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Instructor (Stephen Boyd):Okay. Welcome to 364a, which is convex optimization one. 
Unfortunately, I have to start class by apologizing. If you’re watching this, I guess you’d 
say – if you’re watching this at the scheduled time of the class, you’ll notice that I’m not 
there. That’s because I’m in India. You can actually get very confused doing this.  

There’s actually one more confusing thing than this, and that’s when you tape ahead of 
class before it actually – it goes after a class you haven’t given yet. That gets very 
complicated. I’m sorry to miss the first day of the class. As I said, I’m in India or will be, 
depending on where the time reference is. That’s very tacky. I’ve never done it before, so 
this is a first.  

Actually, we’re going to make a lot of firsts today. I believe we may be making SCPD 
history because we’re taping ahead this lecture not only the quarter before but the year 
before. A lot of people are very excited about this. If this works out well, who knows 
where this is going to go. I could teach all of my spring quarter class the last few weeks 
of winter quarter. We’ll see how this works. We’re possibly making tape ahead history 
here.  

A couple things I should say about the class, other than apologizing for not being present 
or, for that matter, in the country for the first day of it. I’ll say a couple of things, and 
then we’ll get started. For those of you watching this, since you’re not going to get to see 
the audience and know that I sent out a pitiful plea to come if you’re around for the tape 
ahead, you should know the room is not empty.  

Let me say a little bit about the class. I think some of it is kind of obvious. We barely got 
the website up and running. We change it every day. Let me say a few things about it. 
The first is the requirements – there is going to be weekly homework, which if you are 
interpreting this relative to January 8, I think the correct statement would be “has already 
been assigned.” If you’re interpreting it in real time, it’s actually fall, so we haven’t even 
thought about homework one, but we will. It’ll all be ready to go.  

There’ll be weekly assignments, and there will be a take home final exam, which will be 
the standard 24-hour take home exam – the usual format. You’ll do serious work. The 
other requirement for the class – it’s not really a requirement, but there will be minimal 
Mat-Lab programming. It’s not a big deal, but there will be Mat-Lab programming, and 
that will be done using a system called CVX, which if you go to the website, you can find 
out about.  

You’re welcome to install it and read the user guide now. There’s no reason not to. 
You’ll be using it throughout the quarter. You might as well look at the user guide, install 
it, see if it works. Not everything in the user guide will make sense until you get to week 
four of the class, but there’s no reason you can’t start poking around with it now. When 
we get to it, you should be extremely grateful for the existence of this stuff, because it 



trivializes the “programming” that we’ll do in the class. Programming is in quotes, and 
the reason is we’re talking things like ten lines. It’s not a big deal.  

By the way, on that topic, I would say this – if there’s anyone that – CVX is based on 
Mat-Lab. That’s the way it is. If there’s anyone who wants to try to use a real language, 
like Python, I will be very happy to support you in that. The TAs are Yung Lung, who I 
guess you can’t see, and Jacob Mattingly, who’s in New Zealand, but will not be in New 
Zealand when this is played back. Jacob would be very happy to – if there’s one person 
who does all the numerical stuff in Python. I’ll just say that, and feel free to come 
forward and let us know.  

The only other thing I would say is something about the prerequisites. The prerequisites 
are basically a working knowledge of linear algebra. 263 absolutely – it’s clearly the 
perfect background. If not, what we mean is a working knowledge, so not the ability to 
know about these things but actually how you use them in modeling and things like that. 
The other one is the mathematical sophistication level is going to be a jump up from 263. 
This is a 300 level class, so the mathematical sophistication is going to jump up.  

The cool part is the mathematical sophistication jumps up but actually is still in some 
sense a very applied course in the sense that we’re not just going to talk about optimality 
conditions. You will do portfolio optimization. You will do optimal control. You will do 
machine learning. I mean actually do numerical stuff. It won’t just be stupid 
programming. It’s going to be figuring out what’s going on. It won’t be obvious. It’ll be 
good stuff.  

I’m trying to think what else to say before we start in on the class. I’ll just set it on 
context how it’s different from 263. 263, which is a linear dynamical systems class – I 
would call that basic material. It’s useful in tons of fields. It’s very widely used. A lot of 
people know it. It’s used in economics, navigation – all of these areas. Control and signal 
processing is basically all done this way. Communications – a lot of stuff is done this 
way. It’s a great first look at how these mathematically sophisticated methods actually 
end up getting used.  

364 revisits it. It’s quite different in a couple ways. The first way is you might even just 
say this is 263 beyond least squares. In other courses similar to that, so in your first look 
at statistics and your first course on statistical signal processing or whatever – it’s the 
same sort. Everything is Galcean. All distributions are Galcean. All objective and 
constraints are quadratic. You do this because there’s analytical formulas for it. Behind 
the analytical formulas, we have very good computational tools to give computational 
teeth to the theory.  

Here, it is going to be way beyond that. We’re going to have inequalities. We’re going to 
have all sorts of other interesting norms and other functions. It’s a much richer class of 
problems. These are problems much closer to a lot of real problems, ones where – you 
don’t have the concept of an inequality in 263. You have no way to deal with noise with a 



[inaudible] distribution in your first class on statistical estimation. We’re going to look at 
things like that.  

I should also say that the number of people who know this material is relative to 263 very 
small. It’s probably a couple thousand. It’s growing rapidly, but it’s just a couple 
thousand. That means you’re going to move from material – a lot of the 263 material is 
kind of from the 60s and 70s. It’s not stuff that’s new. This class, in contrast – you’re at 
the boundary of knowledge, which makes it fun. Maybe you’ll even push the boundary. I 
hope you do, since that’s the point of the class to train you to find your corner of the 
boundary and start prospecting.  

I can’t think of anything generic to say, so maybe we’ll actually start the class, unless 
there are any questions.  

Student:If you haven’t taken 263, is it a big problem if you have a working knowledge 
of linear algebra?  

Instructor (Stephen Boyd):No, no problem. What’d you take instead? No problem. I 
should also say this – something about the background. The class is listed in electrical 
engineering. I’m not actually sure why. The last I checked, that’s the department I’m in, 
so it seemed like a good idea all around. You don’t need to know anything about 
electrical engineering – in fact, we’ll talk about lots of applications throughout the 
quarter, and honestly, probably for half of them, I don’t even know what I’m talking 
about. That will happen. You’ll be in some field. I’ll super oversimplify it. You’re 
welcome to point it out.  

The point is, I’ll talk about circuit design. We’ll talk about machine learning. On all of 
these topics, there will be people in the class who know more than I do about it, and there 
will be a lot of people who don’t know anything about it. If you’re one of those latter, 
don’t worry about it. They’re just examples. There is one prerequisite, although I don’t 
know what would happen if you didn’t have it. That is that I will assume that you know 
about basic probability estimation and things like that.  

Do I have to say anything about the textbook? Go to the website. That’s all I have to say. 
There’s a textbook. You’ll find it at the website. I’ll start by covering broad basics. It’s 
not in any way representative of what the class is going to be like, what I’m going to talk 
about today. Don’t think it is. We’re going to cover the basics, and maybe I’ll get into 
something that’s real. This is going to be the very highest level. We’ll talk about 
mathematical optimization. We’ll talk about least squares and linear programming, 
convex optimization. We’ll look at a very simple example, and I’ll say a little bit about 
the course goals and style.  

Let’s start with this. Optimization. Depending on the company you’re in, you may have 
to put a qualifier – mathematical. If you say just optimization, it goes to something on 
complier optimization or something in business practices. If you’re in a broad crowd like 
that, you need to put mathematical in front to make it clear.  



Here’s what it is. You want to minimize an objective function. You have a variable X 
with N components. These are loosely called the optimization variable. Colloquially, you 
would say that X1 through XN are the variables. By the way, there are other names for 
these. People would call them decision variables. That’s another name for it. In a 
different context, they would have other names. Decision variables is a nice thing 
because it tells you these are things you have to decide on.  

When you make a choice X, you’ll be scored on an objective. That’s F0 of X. We’ll 
choose to minimize that. In fact, you ask what if you wanted to maximize it? Then you 
would just minimize the negative of that function, for example. It’s convenient to have a 
canonical form where you minimize instead of maximize. This will be subject to some 
constraints. In the simplest case, we’ll just take a bunch of inequalities – that’s FI of FX 
is less than BI. Here, without any lost generality, the BIs could be zero, because I could 
subtract BI from FI and call that a new FI. There’d be no harm.  

This is a nice way to write it because it suggests what really these are. In a lot of cases, 
these are budgets. It’s a budget on power. It often has an interpretation as a budget. There 
are other types of constraints we’ll look at. What does it mean to be optimal for this 
problem? By the way, this is redundant. You should really just say an optimal point or the 
solution. In fact, you shouldn’t trust anyone who says optimal solution, because that 
would be like people who say the following is a true theorem. It’s kind of weird. It’s 
redundant. It doesn’t hurt logically, but it kind of – what about the types when you forgot 
to add the attribute true? What were those theorems?  

I’d say an optimal point or a solution is a point that satisfies these inequalities here and 
has smallest objective value among all vectors that satisfy the constraints. That’s what 
you mean by a solution. Of course, you can have everything possible. You can have a 
problem where there is no solution. You can have a problem where there’s one, where 
there’s multiple, and you can have other things, which we’ll get to more formally. This is 
just our first pass.  

Let’s quickly look at examples. Here are some absolutely classic examples from all over. 
The first is portfolio optimization. In portfolio optimization, the decision variables X1 
through XN – these might represent the amount you invest in N assets. For example, if XI 
is negative, it means you’re shorting that asset, unless that asset is cash, in which case 
you’re borrowing money. The X1 through XN is actually a portfolio allocation.  

You’ll have constraints. Obviously, there will be a budget constraint. That tells you the 
amount that you have to invest. There might be maximum and minimum investment per 
asset. For example, the minimum could be zero. You’re not allowed to actually purchase 
a negative quantity of an asset, which would be shorting that asset. You can have no 
shorting.  

You might have a maximum amount you’re allowed to invest in any asset. You might 
have a minimum return that you expect from this portfolio. Your objective might be 
something like the overall risk or variance in the portfolio. You’d say here’s 500 stocks 



you can invest in. My mean return absolutely must exceed 11 percent. Among all 
portfolios that meet – I’m going to have no shorting, and the sum of the XI is going to 
equal one because I’m going to invest one million dollars.  

The question is among all portfolios, they guarantee a mean return of 11 percent. I want 
the one with the smallest variance in return. That would be the one with the least risk. 
We’ll look at these in detail later. This is one where when you solved the optimization 
problem, it would probably be advisory in the sense that you’d look at what came back 
and say well, how interesting. Maybe I’ll execute the trades to get that portfolio or maybe 
not. This could also be real time if you’re a hedge fund and you’re doing fast stuff. This 
could be programmed [inaudible]. There are lots of different things this could be used for.  

Let’s look at [inaudible] electron circuit. Here, you have a circuit. The variables, for 
example, might be the device widths and lengths. It could be wire widths and lengths, 
something like that. You have constraints. Some of these are manufacturing limits. For 
example, depending on what fabrication facility is making your circuit, you have a limit 
on how small the length of a gate and a transistor can be. It can’t be any smaller than 65 
nanometers. That’s the smallest it can be.  

That’s a manufacturing limit. You would also have performance requirements. 
Performance requirements would be things like timing requirements. You could say this 
circuit has to clock at 400 megahertz, for example. That tells you that the delay in the 
circuit has to be less than some number because it has to be done doing whatever it’s 
doing before the next clock cycle comes up. That’s a timing requirement.  

You might have an area requirement. You could say if I size it big, I’m going to take up 
more area. This portion of the circuit can’t be any more than one millimeter squared. The 
objective in this case might be power consumption. You’d say among all designs that can 
be manufactured in the sense that they don’t reject your design instantly and meet the 
timing requirements among all of those, you want the one or a one with least power. That 
would be minimized power consumption.  

Our last one is just from statistics. It’s a generic estimation model. Generic estimation 
looks like this. What’s interesting here is these are from engineering and finance and stuff 
like that. In these cases, the Xs are things you’re going to do. In this case, they’re actually 
portfolios you’re going to hold, and in this case, they will translate into polygons that get 
sent off to the fabrication facility. The [inaudible] are actions. Here, it’s very interesting, 
because the XIs are not actions. They’re actually parameters that you’re estimating.  

Here, you have a model. You can take any kind of data or something like that and you’ll 
have parameters in your model. You want to estimate those parameters. These XI are not 
things you’re going to do. These are numbers you want to estimate. That’s what it is.  

You have constraints. For example, let’s say that you’re going to estimate a mean and a 
covariance of something. It can be much more sophisticated, but let’s suppose that’s the 
case. We have a constraint here. There might be some constraints. Here’s a constraint. 



The covariance matrix has to be positive semi definite. That’s a constraint, because if you 
created a covariance matrix that wasn’t, you’d look pretty silly. That’s a nonnegotiable 
constraint.  

You could also have things like this. You could say these Xs must be between this limit 
and that limit. For example, suppose you’re estimating some diffusion coefficient or 
some parameters known to be positive. Then you should make it positive. These are 
parameter limits. The objective is, generally speaking, dependent on how you want to 
describe the problem. If you describe the problem in an informal way, it’s a measure of 
misfit with the observed data. For example, if I choose a bunch of parameters, I then 
propagate it through my forward model and find out what I would have had, had this 
been the real parameter.  

The question is, does it fit the observations well? Another way to say it – it’s a measure 
of implausibility. That’s really what it is. It’s a measure of implausibility. In this case, 
we’re minimizing it. In many contexts, you’ll see it turned around so it’s maximized. If 
you’re a statistician, you would reject the idea of a prior distribution on your parameters, 
and your objective would be to maximize the likelihood function or the log likelihood 
function. That’s what you’d be maximizing. That’s essentially a statistical measure of 
plausibility. You’d minimize the negative log likelihood function, which I think they call 
loss in some of these things.  

Implausibility in a [inaudible] framework, a measure of implausibility would be 
something like the negative log posterior probability. That would be a measure of 
implausibility. If you minimize that, you’re actually doing MAP, which is maximum a 
posteriori probability estimation. By the way, we’ll cover all those things again, so this is 
just a very broad brush. If you don’t know what these things are, you will, if you take the 
class.  

These are examples of optimization. Everyone in their intellectual life goes through a 
stage. It can happen in early graduate school, mid graduate school. It can also happen in 
later life, which is bad. It’s not good to have it when you’re an adult. Let me describe this 
stage of intellectual development. You read a couple of books and you wake up at 3:00 in 
the morning and say oh my god, everything is an optimization problem. Actually, a lot of 
books start this way. My answer to that is – you have to go through this stage, so that’s 
fine. But get over it quickly, please. Of course, everything is an optimization problem.  

What you’ll find out quickly is it doesn’t mean anything to say that. It says nothing. What 
matters is what optimization problem it is, because most optimization problems you can’t 
solve. They don’t tell you that. Typically, they don’t tell you this. Or, what they do is 
they do tell you, but they distribute it through the whole quarter. It turns out if you just 
say a little bit of that message every day, at the end of the quarter, no one can accuse you 
of not having admitted that we don’t know how to solve most optimization problems.  

However, because it was below the threshold of hearing in each lecture, as a result, all 
these students went through and the big picture didn’t come out, which is basically – the 



way you cover it up is by going over 57 different types of algorithm for solving things, 
which basically is a cover up for the fact that you can’t solve anything. We’ll get to that.  

This is related to the following – solving optimization problems. To say that everything is 
an optimization problem is a stupid tautology. It all comes down to this. How do you 
solve them? It turns out it’s really hard, and basically in general, I think it’s fair to say it 
can’t be done. I can write down shockingly simple optimization problems and you can’t 
solve it, and it’s very likely no one else can. I can write down very innocent looking 
optimization problems and they’ll be NP hard.  

What do people do about it? Well, there are a couple of ways to do it. What do I mean by 
NP hard? Nondeterministic polynomial ties. You take at least quarters on this in a 
computer science class. I’m going to give you the 15-second version. I’ll tell you about it 
from a working perspective. In the 70s, people identified a bunch of problems that so far 
no one had figured out a good polynomial time algorithm for solving.  

Polynomial time means there’s an algorithm where the problem comes in, you measure 
the size by the number of bits required to describe – you measure it by the number of bits 
required to describe the data, and then you look at the number of operations you have to 
do. If you can bound that by a polynomial, then you’d say that’s polynomial time. Bear in 
mind, I’m compressing a ten week course to about 14 seconds. I’m going to gloss over 
some of the details.  

There were a bunch of problems where people – the famous one would be traveling 
salesmen problem. No one had found a polynomial tying method. A guy named Cook, 
maybe, did the following. He catalogued a bunch of problems and said if you can solve 
any of these, then if you make a method for solving that, I can make a reduction. I can 
take your problem and map it to this, and with that, I can solve the traveling salesmen 
problem. Then you had an intelligent way of saying of two problems, one is just as hard 
as the other.  

NP hard means, and this is really – people are going to cringe if they have a background 
in this – it means it’s at least as hard as a catalog of problems thought to be very hard. 
That’s your prototype. Basically, what I’m saying is not true, but as a working definition 
of what it means – for your purposes, this is going to be fine. It means the problem is at 
least as hard as traveling salesman.  

Let me tell you what that means. It is not known that these things cannot be solved from 
the polynomial tie. That’s not known. It is thought that that’s the case, and it may be at 
some point, somebody will show that you can’t solve these. Right now, they’re thought to 
be harder. I think there’s an insurance policy. Let me tell you why it’s an insurance 
policy. A ton of super smart people have worked on all these problems, and now all of 
these things are banded together as you would do in insurance. You band a whole bunch 
of things together.  



What would happen is if tomorrow, somebody, probably a Russian, proves P equals NP, 
meaning you can solve all of these problems, it would indeed be embarrassing for a lot of 
people. However, the embarrassment is amortized across – people could say you went 
around and made a big deal about convex problems and polynomial time. I say look at all 
the other people. The embarrassment is spread across a great swath of people. It’s an 
insurance policy. It is thought that they’re really hard. If they’re not, you’re in very good 
company with the people who also thought they were hard.  

Student:It’s just in its own field. It’s not proven to be certain. It’s not mathematically 
proven to be non-polynomial.  

Instructor (Stephen Boyd):That’s right. That’s why it’s still an open conjecture. If, in 
fact, it turns out that these are theoretically not hard, the [inaudible] could end up being 
huge, and that would also blunt the embarrassment. In any case, the embarrassment is 
spread across a lot of people. We’ll come back to that problem several times in the class.  

Methods to solve a general optimization problem – they always involve a compromise. 
The two main categories of compromise are as follows. The first one is to not back down 
on the meaning of solve. Solve means solve. It means find the point that has least 
objective and satisfies the constraints. That’s the definition of solve. You leave that 
intact, but you leave open the possibility that the computation time might involve 
thousands of years or something like that. People call that global optimization, and it’s a 
big field. It is almost entirely based on convex optimization.  

The other one, which is the one most widely done by people who do optimization – they 
do the following. It’s very clever what they do. They go and solve – they put a footnote, 
and then way down at the bottom, they write this – they write and now I’ll have to ask 
you to zoom in on that. There it is. It says not really. What that means is they make a big 
story about this, and they say it’s a local solution. What happens is they don’t – it gets 
tiresome to say solve locally, plus, it doesn’t look good.  

What happens is you drop it after awhile, and then you say I solved that problem, and 
people give talks and say I minimized that. The point is they didn’t. What they did was 
they got a local solution. We’ll talk more about that as well. There are exceptions. If you 
were going to do that, I would maintain, although this is not widely held – you’ll find that 
many of my opinions are not widely held. If you were going to do that, I would do it via 
convex optimization.  

Student:But you will be doing it in the spring?  

Instructor (Stephen Boyd):Yes. It’s scheduled to be in the spring. Who knows when I’ll 
do it. What are the exceptions? There are cases where you can solve these problems with 
no asterisk. The most famous one in the world by far is least squares, least norm. No 
asterisk there. It’s not like oh, yeah, well, I transpose A inverse A transpose B. Yeah, that 
often works super well in practice. The status of that is that is the global solution. There 
are a couple others that you might not know about, and that would be things like linear 



programming problems. We’ll get to those quite quickly. Those are ones where you get 
the answer.  

There are asterisks in these, but they’re much smaller fine print. I’ll get to them later in 
the class. When there’s an admission that has to be made, I will make it. The parent of 
these, and a considerable generation, is this convex optimization problem. This is really 
the exception. The rough idea, to put it all together, is something like this. Most 
optimization problems – let’s review what we’ve learned so far. A – everything is an 
optimization problem. B – we can’t really solve most optimization problems. The good 
news is here, that there are huge exceptions. This entire class is about one of the 
exceptions.  

When you do convex optimization, there are no asterisks. You solve the problem and 
there are no apologies. It’s the global solution. Is life convex? I would have to say no, it’s 
not. I hope it’s not. It’s not sad. If we get to that later today, you’ll know why it’s not. To 
check convexity, you have to take two instances and then form weighted averages in 
between. What would the average of yours and your life look like? The other thing that 
has to happen is that life has to be better than the average of the qualities of your lives. 
Let’s keep that as a running topic that we’ll revisit periodically. For the moment, my 
position is it’s not.  

Student:Are there other exceptions besides convex optimization?  

Instructor (Stephen Boyd):Yes, there are. Singular value decomposition. That’s one 
where our can compute the singular value – I can write it out as an optimization problem 
pretty easily. I could say find me the best rank two approximation of this matrix. That’s 
way non-convex. Yet, we can solve it and we get the exact global solution. That’s an 
example. There are some combinatorial problems. So if you’ve taken things on 
combinatorial algorithms in computer science – combinatorial algorithms on their face 
would appear to be non-convex. It turns out a lot of them are convex. It’s quite strange.  

You take something that’s a combinatorial optimization problem that on its face would 
not be. It turns out if you let the variables vary between zero and one, you can prove that 
there’s always a solution, which is on the vertices, and so there’s actually a lot of 
problems that we can solve but are not convex. Some of them can be secretly turned into 
convex problems. Getting a rank two approximation of a matrix is an excellent example. 
We can definitely do that and it is definitely not convex.  

We have least squares or, if you’re in statistics, regression. It may have other names. I 
don’t know. Here’s the problem. You want to choose X to minimize the [inaudible] norm 
squared of AX minus B. If A is full rank or skinny, you get an analytical solution, which 
you know if you know about linear algebra. It’s just A transpose A inverse A transpose 
B. In this case, it’s a unique solution. In fact, we have a formula for it, which is overrated. 
In this class, we’re going to look at tons of problems. There will be analytical formulas to 
almost none of them. You’ll have to wean yourself away from analytical formulas.  



The sociology of that is very interesting. You’ve been trained for 12, 14 years on 19th 
century math, which was all based on analytical formulas, but we’re going to move 
beyond that. If you look most deeply into what it means to have an analytical formula, it 
turns out – we’re going to solve AX minus B with an infinity norm there or a one norm. 
There’s no analytical formula for it now. But it turns out we can calculate that in the same 
time it takes for you to calculate this. Having a formula is something that will mean less 
to you by the end of this class.  

Student:So not all optimization problems have that subject.  

Instructor (Stephen Boyd):When we go over this in hideous detail later, that’s the case. 
I should mention you should be reading chapter one and chapter two. Chapter one will 
have a lot of this vague stuff, and chapter two will start in on the real stuff. You’re 
absolutely right. An optimization problem – you do not have to have any constraints, in 
which case it’s called unconstrained, and you don’t even have to have an objective. If you 
have neither, that’s called a stupid problem. It’s minimized. The universal solution – X 
equals zero.  

If you don’t have an objective, it’s called a feasibility problem. In some fields, they call it 
a satisfaction problem. You have a bunch of inequalities and you want to find a point that 
satisfies all of them. That’s what that is. Back to least squares. Much more important than 
the formula – it turns out you can write down a formula for a lot of stuff, and it doesn’t 
do you any good if you actually want to calculate it. Here, there are reliable and efficient 
algorithms that will actually carry out this computation for you.  

By the way, that’s why least squares is so widely used because it has computational teeth. 
Instead of just talking about it, which is what a formula would allow you to do, you can 
actually use it. You can actually compute. We’re not going to go into too much detail in 
the numerics. At one point in the class, we will. We’ll talk about how you exploit 
structure and things like that. Here, just so you know, the computation time to solve a 
least squares problem goes N squared K. N is the number of variables, and that’s the 
small dimension. K is the number of rows in A. It’s a good thing to know. It’s the small 
squared times the big.  

You can do this as I said not long ago in 263 with modern computing. It’s amazing what 
you can solve. Then, we did a couple thousand row least squares problem. You can call it 
a regression problem in 2,000 dimensions with 1,000 regressors. It was three seconds. By 
the way, if A is sparse or has special structure – suppose part of A has an [inaudible] 
embedded in it. That would come up in medical imaging. You can do that faster. In 
image processing, you’d have transformations. You can solve least squares that are way 
bigger.  

I would say that least squares is a mature technology. When I do this, people who worked 
on all of this – it’s a huge, active field in lots of areas – they get extremely angry when I 
use the word technology. I said by the way, I mean technology here. This is the highest 
praise. This is not an insult. What it means is that other people know enough about the 



theory, the algorithms, and the implementations are so good and so reliable that the rest 
of us can just type A backslash B.  

Of course, if you’re building some real time system or the sizes get to a million or ten 
million, you’re not going to be using backslash. But that’s it. That’s a boundary that’s 
growing with time. That’s the wonderful thing about anything that has to do with 
computers. Just take a vacation for a year. My colleagues at the other end of the 
[inaudible] who actually do real things, they and all their friends around the world will 
make stuff twice as fast. You just go away. You go to the Greek Islands for three weeks. 
You come back and computers are faster. It’s great.  

Of course, I’m not telling people to just use A backslash B. Everyone here has done A 
backslash B. Probably only a few know what it actually did. Nothing terrible has 
happened. I’ll come back to them and when they’re yelling at me, I’ll say back off. Do 
you use TCP/IP? Sometimes, they won’t even know what I’m asking. Then I’ll say are 
you using TCP/IP as a black box? You don’t even know what’s inside it?  

Some of them will say yeah, I do. Even communications on your laptop between different 
components – I’ll say do you know what it does? Most of the time, they’ll say no. Here’s 
what you need to know. It is not trivial by any means to make a reliable bit pipe to 
transfer bits from one place to another with unreliable medium insight. It’s no more 
trivial than it is to solve this problem numerically. It is not trivial. All you need to know 
is this. Very intelligent people have thought about this problem very deeply. They’ve 
thought about what can go wrong, deadlocks, all sorts of crazy stuff, and they have come 
up with algorithms about which they know an incredible amount.  

Part two – other people have implemented them, and these are very reliable 
implementations. The result is for most of us, we can just consider certain things to be 
reliable bit pipes. We don’t have to care about how many packets were retransmitted or 
how the flow control went and all that kind of stuff. Like least squares – if you’re doing 
real time control or something like that or if you’re doing some computing that requires 
extreme reliability, then you can’t treat TCP/IP as a black box.  

You might ask does this calm them down? The answer is no. This makes them more 
angry. I mean technology here in praise of this. When you use least squares – if you’ve 
just come from 263, you’ve used least squares. That’s just the beginning. The way you 
use least squares is this. It’s easy to recognize a least squares problem. Sometimes, it 
comes to you on a platter. Somebody walks up to you and says I took these 
measurements. It’s a linear measurement model. Help me guess these parameters. I 
received a signal and went to this channel – this kind of thing.  

If you learn a few tricks in least squares, you can do well. If you learn how to do weight 
twiddling and you learn about regularization, those two alone – you are now trained and 
ready to do battle with using least squares as a tool. You will do really well. Weights is 
basically you go into a problem and someone says there’s no limit on the sum of the 
squares. The limit is on this. You say no problem. I have these weights here. You look at 



the least squares solution. You don’t like what you see. You change the weights and you 
do it again.  

In engineering, we do this all the time. It’s called weight twiddling. It’s a slightly 
derogatory term, but not bad. I’m sure that you do it in statistics, but I don’t know that 
they admit it. Good. When I’m making fun of a department, I like to have a face to look 
at. They like to stick to – if you’re doing real statistics, you go back in and change the 
prior distribution. I have to warn you, all of these lectures are being put on the web. It’s 
weird and fun. We’ll fuzz out your voice, and if the camera focused on you, we’ll put the 
squares on it. Don’t worry about it. If you’d like, we can obscure your department. We 
can beep it out.  

I’m just going to guess that in statistics, they make a big story about the prior distribution. 
I bet if they don’t like the way it comes out, they go back and change that prior 
distribution. They cover up their tracks. We do it in engineering, and we’re not 
embarrassed. I bet they do it. Next topic is linear programming. Some of you have seen 
this. How many people have seen linear programming somewhere? A bunch. Okay.  

Linear programming – in my opinion, it’s what people should learn immediately after 
least squares, singular value decomposition, linear programming. If you’re going to stop 
somewhere, that’s a very good place. I’m taking about if you really want to go out and 
field algorithms, do real stuff – that’s a great place to stop. Everybody should know about 
it. If you take this class, you’re going to know a lot about it. Linear programming is a 
problem that looks like this. Minimize a linear function subject to a bunch of linear 
inequalities.  

We’re going to talk about it in horrible detail later in the class, so I’m not going to go into 
too much detail now. I want to talk about the attributes of linear programming. The first 
is in general, except for very special cases, there’s no analytical formula for the solution. 
There is no A transpose A inverse A transpose B. By the way, don’t confuse that with our 
inability – you can say a huge amount of qualitative, intelligent things about a linear 
program. What you can’t do is write down a formula for the solution.  

There are reliable and efficient algorithms and software. In fact, as a homework exercise, 
you will write something in the top class linear – it will be 50 lines of Mat-Lab or Python, 
and you’ll write something that will solve huge linear programs quite well. It’s no 
asterisk on solve – you get the solution. The computation, by the time, is proportional to 
M squared N. That’s exactly the same as least squares. If you equate rows of the least 
squares objective with constraints, it’s identical. That’s not an accident.  

M is a number of constraints here, and K is the height of A.  

Student:So this M – there’s still that many rows in A.  



Instructor (Stephen Boyd):Yes, if I write that as a matrix inequality, AX less than B, 
yes, that would be – this M would be that K. We spent hours discussing whether this 
should be M or K, and we finally – it probably should be K.  

Student:What about C?  

Instructor (Stephen Boyd):X is an RN, so C is an RN, too. Actually, linear 
programming – it’s a very old topic. Fourier wrote a paper about it. The modern era starts 
in the 30s, where else but Moscow. The modern era traces back to Stanford and George 
Dantzig. LP was something that you just talked about until you had computers, at which 
point LP looked a lot more interesting. That was 1948. I think a lot of people knew about 
linear programming. Something like this coupled with computers – that’s a mature 
technology.  

Linear programming – it looks like it would be easy to recognize, and in some cases, a 
problem really comes to you on a platter like this. Someone comes to you and says help 
me solve this problem. I want to minimize this weighted sum of the variables and I have 
some budget constraints. There are three problems that have exactly this form. Here’s the 
really cool part about linear programming. You will be stunned later in the class when 
you see the kind of problems that we can reduce to linear programming. Things that do 
not look like linear programming at all we will reduce to linear programming.  

What that means is they’re solved. Unless your problem is huge or you have some super 
real time thing like in communications, then there’s a sense in which you’re kind of done 
at that point. If you do medical imaging, that’s a mistake, because the problems are too 
big. You can’t say it’s a linear program and walk away. You can’t do communications. It 
depends on the time scale. You had to adapt to things. You can’t detect the bits 
transmitted in a packet, because that’s coming at you way too fast. I would recommend 
that you go into fields that are in between in size.  

We’re going to see a bunch of tricks. Finally, I’ll say what convex optimization is, 
because it would seem in a class with that title, one should say what it is in the first 
lecture. Here’s what it is. It’s an optimization problem – minimize an objective subject in 
constraints. Here’s what has to happen. The function F0 and the FIs have to be convex. 
You know what convex is. It means that the graph looks like that. That’s a convex 
function. The graph should have positive curvature.  

Least squares problem has that form because if I look at the least squares objective and I 
look at the plot of it, it’s a quadratic function squared, and basically, it looks like a bowl. 
If you take a slice at a level set, you get an ellipsoid. It’s convex. Linear programming 
also is a convex problem because all of the objectives are linear. Linear functions are 
convex. Linear functions are right on the boundary. They have zero curvature.  

One way to say convex is just positive curvature. This includes least squares, and kind of 
the central idea at the highest level of this class is this. If you want to solve a convex 
optimization problem, there are no analytical solutions. There are in special cases. We’ll 



see tons of cases in communications and various other places where they have special 
analytical solutions. You’ve seen one in least squares already.  

In general, there isn’t an analytical solution. However, there are going to be reliable and 
efficient algorithms for solving these with no asterisk. You will get the solution. In fact, if 
someone came from another planet and landed here and asked you what you’re doing, 
there would be – it would be very difficult to make an argument that solving a convex 
optimization problem compared to a least squares problem was, for example, that you’d 
been reduced to a numerical solution, which is what a lot of people might say with a hint 
of – they don’t like the idea. They say numerical method in a way that makes you want to 
go wash your hands.  

The computation time for solving convex problems is roughly proportional to something 
like N cubed – the number of variables cubed – N squared M and F, where F is the cost 
of evaluating the functions and their first and second derivatives. We don’t have to get 
into that, but the point is it’s like least squares. You can basically solve these. You will 
solve them in this class. You’ll know how to write the algorithms to solve them and stuff 
like that. It is an exaggeration, in fact, to say it’s a technology. It’s almost a technology, 
and every time I give this class, it’s getting closer and closer.  

I should say something about – we’ll get to it later, but this is a very profound statement. 
It basically identifies a huge class – let’s review what we know so far. A – everything is 
an optimization problem. B – we can’t solve any optimization problems despite ten or 
twenty weeks of lectures on it. Now what I’m saying is on the positive side. It’s really 
cool, and it’s not obvious at all. It says if the objective and the constraints all have 
positive curvature, then this thing is just like least squares. You can solve it exactly. You 
can solve it quickly. Although I’m not going to focus on it, you can say a whole lot about 
it theoretically.  

We will say some stuff about it theoretically, but that’s not going to be the focus of the 
class. This is a pedantic way. You might prefer it if I wrote it this way. Four Theta N zero 
one. You might prefer it that way.  

Student:I don’t know why it has to be zero one, though. Why can’t it be 99 and 100.5 or 
negative five?  

Instructor (Stephen Boyd):There are versions where there are different constraints. If I 
just say – it said F of Alpha X plus Beta Y is less than or equal to – if it’s Alpha F of X 
for all Alpha and Beta, the function would be called sub linear. It’s a different thing. This 
is just a definition of convex.  

Student:It doesn’t have any physical basis or anything. It’s not gonna turn concave if 
you suddenly make it more than one.  

Instructor (Stephen Boyd):We’ll answer your question. This is not an accidental. For 
now, that’s the definition.  



Student:[Inaudible] just a statement of the [inaudible] of the line between –  

Instructor (Stephen Boyd):That’s what it is. It’s this picture. By the way, we’re going to 
get to this later, so you’re not supposed to be understanding everything. First of all, I’m 
not saying that much. The stuff I am saying is kind of vague. You’re not supposed to be 
parsing this. You’re supposed to have your relaxed parsing mode on and let me get away 
with stuff. There’ll be a time for is that really a minus sign. That’s coming later.  

You already know something you didn’t know. Optimization problems where the 
objectives and constraints have positive curvature, roughly speaking, we can solve. The 
theoretical implication, I think, is extremely interesting. The practical ramifications of 
this are absolutely immense. It means you’re messing on some problem in your own 
field, and if you get it to a problem of this form – it won’t be obvious.  

It’s much cooler when you get to it and you turn things around and you switch some 
variables around. All the smoke clears. There are some functions there that it’s not 
remotely obvious they’re convex. You show they are, and then you’re a hero, and it’s 
fun. It means you can now solve those problems.  

I give a talk about these things lots of places. People say that’s really cool. How do you 
learn about this? How do you know if a problem is convex or not? I go no problem. You 
just have to come take my class. You do ten homeworks, each of which takes 20 hours 
and then you do this 24-hour final. After that, for sure you’ll be quite well trained. Then 
they’re less enthusiastic about it.  

It’s actually often difficult to recognize convex problems. That’s going to be a theme of 
the class. Let me distinguish a few things there. I would distinguish problems that come 
on a platter convex, the ones where you have to do some work and transform them and 
stuff like that. Let me move on.  

I want to do an example just to give a rough idea of what this looks like. For people who 
did 263, this will kind of tie into that. Here’s our problem. I have a surface here with 
patches, and I have some lamps here. We’re going to choose the illuminating powers on 
the lamps. That’s going to be our variable.  

The illumination on a patch here is going to be the sum of the illumination from all the 
lamps here. It’s going to be proportional to the lamp power and then the proportionality 
constant is going to be an inverse square law. R is the distance between the patch and the 
lamp. There’ll be something which is a shading effect, because obviously, if you’re 
coming in straight on here, then you’re going to get the full power.  

If this lamp, for example, puts very little illumination on here, and this were below its 
horizon, if there were a lamp here, it would not illuminate this patch at all. This is a 
simple thing. The problem is to achieve a desired illumination which is given. You want 
to do this with bounded lamp powers. I have a maximum power. Powers cannot be 



negative. I care on a log scale, because what I care about is missing the lamp power by 
two percent or twelve percent. I don’t care about absolute. It’s ratio compared to this one.  

The question is how would our solve it? Let’s take a look and see how you might solve it. 
If your question is do I shamelessly reuse material from one place in another, I can 
confirm that, yes. Are you asking have you seen that figure before? The answer could 
well be yes, you have.  

Let’s talk about how to solve it. The first thing you might do, and I would recommend 
this – the first thing you do is you say let’s try some simple suboptimal schemes. One is 
just this – you set all the lamps at the same power. You vary it and you plot this 
objective. You do a search over it. There’s no dishonor in it. You do that. That might 
work, but it might not. That’s a good baseline design. You could say, well, I just learned 
least squares from 263. You’re going to use least squares. I’m going to do this.  

The objective here is not the sum of the squares. This is real life. This is the illumination 
engineers. Everyone uses the absolute value – the sums of the absolute values of the law 
of percentage error. I’m making it up, of course. You say well, good for you. We use the 
sum of the squares. You solve this problem. When you solve this problem, I guarantee 
you some of the Ps are going to come out negative. By the way, you’re going to do super 
well. You’re going to get a nice, flat illumination pattern.  

What will happen is you’ll look at the powers and a whole bunch of them will be 
negative. It turns out you can do really well in illumination with lamps that can spray 
negative power out. That’s not good. Then the heuristic. What do you do? Here’s what 
you do. You say if a P is bigger than the maximum power, I just set it equal to P max. If 
it’s a negative lamp, I turn that lamp off.  

Once again, you see how well you did, and you might do better than uniform – maybe 
worse. I don’t know. Now, this is what someone trained in least squares would do. 
They’d say not a problem. They’d go over here and say I want PJ to be in the interval 
zero P max. Therefore, I’m going to add a regularization term which charges P for being 
away from the center of that interval. Everybody see what this is?  

You start with all the Ws one, and you solve this problem. Then, you just start weight 
twiddling. You’ll do quite well here. You’ll come up with some algorithm that twiddles 
the weights, and how you twiddle them is totally obvious. If P comes out outside that 
interval, that weight needs to go up in the next cycle. If P is timid because your weight is 
so high, you want to decrease that weight. A couple of cycles of this, and you’re going to 
get a very, very good solution.  

Unfortunately, you might also go on to then write an impossible to read 12-page paper 
with pages and pages describing your iteratively reweighted illumination thing. 
Hopefully, you won’t. You could also use linear programming. If you know about linear 
programming, you could actually solve this L one problem where you minimize an L one 



norm. This is closer than that. Linear programming – it handles the inequalities. There’s 
no twiddling there. This would probably do the best of all of them.  

The problem is convex, so this objective function – it just looks like this. It’s linear over 
here, and then it’s an inverse over here. You look at that function and you realize a 
couple of things. The important part – that’s what you’re going to be trained on in the 
next ten weeks is looking for convexity. This is what we like to see.  

By the way, you will see that that function is not differentiable. In a lot of other 
treatments of optimization, differentiability has this very high role, because a lot of things 
are based on gradiance and derivatives, and there’s no derivative there. So in convex 
optimization, differentiability is going to actually play a much lower role. In fact, it’s a 
non-role.  

This problem, even though it is non-differentiable here, it can be solved as fast as least 
squares if you know what you’re doing. We might even have you write from scratch a 
solver for it. We could also assign it. It would be four lines in a higher-level language or 
something like that to solve this. That’s it. This is just an example of a problem where it’s 
not obvious exactly how to solve this, and you can imagine a lot of people not knowing.  

Let’s look at a couple additional constraints.  

Student:Where did that curve come from?  

Instructor (Stephen Boyd):I plotted it.  

Student:I mean the equation. How did you know to do [inaudible]?  

Instructor (Stephen Boyd):If you go back and exponentiate my other objective, you’ll 
find this.  

Student:So you just did it on both sides.  

Instructor (Stephen Boyd):Yes. If you minimize something, it’s the same as minimizing 
the X of that thing because X is monotone increasing. Let’s add some additional 
constraints here. Here’s one – no more than half the total power is in any collection of ten 
lamps. That would be one. Another one is no more than half the lamps are on, but you get 
to choose which half. I won’t go into all the gory details, because for one thing, I’m 
running out of time, but it’s not – both of these sound complicated or easy or something 
like that. If you don’t know about convexity, you wouldn’t know the second one is an 
unbelievably difficult problem.  

In fact, you’d have to check all N [inaudible] N over two sets of half the lamps and for 
each one, solve the problem. Basically, everything would come down to that to actually 
get the real answer. You could get very good heuristics that would guess an answer, but 
they would not be certified as the actual correct one. This one – no more than half the 



total power is in any ten lamps – that actually is convex, and it’s not obvious. By week 
three of this class, you will know things like that.  

This is actually cool, because these are things that look very similar. If I said them the 
right way, I could probably make you think that they are kind of the same question. I’ll 
often do that in talks, except I don’t give the answer, and then I pick some poor person. 
The point is these are just not obvious at all, these things.  

Why is it famous? It’s not famous.  

Student:I mean, people have [inaudible] papers and have investigated [inaudible].  

Instructor (Stephen Boyd):You mean the illumination problem? I think I probably made 
it up one day and then actually [inaudible] – I can say this because he’s a colleague of 
mine at MIT. The next thing I knew, it was in his book, the famous illumination problem. 
You’ve been subjected to it in 263. That would be the 263 version of the illumination 
problem.  

Notice that we didn’t ask you to find any powers, because you would have had this 
annoying problem of negative powers coming out. That’s selective, though. I don’t think 
the problem is any more famous than it’s been here. I don’t know.  

No, because this would subsume all – you have to choose which half of them are actually 
going to be possibly on, not which are actually on. It’s exponential in the end. Let me just 
say a little bit and then I’ll quit. The course goals and topics – the goal is to allow you to 
recognize and formulate problems. You should know enough to develop code for these 
things. You’ll see it’s very simple. You might not think that about seven weeks into the 
quarter, but you’d be shocked at how simple some of these things are.  

We’ll focus a bit on the theory of this, and do want to skip forward to something at the 
very end here. I know I’m over, so I’ll just take a minute or two to do this. I’ve already 
mentioned this. First of all, the theory of convex optimization is more than 100 years old. 
The first paper on this is from 1890 or something like that.  

In fact, the idea is traced earlier. By 1970, it was very well known, the theory. There are 
some points here that I think I don’t have time to go into, but you can read about this in 
the first chapter. What I do want to say is something about why it’s interesting now, if 
this is 100 years old as a mathematical subfield. What makes it interesting now?  

What I can say is since about 15 years ago, people have been finding applications in lots 
and lots of areas, and it just sort of starts coming up. It may not particularly help you in 
some area to know that a problem is convex, but it sure doesn't hurt. It might in some 
cases allow you to solve it. This was sort of not the case, with the exception of least 
squares and linear programming.  



These have been widely used since the 50s and widely applied since the 1950s. Basically 
since the 1990s, there were a lot of things found in areas like machine learning and 
statistics and control and signal processing and stuff like that. You get a nice, positive 
feedback loop because once more people start discovering these problems and start 
writing papers on, for example, the famous illumination problem – once they start 
appearing, what happens is people who write the algorithms see two of these and say 
somebody should write a code for the illumination problem.  

Then, they write a beautiful code, well tested, numerically stable, hopefully open source 
and all that, and then everyone can now solve the famous illumination problem. Only 
then do people realize that there never was such a problem, hopefully. I quit here, and I’ll 
see you, in theory in two days, but more like two months or something like that.  

[End of Audio]  

Duration: 80 minutes  


