
EE364a Review

EE364a Review Session 7

session outline:

• derivatives and chain rule (Appendix A.4)

• numerical linear algebra (Appendix C)

– factor and solve method
– exploiting structure and sparsity

1

Derivative and gradient

When f is real-valued (i.e., f : Rn → R), the derivative Df(x) is a 1 × n
matrix, i.e., it is a row vector.

• its transpose is called the gradient of the function:

∇f(x) = Df(x)T ,

which is a (column) vector, i.e., in Rn

• its components are the partial derivatives of f :

∇f(x)i =
∂f(x)

∂xi

, i = 1, . . . , n

• the first-order approximation of f at a point x can be expressed as (the
affine function of z)

f(x) + ∇f(x)T (z − x)

EE364a Review Session 7 2

example: Find the gradient of g : Rm → R,

g(y) = log

m∑

i=1

exp(yi).

solution.

∇g(y) =
1∑m

i=1
exp yi




exp y1

...
exp ym





EE364a Review Session 7 3

Chain rule

Suppose f : Rn → Rm and g : Rm → Rp are differentiable. Define
h : Rn → Rp by h(x) = g(f(x)). Then

Dh(x) = Dg(f(x))Df(x).

• Composition with an affine function:

Suppose g : Rm → Rp is differentiable, A ∈ Rm×n, and b ∈ Rm. Define
h : Rn → Rp as h(x) = g(Ax + b).

The derivative of h is Dh(x) = Dg(Ax + b)A.

When g is real-valued (i.e., p = 1),

∇h(x) = AT∇g(Ax + b).

EE364a Review Session 7 4

example A.2: Find the gradient of h : Rn → R,

h(x) = log

m∑

i=1

exp(aT
i x + bi),

where a1, . . . , am ∈ Rn, and b1, . . . , bm ∈ R.

Hint: h is the composition of the affine function Ax + b, where A ∈ Rm×n

has rows aT
1 , . . . , aT

m, and the function g(y) = log(
∑m

i=1
exp yi).

solution.

∇g(y) =
1∑m

i=1
exp yi




exp y1

...
exp ym





then by the composition formula we have

∇h(x) =
1

1Tz
ATz

where zi = exp(aT
i x + bi), i = 1, . . . , m

EE364a Review Session 7 5

Second derivative

When f is real-valued (i.e., f : Rn → R), the second derivative or Hessian
matrix ∇2f(x) is a n × n matrix, with components

∇2f(x)ij =
∂2f(x)

∂xi∂xj

, i = 1, . . . n, j = 1, . . . , n,

• the second-order approximation of f , at or near x, is the quadratic
function of z defined by

f̂(z) = f(x) + ∇f(x)T (z − x) + (1/2)(z − x)T∇2f(x)(z − x).

EE364a Review Session 7 6

Chain rule for second derivative

• Composition with scalar function

Suppose f : Rn → R, g : R → R, and h(x) = g(f(x)).

The second derivative of h is

∇2h(x) = g′(f(x))∇2f(x) + g′′(f(x))∇f(x)∇f(x)T .

• Composition with affine function

Suppose g : Rm → R, A ∈ Rm×n, and b ∈ Rm. Define h : Rn → R by
h(x) = g(Ax + b).

The second derivative of h is

∇2h(x) = AT∇2g(Ax + b)A.

EE364a Review Session 7 7

example A.4: Find the Hessian of h : Rn → R,

h(x) = log

m∑

i=1

exp(aT
i x + bi),

where a1, . . . , am ∈ Rn, and b1, . . . , bm ∈ R.

Hint: For g(y) = log(
∑m

i=1
exp yi), we have

∇g(y) =
1∑m

i=1
exp yi




exp y1

...
exp ym





∇2g(y) = diag(∇g(y)) −∇g(y)∇g(y)T .

solution. using the chain rule for composition with affine function,

∇2h(x) = AT

(
1

1Tz
diag(z) −

1

(1Tz)2
zzT

)
A

where zi = exp(aT
i x + bi), i = 1, . . . , m

EE364a Review Session 7 8

Numerical linear algebra

factor-solve method for Ax = b

• consider set of n linear equations in n variables, i.e., A is square

• computational cost f + s

– f is flop count of factorization
– s is flop count of solve step

• for single factorization and k solves, computational cost is f + ks

EE364a Review Session 7 9

LU factorization

• nonsingular matrix A can be decomposed as A = PLU

• f = (2/3)n3 (Gaussian elimination)

• s = 2n2 (forward and back substitution)

• for example, can compute n × n matrix inverse with cost
f + ns = (8/3)n3 (why?)

solution.

– write AX = I as A[x1 · · ·xn] = [e1 · · · en]
– then solve Axi = ei for i = 1, . . . , n

EE364a Review Session 7 10

Cholesky factorization

• symmetric, positive definite matrix A can be decomposed as A = LLT

• f = (1/3)n3

• s = 2n2

• prob. 9.31a: only factor once every N iterations, but solve every
iteration

– every N steps, computation is f + s = (1/3)n3 + 2n2 flops
– all other steps, computation is s = 2n2 flops

EE364a Review Session 7 11

Exploiting structure

computational costs for solving Ax = b

structure of A f s

none (2/3)n3 2n2

symmetric, positive definite (1/3)n3 2n2

lower triangular 0 n2

k-banded (aij = 0 if |i − j| > k) 4nk2 6nk

block diag with m blocks (2/3)n3/m2 2n2/m

DFT (using FFT to solve) 0 5n log n

EE364a Review Session 7 12

Block elimination

solve [
A11 A12

A21 A22

] [
x1

x2

]
=

[
b1

b2

]

• first equation A11x1 + A12x2 = b1 gives us

x1 = A−1

11 (b1 − A12x2)

• second equation is then

(A22 − A21A
−1

11 A12)x2 = b2 − A21A
−1

11 b1.

• speedup if A11 and S = A22 − A21A
−1

11 A12 are easy to invert

EE364a Review Session 7 13

example: Solve the set of equations

[
A 0
0 B

]
x =

[
b
c

]

where A ∈ Rn×n, B ∈ Rn×n, b ∈ Rn, c ∈ Rn, and matrices A and B are
nonsingular

• flop count of brute-force method?

solution. (2/3)(2n)3 = (16/3)n3

• how can we exploit structure?

solution.

– partition x = (x1, x2)
– x1 = A−1b, x2 = B−1c
– flop count: 2(2/3)n3 = (4/3)n3

EE364a Review Session 7 14

example: Solve the set of equations

[
I B
C I

]
x =

[
b1

b2

]

where B ∈ Rm×n, C ∈ Rn×m, and m ≫ n; also assume that the whole
matrix is nonsingular

• flop count of brute-force method? solution. (2/3)(m + n)3

• how can we exploit structure?

solution.

– use block elimination to get equations

(I − CB)x2 = b2 − Cb1 and x1 = b1 − Bx2

– flop count: forming I −CB costs 2mn2, b2 −Cb1 is 2mn, solving for
x2 is (2/3)n3, and computing x1 costs 2mn; overall complexity is
2mn2

EE364a Review Session 7 15

Solving almost separable linear equations

Consider the following system of 2n + m equations

Ax + By = c

Dx + Ey + Fz = g

Hy + Jz = k

where A, J ∈ Rn×n, B, H ∈ Rn×m, D,F ∈ Rm×n, E ∈ Rm×m, c, k ∈ Rn,
g ∈ Rm and n > m

EE364a Review Session 7 16

• need to solve the following system




A B 0
D E F
0 H J








x
y
z



 =




c
g
k





• naive way: treat as dense

• can take advantage of the structure by first reordering the equations
and variables 


A 0 B
0 J H
D F E








x
z
y



 =




c
k
g





the system now looks like an “arrow” system, which we can efficiently
solve by block elimination.

EE364a Review Session 7 17

• since [
A 0
0 J

] [
x
z

]
+

[
B
H

]
y =

[
c
k

]

then [
x
z

]
=

[
A−1c
J−1k

]
−

[
A−1B
J−1H

]
y

• we know that
[

D F
] [

x
z

]
+ Ey = g

• then plugging into the expression derived above

[
D F

]([
A−1c
J−1k

]
−

[
A−1B
J−1H

]
y

)
+ Ey = g

• therefore

(E − DA−1B − FJ−1H)y = g − DA−1c − FJ−1k

EE364a Review Session 7 18

We can therefore solve the system of equations efficiently by taking
advantage of structure in the following way

• form

M = A−1B, n = A−1c,

P = J−1H, q = J−1k.

• compute r = g − Dn − Fq.

• compute S = E − DM − FP .

• find
y = S−1r, x = n − My, z = q − Py.

EE364a Review Session 7 19

Using sparsity in Matlab

• construct using sparse, spalloc, speye, spdiags, spones

• visualize and analyze using spy, nnz

• also have sprand, sprandn, eigs, svds

• be careful not to accidentally make sparse matrices dense

EE364a Review Session 7 20

using sparsity in additional problem 2

• the (sparse) tridiagonal matrix ∆ ∈ Rn×n

∆ =





1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...
0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1





.

can be built in Matlab as follows:

e = ones(n,1);

D = spdiags([-e 2*e -e],[-1 0 1], n,n);

D(1,1) = 1; D(n,n) = 1;

• the sparse identity matrix can be built using speye

EE364a Review Session 7 21

Sparse Cholesky factorization with permutations

consider factorizing downward arrow matrix Ad = LdL
T
d , with n = 3000

• nnz(A_d)=8998

• call using L_d=chol(A_d,’lower’)

(use L_d=chol(A_d)’ in older versions of Matlab)

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000
0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

Ad Ld

• nnz(L_d)=5999; factorization takes tf_d=0.0022 seconds

• to solve Adx = b, call x=L_d’\(L_d\b), which takes ts_d=0.0020
seconds to run

EE364a Review Session 7 22

now look at factorizing upward arrow matrix Au = LuLT
u

• again, nnz(A_u)=8998

• call using L_u=chol(A_u,’lower’)

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000
 0 1000 2000 3000

 0

 500

1000

1500

2000

2500

3000

Au Lu

• nnz(L_u)=4501500, and takes tf_u=3.7288 seconds to compute

• calling x=L_u’\(L_u\b) no longer efficient; takes ts_u=0.5673
seconds to run

EE364a Review Session 7 23

instead factorize Au with permutations, Au = PLpL
T
p PT

• call using [L_p,pp,P]=chol(A_u,’lower’)

0 1000 2000 3000

0

500

1000

1500

2000

2500

3000
0 1000 2000 3000

0

500

1000

1500

2000

2500

3000

Lp P

• P is Toeplitz matrix with 1’s on the sub-diagonal and in upper right
corner, i.e., P1,n = 1, Pk+1,k = 1 for k = 1, . . . , n, all other entries 0

• factorization only takes tf_p=0.0028 seconds to compute

• solve Aux = b using x=P’\(L_p’\(L_p\(P\b))); solve takes
ts_p=0.0042 seconds

EE364a Review Session 7 24

