detailed conditions, is this open, is this closed, what 
happens if the boundary – all these kinds of things. You know, what are the exact 
conditions under which this holds and things like that. In lecture I’ll be very caviler about 
these things.  

So boundary conditions don’t hold, everything I say is modulo, some technical 
conditions. In the book we, generally speaking, don’t lie. If you look in the book there’s 
just a few things that are wrong. Well, you can treat it as true, the book. But in lecture I’ll 
just be happy to just go broad brush over these things.  

And I think the class, by the way, is – just from past experience, if you’ve had – if you 
have a deeper understanding of all the analysis and stuff like that, great. But I haven’t 
noticed that it makes any difference in the experience. You don’t have to know it; you 
can work with an intuitive idea of these things. Not really worry too much about 



boundary issues and things like that and you’ll be just fine and totally effective when – at 
using these methods.  

Okay, so that’s all my admin stuff, any other questions? Otherwise, we’ll jump in. So 
today we’ll cover convex functions. And let me say a little bit about how this is going to 
work. If you go down to the pad here, that would be great. There we go.  

So we’re going to look at convex functions. First of all, just define what one is, and then 
look at various aspects of it. And let me say operationally why you need to know this; 
because one of the things you’re going to need to do is actually determine if a function is 
convex because to use this material, that’s like the most basic skill.  

So that’s why we want to – that’s why you want to look at all this and see how this 
works. Okay. So let’s just jump in. Well a function is convex if its domain is convex. 
That’s the first requirement. And the second is that it satisfies this inequality for theta 
between zero and one.  

So this says that if you evaluate F at – this point you saw in the convex sets lecture. This 
is a convex mixture, a convex combination of X and Y. So geometrically it’s a point on 
the line segment between X and Y.  

This says if you evaluate a function at a point on a line segment between X and Y, the 
result is actually less than the same mixture of the values of the end points. Or in terms of 
the graph, it says that if you take two points on the graph of the function and then draw 
the straight line that connects them, and I guess an old word for that is the cord, or 
something like this. Right, so that’s a very old word, is the cord, and it says – this says 
the cord lies above the graph.  

So that’s what – that’s what this inequality says. And actually you’ll get a very good idea 
of what this means eventually. Another way to say it just very roughly is upward 
curvature. So it just means curves up, that’s all. And by the way, of course, a convex 
function can look like that. It can be monotonic decreasing. Nevertheless, the curvature is 
upward for a function like that.  

It doesn’t have to be bowl shaped, but it should have positive curvature. Okay, now you 
say a function in concave is –F is convex. That means negative curvature, downward 
curvature, something like that. And it’s strictly convex if it’s convex. And not only that, 
but this inequality here holds with strict inequality provided data is strictly between zero 
and one. So that’s strict convexity. And you have strict concavity too.  

So let’s look at some examples; well – and these are just on R. So these are just functions 
you can draw. So the first is just an affine function, so that’s linear plus a constant. That’s 
– it has zero curvature, so it’s convex. And in fact what happens for a function that is 
affine is the following; is that in effect you have equality here. For always, for an affine 
function that’s exactly what it means.  



It means that if you do a linear interpolation between two points, you actually get the 
exact function value. So that’s essentially the boundary of a set of convex functions. 
Exponential, doesn’t matter what the coefficient is in here, this is convex. So if A is 
positive, it’s increasing, but the curvature’s upwards. If it’s negative, it’s a decreasing 
function, but it’s convex.  

Powers separate out. It depends on the values of the exponent. If the exponent’s one or 
bigger, or if it’s negative, or – well zero [inaudible] that’s just a constant one, in that case 
it’s convex. I mean, these are things you can just draw and see. So I think the question is 
to whether or not a function on R is convex, is a non-issue.  

Here’s how you check; you draw it, and you use your eyeball to see if it curves up. So 
there’s really no issue there, okay? So these – we’ll find formal ways to verify all these, 
but I think in terms of a function on R, there is no issue. You just – you draw, does it 
curve upward or not, that’s the question.  

And you have things like power of absolute value would be another one. Negative 
entropy is X log X. That’s something that goes like this; it’s got this infinite slope here 
and then goes like that. Something like that, and – but at point as it curves upwards, that’s 
negative entropy.  

So entropy, which is minus X log X is going to be concave. Okay? Now in concave 
functions examples would be like an affine function, and in fact, of course, if a function 
is both convex and concave, then it’s affine. And that’s clear because it says basically; 
this inequality holds one way and the other. That means its equality. This in fact implies 
the function is affine.  

Okay? This power’s in the range between zero and one, you know, like square root for 
example, you just draw this, and it’s clearly concave. Log rhythm, it’s another famous 
example. Okay. A little more interesting example on RN and RM by N, that’s the set of 
M by N real matrices.  

So here’s – of course you have an affine function on RN, that’s [inaudible] plus X plus B. 
That’s a general linear function plus a constant. So this is the form of a general linear 
function, affine function on RN. And that’s going to be convex, it’s also concave.  

Norms; so any norm is convex. That follows actually from triangle and equality, or – I 
mean, that’s part of the definition of being a norm. And examples are things like this; the 
so-called p-norms, which is the sum of the absolute value of XI and then to the one over 
P. Now for P equals one, that’s the sum of the absolute values for P equals two. It’s 
usually Euclidean norm, but for example, for P equals three, it’s the three norm, which is 
the cube root of the sum of the cubes of the absolute values of a vector. Yes?  

Student:Is there a half norm?  



Instructor (Stephen Boyd):That’s a very good question, is there a half norm? So some 
people would – let me answer it first – well let me just first give the answer. The answer 
is no because the square of the sum of the square roots is actually not a convex function, 
and therefore it can’t be a norm because norms have to be – all norms are convex. It’s 
actually concave.  

Now having said that, it is currently very popular in statistics and a bunch of other areas 
to use a – as a eristic for finding a sparse solution that involves – we’ll see this later, by 
the way, using things like the so called p-norm for P less than one, but it’s not a norm, so 
it’s weird.  

Student:Why do all the norms have to be convex?  

Instructor (Stephen Boyd):That actually follows from the definitions of – norm has to 
satisfy a triangle in equality and a homogeneity property. And then from those two you 
can establish it has to be convex. By the way, I should mention something here. It’s not 
easy to show – if you put – just for general P, just take the three norm. It’s not easy to 
show that’s a convex function. It’s not easy at all. So it’s – I mean, it’s not hard, but you 
have to know exactly just the right five or six steps to do it.  

So this is maybe the first thing I’ve said that wasn’t trivial, and it’s not. Okay, let’s look 
on matrices; actually, every now and then we’re going to – there are going to be problems 
where the variables are matrices. Sometimes square, sometimes they’ll be rectangular, 
but let’s look at a couple right now.  

What is an affine function on matrices? Well the general form looks like this. A trace of 
A transpose X plus B – by the way, when you see this you should read this as follows; 
this – by the way, some people write this as the inner product of A and X plus B. That’s 
the standard inner product on matrices, is trace A transpose X.  

If you work what it is entry by entry, it’s just this. So it’s as if – well it’s this, let me write 
it another way, let’s see if I can do this. If – that’s not totally – that’s mixing weird and – 
that mixing notation, but the point is this says that if you string out A as a vector, string 
out X as a vector and then calculate the ordinary inner product, well you would just get 
this, like that. Okay?  

And that’s the same as this thing. So this notation, you might as well get used it. When 
you see trace A transpose B – A transpose X, that really means you can think of it this 
way. And, by the way, another notation for this is A big dot X or something like that, so 
you’ll see that.  

Okay. Here’s an interesting function, which is the norm of a matrix. So that’s – and I’m 
talking about here, the spectral norm or the maximum singular value, or you can call it 
many other things, and there’s not that many other – actually there’s probably just a 
couple other names for it, the L2 induced norm and maybe the – now I’m running out of 
obvious ones.  



So this is the square root of the largest [inaudible] X transpose X. Now I want to point 
something out, that is very – that’s a very complicated function of a matrix. So that’s – it 
is not a simple – to take the matrix form X transpose X, find the largest [inaudible] value 
of it then take the square root of that.  

That’s a chain of quite complicated operations. So that’s a function which is not simple, 
but it’s a norm and it’s convex, okay? Now here’s one extremely useful property for 
convex functions, is this; a function is convex if and only if it’s convex when it’s 
restricted to any line. That’s very, very useful.  

And in fact, it’s one of the best ways to actually establish convexity of a function. And 
essentially it means the following; I already said that convexity of a function on R is a 
non-issue. Plot and use your eyeball. This says in principle, convexity of any function is a 
non-issue. Now the only hitch is you have to unfortunately plot and use your eyeball on 
all possible lines that pass through the set of which there are [inaudible] number.  

Okay, so that’s the only – but conceptually it means that there’s nothing subtle about 
convexity. It’s basically if you take some complicated horrible function, multiple 
dimensions, and you take a line, then – and then view that function on that line, you 
should view something that looks like that. And if that happens no matter what line you 
choose, it’s convex. That’s what it is.  

So this is not too hard to show, and may indeed be coming up on a homework or 
something for you. I mean, to establish it, this is the case. And let’s look at an example; 
so here’s an interesting function; if the log of the determinant of a positive definite matrix 
– by the way, that’s a complicated function right there.  

For example, if X were 10 by 10 and I wrote this out, it wouldn’t – it would take like a 
book to write out what that is because you’d have 10 factorial terms in log det X. So this 
is a log of a polynomial of these 100 by – well okay, it’s 10 by 10 so there’s only 55 
entries because the bottom is the same as the top or whatever. So there’s 55 entries, you 
know, free variable.  

So this is the log of a polynomial in 55 variables, and that polynomial probably would 
take a book. I’m just making a wide guess. By the way, it could be a whole lot bigger 
than a book too. I could be off a bit. But – so that’s – this is really a fantastically 
complicated function. Actually, this function is concave. That’s going to be very 
important. It’s going to play all sorts of roles later.  

So let’s actually show that, that this is concave using this technique. This is – well it’s the 
only technique you know except for applying the definition. Now – by the way, what 
does it mean to say its concave? Basically it says that if you have two positive definite 
matrices, and you evaluate the log and determinance of them, and then you form a blend 
of the two, let’s say the average.  



It says, the log of the determinant of that average is bigger than or equal to the average of 
the log of the determinants of the end points. Does everybody follow that? So that’s – and 
this is not an obvious fact. I mean, once you know it it’s obvious, but – well it’s actually 
not obvious, let’s just say that. Even when – once you know it it’s obvious only because 
you know it.  

Okay, so let’s see how this works; so to establish this we have – what we have to do is we 
have to pick an arbitrary line in symmetric matrix space, okay? So what does a line look 
like in symmetric matrix space? Well it looks like this – and it’s one that passes through 
the positive definite cone.  

So it’s going to look like this; without lost generality it looks like a point. X, which is 
positive definite, plus T times a direction V. Now this direction V is a symmetric matrix, 
but it does not have to be positive semi-definite, right, because that’s a line in a direction 
– there’s no reason the direction has to be positive – it does have to be symmetric. So this 
thing describes a function of a single variable T.  

And we have to check that this is in fact a concave function of T, so that’s what we have 
to do. By the way, if you’re looking at some function, you have absolutely no idea if it’s 
convex or concave. First thing to do when you’re near a computer, sit down, generate 
arbitrary line and plot and look. Look at 10 or something like that.  

And by the way, if you find one that doesn’t curve up then you destroy all evidence that 
you did this and then comfortably say, obviously that’s not convex, and then erase all the 
files that – it’s three lines, but the point is then you erase the evidence.  

If they keep coming up like this, then after 50 times it’s like, well okay, here it goes. And 
then you roll up your sleeves and you move in to prove it. And it may not help you, but 
it’s actually quite useful to do this. I’ve actually failed to follow this advice on several 
occasions, jumped in 45 minutes later, wandered – got tired, wandered over, typed in a 
few, quickly turned up, found a point where it had the wrong curvature and then realized 
I was just – I had just been completely wasting my time, so – okay, I just mentioned that.  

Don’t tell people where you learned that – where you heard that. All right, so let’s work 
out what this is; well a right X – I’m going to write this – there’s lots of ways to do it, but 
X is positive definite so it has a square root. So I’ll take half out on each side, and this 
will look like this, T, it’s gonna look like that, times X half.  

That’s what – this matrix is this. But the determinant of a triple product is the product of 
the determinance. And you take logs and it adds and all that, so you get this because the 
log of X half plus log – sorry, log det X half plus log det X half is log det X. So you get 
this thing here.  

It’s still not too obvious, but what we’re going to do now is this; I’m going to write the – 
this thing is a symmetric, but not necessarily positive – it’s certainly not positive semi-



definite or anything like – you don’t know. Matrix, we’ll take its igon expansion. We’ll 
write this as whatever, Q lambda Q transpose, and you get this with a T there like this.  

What I’ll do now is I’ll do the trick of writing I as QQ transpose then pull it out on either 
side and I’ll get det Q. It doesn’t – det Q is either plus or minus one, but it doesn’t matter. 
And then I’ll end up with det I plus T lambda. That’s a diagonal matrix. I know what the 
determinant of a diagonal matrix is, it’s a product of the entries, and so I get this thing, 
okay?  

So I went over this a bit fast, but I promised I would go fast, so –yes?  

Student:How did you choose the directional matrix V?  

Instructor (Stephen Boyd):It’s extremely important that it’s completely arbitrary. So the 
technical answer to your question, how did I choose the direction V is, I didn’t. Or 
arbitrarily I suppose is the actual correct adverb or whatever, okay? That’s – because if V 
is – if I chose V in any special way then my final conclusion is not gonna hold, it’s not 
right.  

To be convex has to be every line. It has to be convex when restricted to any line through 
the point. Okay. Now we’re in pretty good shape, because I know what log 1 plus T 
lambda looks like. For any real number of lambda – if lambda’s positive it looks like one 
thing and it goes like this, or sorry, it goes like that. Nope, sorry, that was from my point 
of view. I did it right the first time, it goes like this. If lambda has the other sign it goes 
like that; either way curvature is negative, and so this is concave.  

Okay? By the way, this is gonna turn out to have sorts of implications. If you’re in 
statistics, if you’ve taken information theory, communications, a lot of other things like 
that, actually, if you’ve done any computational geometry, it turns out some things you 
know are actually related to concavity of log det X.  

Things involving like entropies of ram – of galcie invariables and things like that. So 
actually throughout the class, when we get – when we’ve actually covered some material 
you’ll see all sorts of things you know from other classes are going to start to connect to 
various things here.  

Next topic is – this is just a bookkeeping thing. It’s quite eloquent, but it – and it’s 
actually something good to know about. It works like this; when you have a convex 
function, it turns out you can encode the – it’s convenient to encode the domain of the 
function by simply assigning the value plus infinity when you’re outside the domain.  

So if you have a function F with some domain, then we simply – we define an extended 
valued extension as follows; it’s gonna agree with the function if you’re in the domain 
and we’ll assign it infinity outside the domain. And, I mean, let’s not worry about this 
here, but technically there’s a different between F and F tilde.  



And the difference occurs when you call F at a point outside the domain. If you call F at a 
point outside the domain, you get the dreaded – what’s returned as the dreaded NID 
token, otherwise known as ‘not in domain’. Of course, what would actually happen is 
some exception would be thrown at you or something like that, or a NAN would come 
back or something like that, but that’s what that is.  

Whereas F tilde evaluated at a point outside the domain is of F, simply returns the token 
plus infinity. Okay? Now what happens is then everything kinda works. So if you have a 
function, sort of it looks like that, and its domain is from here to here, that’s a convex 
function. What we simply do is we simply assign it the value sort of plus infinity outside; 
here, that’s plus infinity, okay? So it looks like that, so you make it plus infinity.  

Actually everything works, including this inequality if you say – if you take this point 
and this point, everything works. If you draw – everything will work because this line 
will now have a slope going straight up and it all just works.  

So this is just something to know about, it’s absolutely standard in convex analysis. So 
it’s – you should know about it. Now for concave functions it’s the opposite. You encode 
the domain – or I should say, you encode the not domain as minus infinity in the function 
value, okay?  

Now we get to first order of condition. First of all, just to remind you, a function is 
differentiable if its domain is open. I mean you could also talk about being differentiable 
at a point, and you’d say that it’s differentiable to point if the point is in the interior of the 
domain, but we’ll just talk about being differentiable period.  

So a point is differentiable if its domain is open and the gradient exists at each X in 
[inaudible]. Actually, this is a bit circular and what you really want to say – you really 
want to say this is not – this is informal so I’ll just leave it that way.  

So here’s the first order condition for convexity; this is very important, and actually it’s a 
hint as to why convex opposition actually works very, very well. Here it is, it says the 
following; form that is the Taylor approximation. The first order Taylor approximation of 
F at X. Okay, that says as a function of Y. That’s the Taylor approximation.  

So there’s F, here is this Taylor approximation, of course this is drawn in R, but in 
general this is the Taylor approximation. And of course what the Taylor approximation is 
this; it – at the point in which you expanded, it’s perfect. In other words, it coincides with 
the function. Nearby, so near X, F – the Taylor expansion is very near, by which I mean 
to say, formally near squared.  

So it’s small – the error is small squared. So what the Newton tells you or calculus tells 
you is that these two functions, one is this affine function and one is this one, is that the 
are very near as long as Y is near X. For a convex function this thing is actually always 
an underestimator. So that’s the important part.  



It says that the Taylor expan – the first order of Taylor expansion is a global 
underestimator of the function. That’s what it means. Now, what – let me – I mean, this is 
actually the key to everything. I mean it’s – once you know all these it’s kinda trivial, but 
this is the key to everything because let me explain what happens; later in the class we’ll 
formulate all sorts of crazy problems as convex problems.  

And we’ll come back and we’ll say, I’ve solved it, this is the solution. It will be some 
horrible complicate problem with hideous no non-linearity’s, things that are non-
differentiable, god knows what’s in it. And someone will say, well how do you know 
that’s the global solution? That problem is highly non-linear, it’s got all – I mean, that’s 
ridiculous.  

I mean maybe it’s a local solution, I’d believe that, but how could you possibly assert that 
in all over our 100 there’s no point that does better than your point. Maybe there’s some 
sick little region you haven’t examined yet where the function miracously does better.  

Everybody see what I’m saying? And it’s really a preposterous statement that you’re 
making. I mean after a while you’ll get used to it, but it’s preposterous. And then you 
said, oh no, no, because this is a convex problem, I assure you this is the absolute best 
there is.  

And someone will say, how can you say that, it’s ridiculous. This is it, and the reason is 
this; from local information, that’s a gradient, a gradient is local information. It says, 
from local information you get global conclusion, which is this inequality. So just – 
although the inequality is not a big deal, the fact that it says something that you evaluate a 
gradient somewhere, that’s completely local.  

To evaluate a gradient all you need to do is wiggle X around near that point and see how 
the function varies locally. You don’t have to do any big exploration far away. What is 
says if that function is convex then from that little local exploration you can make global 
bounds on that function that hold arbitrarily far away. Everybody see what I’m saying?  

So not a big deal, but this is – if you ever – what’s going to happen is three weeks into the 
class things that are just preposterous will be asserted, you’ll be asserting them in fact. 
And if you ever wanted to go back and say, well what – you know, but you know how it 
always is, right, there’s just a string of little trivialities and the next thing you know 
you’ve said something quite deep, and then you always want to go back and say, where 
exactly did that happen?  

Anyway, I say it happened here. That’s what I say. Okay, second order of condition; I 
guess you’ve seen this. This you’ve probably seen in a calculus class or something like 
that. Usually it has to do with sort of this part, the suficion conditions or checking if 
something’s a minimum or maximum or something like that.  



And it basically says that the – it says, if it’s twice differentiable, it says it’s a hessian, 
which is the makers of partial derivatives. If that is – it says the following; it says it’s 
convex if and only if that matrix is positive-semidefinite, okay? So that’s the condition.  

And then there’s a gap in characterizing strict convexity. And the gap says something like 
this; it says, certainly if the hessian is positive-definite everywhere then the matrix – I’m 
sorry, and then the function is strictly convex. Actually the converse is false and an 
example would be S to the fourth on R. That’s a strictly convex function; X to the fourth, 
but its second derivative at zero is zero, okay?  

That’s a case where the second derivative fails to be positive at the origin. So this is the 
condition. So this is useful sometimes. Actually, this is less useful, in fact, and also when 
– although you will have to – I mean, we’ll see to it, let me put it that way, that you’ll 
have to use this method to establish convexity of something. But as you’ll see later, this is 
to be avoided because generally it’s a point to show something as positive-semidefinite, 
unless it’s really simple, the function.  

Now we can knock off some examples real quick. Let’s characterize all quadratic 
functions right now. So a quadratic function looks like this; it’s a quadratic form, it’s a p-
asymmetric here, a liner function and a constant, okay?  

So the gradient of this function is PX plus Q, and the hessian is P. So that’s the – it’s 
constant, it’s got a constant hessian. So a quadratic function is convex if and only if P is 
bigger than or equal to zero, if it’s a positive-semidefinite matrix. And an example would 
be least squares objective. That just – immediately. So here the hessian is A transpose A 
and that’s going to be positive-semidefinite so that’s always convex.  

Here’s a function that is not obvious, it’s one – this is probably one of the first functions 
you encounter that is not obvious, it’s not obvious that it’s convex. Maybe other than 
minus log det X, but here’s one; X squared over Y just two variables. So it’s – this is 
convex in X and Y provided Y is positive.  

And let’s take a look at that – first of all, let’s just check a few things. If you fix Y it’s 
convex in X that’s clear. If you fix X it’s convex and Y because it’s a one over Y in that 
case, okay? Now by the way, I’m using there this idea that these are essentially lines. I 
mean that’s a line, one is aligned with the X axis, one with the Y axis. So if a function of 
many variables is convex, it better be convex in each variable separately.  

The converse of course if completely false; you can have a function convex in each 
variable separately, but not jointly convex. And the answer in – I mean, the distinction 
comes completely from the Hessian, right? So you have a, for example, a function of X 
and YQ variables, you have a two by two hessian that is required to be positive-
semidefinite.  



To say that it’s convex in X and Y, it says the diagonals of that hessian are non-negative. 
That’s what it means. To – that tells me nothing about the off-diagonals, so there’s a 
further condition linking the two and the cross condition. Question?  

Student:Is there any way to prove convexity or show convexity from [inaudible] 
projecting it on to one dimension [inaudible] number of times and –  

Instructor (Stephen Boyd):Be careful because we’re not projecting onto a dimension, 
we’re restricting to one dimension. And the answer is, yes. In principle if you restrict it to 
any line, any sort of one dimensional set that passes [inaudible] and the result is always 
convex, then it’s convex, but it has to be understood that’s in principle unless you’re 
prepared to do something symbolic with every line like we just did with log det.  

Okay. So let’s take a look at this function, and let’s show that it’s con – by the way, 
here’s a plot of it, so it looks – I don’t know, some people have told me it looks like a 
boat or something like that, the bow of a boat or – I don’t know, anyway, so and if you 
look in – I guess, one slice it’s quadratic and it’s – I guess it’s – I don’t know what it is 
anyway so, if you slice it different directions you get obviously convex things.  

So lets work out the hessian, well I worked it out, and I’m not going to calculate in front 
of you all the partial derivatives of the things here, but you calculate partial squared F, 
partial X, partial Y, and the diagonals, and you fill it out and you get a matrix which 
indeed is rank one, and can – and positive-semidefinite because you write it this way.  

And here we’re using the fact that Y is positive here, to ensure that this is positive-
semidefinite. So that’s convex, so that’s your – maybe one of your first non-obvious 
convex functions. Here’s another on; the so called log sum X function. That’s the log of a 
sum of exponentials of variables. Actually, before we go on let me just say a little bit 
about this function; it’s – first of all it’s sort of like a smooth max, or in fact some people 
call – there are fields where this is simply referred to as soft max.  

So I know whole fields where this is universally called the soft max. The reason it’s soft 
max is this; if you take a bunch of variables, X1 through XN, then X increases of course 
very quickly. So the biggest X is a lot bigger. If there’s a good gap between X – the 
largest X and the next one, X will accentuate the spread.  

Okay? If you add these up and then take the log – if for example one of the X’s is kind of 
isolated and far away from the second – if the biggest is away from the second biggest 
then you can actually quickly see that basically this sum X is basically X of the largest. 
You take the log of that and you get the largest. So this is sort of a smooth – it’s a soft 
max some people call it.  

I should also mention this is – if you’re in electrical engineering, this is the DB 
combining formula. So this is how you combine powers that add incoherently. So if you 
have for example, if you have a bunch of powers adding, and the powers come in at, 
minus 15 DPM, minus 22, minus 37 and minus 3DBM, everyone in here knows what the 



power of the result is, except I forgot the numbers I just listed, but I think it’s minus three 
with the largest one. The answer is it’s minus three.  

So, whatever that is, minus three DB reference to a millawatt. And let me explain what 
that is; X convert from decibels to power. This does incoherent power addition and log 
converts back to decibels. By the way, obviously if you’re not in electrical engineering 
you don’t have any idea what I’m talking about, and that’s just fine.  

So I’m just saying this is a function, you’ve seen it before and it comes up in statistics as 
well in exponential families, this comes up all the time. Okay. So, in a little statistical 
mechanics too, it’s the denominate – a fancy version of this is some normalization 
constant or whatever. I’m sure people here know a lot more about this than I do.  

So that’s a convex function, and the argument would go something like this; you take the 
hessian – by the way, if you’re curious, no one can look at this and write this formula out 
for the hessian. Just, you know, so if you’re looking at this and saying like, oh, that looks 
pretty easy, anyway, it’s not.  

You have to sit down and first you try to find some secret rules for – chain rules for 
calculating the hessian of some function, that’s the first thing you do. Then that gives you 
a headache. Then I usually just basically – at some point you give up and you just go in 
there – you just calculate partial squared F, partial XI, partial XJ, there’s just no way 
around it. You get this huge horrible mess then you have to go from your mess, your 
index by index representation to a matrix representation and then you’re off and running.  

Then you go back and erase all that and then write things like this. So – just like this and 
then that’s the idea, but lets take a look at it and see what it says; now when you do this 
you look at it and you see well there’s this first term, Z here is this X of X, so it’s 
obviously – it’s non-negative.  

This think here, it’s interesting. That’s a non – that’s a positive diagonal matrix so this is 
positive definite – positive-semidefinite – well it’s positive-definite. And of course what 
you’re hoping for is to add that to something positive definite at which point you – it’s 
easy because you just say the sum of two positive-semidefinite matrices is positive-
semidefinite, done.  

And there’s a little minor problem, which is that this sign goes the wrong way, and that 
could mean two things; it could mean either this is not convex, or you have to work 
harder to show this thing is positive-seimdefinite, and it’s the latter here.  

Student:Is Z a vector here?  

Instructor (Stephen Boyd):Yep, Z’s a vector.  

Student:What is diag of [inaudible]?  



Instructor (Stephen Boyd):What is diag of?  

Student:[Inaudible]?  

Instructor (Stephen Boyd):Of Z here?  

Student:Yeah?  

Instructor (Stephen Boyd):What is diag of Z? Oh, diag of Z, you take a diag – this is 
actually entering – of course its mat lab slang or something. But it’s entering – it’s sort of 
entering mainstream mathematical notation.  

Student:[Inaudible]  

Instructor (Stephen Boyd):Exactly. Yeah. So diag of a vector imbeds the vector into the 
diagonal elements of a diagonal matrix. What department are you in?  

Student:Double A.  

Instructor (Stephen Boyd):What?  

Student:Double A.  

Instructor (Stephen Boyd):Double A, okay. Now wait a minute here, have you never 
used [inaudible]?  

Student:A long time ago [inaudible].  

Instructor (Stephen Boyd):It was a long time ago.  

Student:Maybe.  

Instructor (Stephen Boyd):Maybe, okay.  

Student:Last year, I think.  

Instructor (Stephen Boyd):Okay, last year. Okay, fine. Okay, that’s fine, just checking. 
I thought you were going to say math or something like that.  

Student:[Inaudible]  

Instructor (Stephen Boyd):Okay, all right. So it was in a CS class last year, which – the 
memory of which – you didn’t remember what class it was or – what was it?  

Student:220.  



Instructor (Stephen Boyd):220?  

Student:Eight.  

Instructor (Stephen Boyd):Eight, okay, I figured. Okay. So back to our thread here, it’s 
not over yet, you still have to show this is positive-semidefinite. How do you show a 
matrix positive-semidefinite? You simply show that the associate quadratic form in 
always non-negative. So you put a V on the left to be transposed, a V on the right. You 
plug that in here and see what happens and you get this thing.  

And this turns out to be greater than or equal to zero using the Cauchy-Schwartz 
inequality applied here, okay? These are not – this is not obvious. Okay? This is not 
something that you just type in. This is like 30 minutes of thinking and breaking pencils 
and things like that.  

Oh, you know, I just remembered something, speaking of that. I don’t know that it’s been 
announced yet, but I – it’s just a suggestion. A suggestion actually it’s not a bad thing to 
work on homework in possibly small groups of people depending on who you are. I mean 
people already probably have the sense to do this anyway, but you’re being officially 
encouraged to work in small groups like that. In which I case I could say so after 30 
minutes of working this, breaking pencils, throwing pencils at the other people in the 
group and things like that.  

Actually working in a group is very good because it’s easy to think you understand 
something, very easy, when you’re by yourself. And it turns out if you have to address 
like two or three other people and try to explain it – actually, you know while you’re 
explaining it you’ll realize that so your mouth is going like this, right, and there’ll be 
something in the back of your head, I don’t know what part of it is, will actually come out 
and say, by the way – also just looking at the others in the group you realize, this makes 
no sense whatsoever.  

I mean, what you’re saying makes no sense. So it’s a very good [inaudible]. Whereas a 
lot of things you know by yourself can be totally obvious. Totally obvious, then you try 
to explain it to someone. Also, if you try to explain it and it’s this long complicated – you 
go, look, its super simple, it’s so easy. You just – okay, you do this, but then its, well 
hang on, I forgot to say this.  

And then also, by the way, do you remember this and then you put that there – this is also 
a hint that this is way to complicated, your description of it, so you’re encouraged to 
work in small groups. All right, let’s move on. So a geometric [inaudible] is concave, so 
this is the product of a bunch of variables, these have to be positive, although actually this 
works for non-negative.  

So it’s a bunch of variables and then the enth root of that, so that’s concave. And it’s the 
same type of argument as for log sum exptH, same type of thing. Okay, some other 



connections, the idea of an epigraph and a sublevel set. So if you have any function then 
the sublevel – the alpha sublevel set is the set of points with F value less than alpha.  

By the way, later in the course F will be an objective or it will be some type of objective, 
or something like that. And for example, if F is a design, then if F represents the power 
dissipated by some circuit design or something like this, this will be the set of designs 
that meet an alpha spec.  

That’s what this is going to mean, okay? That’s what a sublevel set will often mean. By 
the way, if it’s an estimation problem, an F is a measure of implausibility, like negative 
log likelihood in a statistical estimation problem. This will be the set of points, which are 
at least alpha plausible values, okay?  

So something like that. All right, now if you have a convex function then the sublevel 
sets are convex. By the way, the converse of that is false, but it’s a very important thing 
and we’ll have a name for it very soon, a function whose sublevel sets is convex.  

The real correct connection between convex function, convex set, because we’ve 
overloaded the word convex now to mean two things; it applies to sets and it applies to 
functions. The real connection is through something called the epigraph. So I guess epi 
means above, and so epigraph means everything about the graph.  

The graph of a function of course, is the set of pairs, XY. So it’s an RN plus one, it’s the 
actual graph. The epigraph is everything above it. So if I have a function, the epigraph is 
this shaded region like this. And here’s the real connection between convex set and 
functions.  

A function is convex if and only if its epigraph is a convex set. So – and in fact, it turns 
out you should just be thinking about convex functions in terms of their epigraphs just 
always. So, for example, when I say here’s a function like that, in fact let’s put a domain 
restriction on it from there to there, you should just immediately visualize this set drawn 
in, and it’s a convex set.  

Actually this is going to be important because we’re going to do a lot of calculus on – 
with convex functions and you want to think about what does it mean in terms of the 
sets? That’s what you want to be doing. So this you should just be thinking of at all times, 
the epigraph.  

Okay. Let’s look at Jensen’s inequality; so our basic inequality for convexity is this; it 
says if you take a point between zero and one, if you take two points and take some kind 
of weighted average of the two, that’s what this is, and evaluate it, it’s – so this says that 
F of the weighted average is less than the weighted average of F. I said it right. I always 
forget this.  

I’ll show you a pneumonic in a minute, which you can sneak off and do if you have 
something to draw on. You can even do it if you can’t draw, but it takes me longer. Now 



there’s tons of extensions of this, for example, instead of just two points you could have a 
finet number of points and a bunch on fada I’s that add up to one and are non-negative. 
That’s a convex combination.  

And the same inequality would be true thinking of an accountable infinite number of 
points, some combination that way, and then you can have an infinite one. The most 
general is this; if F is convex, then F of an expected value is less than or equal to 
expected value of F of X. Now that’s called – that’s Jensen’s inequality.  

And this is where Z is a random variable, however, which is in the domain of F almost 
surely. So that’s this, and this is Jensen’s inequality. And this basic case is nothing by 
this; it’s a distribution on Z, extremely simple. It takes only two values, X and Y with 
probability theta and one minus theta, and you recover this thing.  

So this is Jensen’s inequality. I never remember Jensen’s inequality, especially because 
whenever it comes up usually F is half the time convex, half concave. Of course if it’s 
concave it goes the other way. And so I actually never remember it and I usually have to 
just draw a picture and remember this thing. There’s another way to say it though, I know 
what that is; so if you want a general pneumonic about how it works, it basically says that 
for a convex function dithering actually hurts.  

And let me explain what that means; it means that if I have a function – a point here, and 
here’s a convex function, like that, okay? Let’s imagine, that’s actually my target point in 
some process, but now, actually when I manufacture it, I actually get a distribution of 
values like that, okay? Whose mean is this point, everybody cool on this?  

So that’s the – this happens, so this is – and then this tells you the cost, okay? And this 
could be the power, I don’t really care, something like that. Or the speed of some – lets 
make it the power. So this is the power, and it basically says, you know, look, these 
points, that are where the manufacturing [inaudible] they were on your side. The 
threshold voltage went up or whatever, something happened, and it actually dissipates 
less power than your nominal design.  

Everybody see that? And this is where it worked out badly. And now I ask, what’s the 
expected value of the power? What is it? Well the first thing you would do is you’d say, 
well look, it’s around here, because if I approximated this by an affine function and I 
propagated this distribution through an affine function, then its mean would be the same. 
So the first quick answer is something like this; well it’s the same, if this is like one watt, 
and you have these manufacturing variations, sometimes you’re less than a watt, 
sometimes you’re more.  

And it says that the average is going to be on the order of watt, you know, like a watt. 
Everybody got that? But the fact is its worse – the average is worse than a watt. It’s like 
1.05, it can’t be better. And the reason is this; it’s true that when you go up and down 
here,  



The first order approximation, in that case sometimes you’re less than a watt, sometimes 
more, but because the curvature is upward you get – let’s see, you pay more when it’s 
bad then you recover when it’s good. Did that make any sense? And that’s entirely due to 
the curvature. So that my pneumonic for Jensen’s inequality. It basically says 
manufacturing variation generally isn’t good. Yes?  

Student:What [inaudible]?  

Instructor (Stephen Boyd):That’s your question? So this is a good time for me to 
announce this. There will be periodically times, I’d say multiple times per lecture where 
I’ll go in something and I’ll make no sense whatsoever. Its best – if this starts happening 
like three or four times a lecture then you can let me know, but that’s good feedback.  

It’s best at least for now in the spirit of just rushing forward, we’ll just move on. Did 
anyone understand what I said? A handful of people, they’re just probably just being 
polite. Okay. You’ll learn to just move on. Now, let me – actually, let me – this is a good 
point to kind of explain – give a sign post and say where we are and how this works.  

What you’re gonna have to do is you’re gonna have to look at functions and figure out if 
they’re convex or not, that’s what you have to do. So the methods I just looked at 
involving lines and all that, if you have to resort to that, if you actually write out a 
hessian, I mean this is to be avoided to be honest with you.  

This is – you do this only in a last resort. Of course every now and then you have to; 
we’ll arrange that you will have to because everyone should have to do this once or twice 
or something. But the point is the right way to do it is using a convex calculus. And so 
the right way to do it is this; what’s gonna – this method three, just sort of just general 
method is gonna work like this, you’ll learn a bunch of atoms.  

You’ve already seen a bunch, affine function, powers, log sum exp, X squared over Y, 
norms, quadratic functions, thing like that, where once you know it, minus log det X you 
know it’s convex, okay? Then we’re going to look at a calculus. And a calculus meaning 
methods to combine these and rules for showing it’s convex. And you saw this with 
convex sets last lecture.  

But here there’s gonna be a bunch – there are gonna be some simple ones here. Now in 
this rule set, these divide into what I would call sort of the really obvious basic ones and 
then there’s sort of that intermediate tier, and then you get into the advanced ones and the 
ultra advanced ones and things like that, there’s sort of no limit on these things.  

So I will tell you when we move into different levels of esoteric on this, but – okay. So 
these are extremely basic sense of following. If you have a convex function and you scale 
it by a non-negative scalar, it’s convex, that’s totally obvious. If you add two functions 
that are convex, it’s convex, okay? And that extends to adding five functions and it goes 
to an integral or even an expected value of convex functions would be convex.  



Composition with an affine function; so if you pre-compose with an affine function, so in 
other words if you apply an affine function then a convex function, you get something 
that’s convex, and it’s – many ways to check this. Actually, just directly is simple 
enough, just with the old theta in there. Okay? Very simple to show these things.  

Let’s look at some examples; we can make some examples now. F of X is minus log sum 
VI minus AI transpose X, and this of course is defined on the region where these are 
strictly positive. That’s the interior of a polyhedron. So I have a polyhedron defined by 
AI transpose X less than VI. The interiors where that’s strictly less, and that’s where this 
makes sense.  

This is by the way called the log barrier for this polyhedron, and you have a minus sign 
here. So you know, that’s kind of a very complicated highly non-linear function of X. 
You could work out the gradient; you could work out the hessian. This one wouldn’t be 
too bad because if you work out the hessian, which I would not recommend doing by just 
getting in there and slogging it out, calculating partial squared F, partial squared XI XJ, 
but using some of the rules for calculating hessians, some of these are in the – these are in 
the appendix by the way.  

It would work, but the easiest thing by far is to say this, here’s my function, ready, I’m 
going to apply – here, I’m going to take this function which is fi of Z is sum minus log 
ZI, okay? So that’s it, it takes a bunch of variables, takes their logs, takes minus sum. 
That’s a convex function. Why? Well each of these is a convex function and a sum is 
convex. That’s a convex function. Again, nothing stunning yet.  

Now we’re going to simply pre-compose this function with this affine mapping. I’ll call it 
B minus AX, that’s an affine mapping. And that gives you this function and then here, I 
just applied this, this composition rule. Here’s another one; is the norm of any affine 
function, so norm AX plus V is gonna be affine – convex, sorry. It’s going to be a convex 
function of X.  

Okay. Here’s one that maybe not totally obvious; so here’s one convex function and 
here’s another one, like that. The point wise maximum is this function here; it looks like 
that, okay? So at each point it’s the maximum of the two – of the functions, okay? It 
looks like that.  

By the way, in terms of epigraphs, what does this correspond to? Precisely. So 
calculating point wise maximum of functions, in fact you can even write some silly 
formula for it, you know something like this; epi of max over I FI is equal to the 
intersection over I of epi FI, something like that, okay?  

So that’s the correspondence here. That preserves convexity, okay? And you know, it 
means for example, here this function which is the max of a bunch of affine functions as 
a Piecewise linear function, that’s convex. Obviously not all Piecewise linear functions 
are, but any Piecewise linear function expressed in this way is convex.  



Here’s one, this is again, not obvious. The sum of the R largest components of a vector. 
So take a vector in R50 and the sum of the top three elements. That’s a very complicated 
Piecewise linear function, it’s convex.  

Why is it convex, because it’s the maximum of A transpose X or A – this is for the sum 
of the top three, is any vector with three one’s and 47 zeros. Now there’s a giant pile of 
those, there’s 50, choose three. But the point is, it’s the maximum of 50 choose three 
linear functions done. It’s convex.  

So you have to watch out here because you slowly sneak up on this and you’ll find out 
after a while you’ve actually done something and some of these things are not obvious. 
Proving this by another method would really – could be very, very painful. I mean, this 
one, hessian doesn’t even exist, it’s not even differentiable, which would save you the 
horrible trouble of getting in there by hand and working out a hessian.  

But just proving that directly would be a real pain. Now this maximum business extends, 
and it extends to an infinite max or a point wise supremum. So here’s the statement; if 
you have a function of two variables, X and Y, and suppose it’s convex in X for each Y 
in some set, you don’t even know what the set is, totally irrelevant what the set is.  

Finide, infinite, makes no difference whatsoever. Then it says that if you take – again, 
you can leave this as max if you haven’t seen this before, this is simply – if you simply 
take the maximum over this possibly infinite collections of functions point wise you get a 
new function, that’s going to be convex.  

And here’s some quick example; lets look at a couple of – let’s start with this one, let’s 
take the maximum eigen value of asymmetric matrix. Now we discussed that before, that 
is a really complicated function. For a matrix that is six by six or bigger, there is no 
formula for this, none, because there’s no formula for the roots of a sixth degree and 
order and higher order polynomial.  

I mean, you don’t need to know that, but it’s a good thing to know. Well it’s not useful; 
it’s just a cool thing to know. This is really a very complicated function, the maximum 
eigen value of a matrix, but watch this. If the supremum of Y transpose XY over all Y 
that have – over the units sphere. The units sphere is the set of all points whose norm is 
one.  

Now let’s check me and see how the argument goes. Look at Y transpose XY. Now by 
the way, when you look at that you are – at this point you are trained and wired, all by the 
quadratic part of your brain should be lighting up. This has been proved in FMRI studies, 
okay? But the point is actually here the variable is capital X. What kind of function of 
capital X is this? Remember, you have to suppress the flashing quadratic neurons. It’s 
linear, that’s a linear function of X. This is sum, XIJ YI YJ, it’s linear in X.  

Okay? So for each Y that’s a linear function. This is a supremum of an infinite collection 
of linear functions. In fact, there’s one for every point on the units sphere in our end. 



Supremum of a bunch of linear functions, linear functions are convex. Supremum over 
these things is convex, that’s a convex function. And now you know something that’s not 
totally obvious.  

I mean, it’s not that unobvious either, but it’s – this would be – since that’s like a two line 
proof or something like that, that’s not bad. And of course it’s a disaster if you actually 
try to write out what lambda max is. I mean, just – you write down square root of – or 
that’s not lambda max, but if you write down the largest of the lambda I’s for which the 
character [inaudible] vanishes, it’s all over, you’ll never recover, this is an example.  

Let me hit the next one, is composition. So under certain circumstances composition 
preserved convexity. So let’s see what that is; if you have H of G of X, -- so the rule goes 
like this, and I’ll – the famous one is this, it says that a convex increasing function of a 
convex function is convex. Okay?  

So if – this thing will be convex if you have a convex – if the outer function is convex 
and increasing, which – I mean non-decreasing, okay? So that’s the condition. And the 
way to derive these as other ones, for example, it’s convex if this thing is concave and H 
is convex and non – and decreasing, roughly is what it is.  

Now the way to check these is simply to write out the chain rules. So if you take – you 
imagine that these functions are differentiable and of one variable and you work out the 
second derivative and you get something like this. And from things like this, this is how 
you read off the rules, by the way, these things can – unless you’re doing this all day long 
these rules, you can easily forget them.  

What you should remember is there are composition rules, and you have to go back and 
[inaudible]. Whenever I’m somewhere and I have to figure this out I actually quietly 
write this out and then figure out the rules myself. By the way, the rules hold even when 
these are non-differentiable. You don’t need any derivatives. This is just to check.  

And lets actually – maybe we can make up a new rule, let’s make one up for fun, ready? 
All right, let’s see, let’s try here, lets say that G – I’m not gonna remember what I’m 
saying, so I’m gonna write it down. Suppose I told you – I have to get this right – 
suppose I told you that G prime is positive. So G is going to be increasing, and I told you 
– do I even need G prime? No, sorry. I take that back.  

I’m going to tell you that G is concave. So that means this here, and lets make – lets see if 
I can get it right, and lets – let me ask, what are the conditions on H to make F concave? 
Does that make sense? So what we want is – we’re gonna say that that’s – we’re gonna 
assume that that’s less or equal to zero, and I need thing to be less than or equal to zero. 
Well that means this has to be positive. So I have to have H prime positive. So H has to 
be increasing.  

And then I look over here, that’s positive no matter what, so I need this to be less than or 
equal to zero, and I just made up my very own new composition rule, and it’s this – I 



hope I get this right. Okay, let me go very slowly, if H is concave and increasing and G is 
concave – okay, ready, so a concave increasing function of a concave function is 
concave. Isn’t that right?  

Anyway if I got it wrong, I don’t care, you get the principle. Okay, it’s a 300 level class, I 
can mess up minus signs all I like, that’s your job to fix them and stuff like that. So I 
think I said that right. So let’s look at some example – by the way, the only one I actually 
remember, to be honest with you is a convex increasing function of a convex function is 
convex.  

Then I have – I remember one other thing, there are composition rules and then I have a 
note attached to that, there’s lots of them and they get very confusing, although there are 
people, I’ve noticed who just know them immediately. They’ll say, oh yeah, not that’s a 
concave increasing function – no, decreasing function of a convex function, that’s con – 
something or another and I’m like, really? I don’t know. Then they have some internal 
pneumonic or something for doing this, but I don’t know them just to tell you the truth.  

Let’s look at some examples; the exptH of a convex function is convex. And that’s by the 
way is very interesting. It says that the exponential actually can only – it preserves 
positive of a curvature. If a function curves up, [inaudible] also curves up. That’s what 
it’s saying geometrically.  

Inverse is interesting. It says the inverse of – it’s not the inverse, it’s the reciprocal, there 
you go, that’s the English word, the reciprocal of a positive concave function is convex. 
So, for example, let’s see if I can get an example of that. One over the square root is a – 
that would be a convex function, and indeed it is, it’s X minus one half, and it goes kinda 
like that – sorry, for you, like that.  

Actually, by the way, that’s fine because flipping the axis doesn’t change the curvature 
property, so I don’t have to draw it for you. If it looks convex for me it looks convex for 
you. So that’s the composition one. There are then vector compositions ones and I’ll say 
– I’ll give some examples here. So here you have vector composition, so here I have a 
function of – a multi-argument function of a bunch of other functions.  

And now, of course, the possibilities just explode because you have horrible things where 
you have a function that’s sort of increasing in some components, decreasing in others, 
the arguments themselves are either convex, concave, and it gets very complicated.  

But here you have something like this; X is convex if all of the functions are convex, 
that’s the easy case, and H is convex and decreasing in each argument – sorry, non-
decreasing, roughly speaking increasing. By the way, there’s one subtlety here that I want 
to point out, there a tilde here.  

Tilde is the extended value extension. And I’m not going to spend time in lecture going 
over this, but you want to read that part of the book at some point about this tilde because 
that’s not a typo, it’s very important.  



Let me give a couple of examples here. By the way, what this shows is that actually the 
earlier rules that you learned are actually – they can be derived from this. Let me give an 
example; how about the sum of convex functions? So here’s a function H, H of Z is one 
transpose Z, it’s the sum of the Z’s. Okay?  

This function is – well let’s work it out. It is certainly convex, right, in Z? It’s also 
increasing in each argument, do you agree with that, because it just sums the I. So it’s 
obviously increasing in each argument. Therefore, by this composition rule, it says that if 
I compose this with a bunch of functions, each of which is convex, the result is convex.  

So I – so from this rule I’ve rederived the simpler rule which is the sum of convex 
functions is convex, everybody see that? Let’s try one more. Lets try H of Z is the max of 
Z. Well the max function is itself convex. It’s also – it’s increasing in each argument, I 
mean that’s clear, right?  

If you increase any element of a vector the max doesn’t go down, so it’s non-decreasing. 
Therefore, this subsumes actually several of the earlier ones. Actually it turns out there’s 
only two rules. There’s this rule – in fact there are only two rules, there’s this rule and 
there’s the affine pre-composition.  

But it’s good for a human being at least to think of them as eight or 10 rules or 
something. Quick question?  

Student:Increasing [inaudible] do you mean also that when you – that they increase from 
vector to vector, or just that – [Crosstalk]  

Instructor (Stephen Boyd):Nope, I do not mean that. I mean this – I mean, hold all 
element fixed except one. Increase one the function cannot go down. That’s what non-
decreasing in each argument means. Okay, so I think we’ll quick – this covers, these are 
the basic rules. By the way, this was very fast, [inaudible] we’ll cement this, don’t worry, 
and we’ll continue next time. And then maybe even by next week it’ll get interesting.  

[End of Audio]  
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