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session outline:

e derivatives and chain rule (Appendix A.4)

e numerical linear algebra (Appendix C)

— factor and solve method
— exploiting structure and sparsity



Derivative and gradient

When f is real-valued (i.e., f : R"™ — R), the derivative Df(x) isa 1l xn
matrix, 7.e., 1t Is a row vector.

e its transpose is called the gradient of the function:

Vf(z)=Df(z)",
which is a (column) vector, i.e., in R"

e its components are the partial derivatives of f:

Vf(x); = a‘gg), i=1,....n

e the first-order approximation of f at a point x can be expressed as (the
affine function of z2)

flz) + V()" (z - )
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example: Find the gradient of g : R"" — R,

solution.
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g(y)=:log:£:exp(y0-

€XP Y1

| exXPYm |



Chain rule

Suppose f : R" — R™ and ¢ : R™ — R? are differentiable. Define
h:R" — RP by h(z) = g(f(x)). Then

Dh(zx) = Dg(f(x))Df(x).

e Composition with an affine function:

Suppose g : R™ — RP is differentiable, A € R™*"™, and b € R™. Define
h:R" — RP as h(z) = g(Ax + b).

The derivative of h is Dh(z) = Dg(Ax + b) A.
When g is real-valued (i.e., p=1),

Vh(z) = A'Vg(Azx +b).
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example A.2: Find the gradient of A : R"” — R,

h(x) = log Z exp(al x + b;),

i=1
where a1, ...,a,, € R", and by1,...,b,, € R.
Hint: h is the composition of the affine function Az + b, where A € R™*"
has rows af,...,al,, and the function g(y) = log(> ", expy;).
solution. ) _
1 eXP Y1
Voly) = =m f
Zizl CXP Yy; | exXPYm |

then by the composition formula we have

Vh(x) = LAT,Z

172
where z; = exp(alz +b;), i=1,...,m
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Second derivative

When f is real-valued (i.e., f : R" — R), the second derivative or Hessian
matrix V2f(z) is a n X n matrix, with components

0*f ()

2 ..o —
V f(x)w (9331'(956]'7

r=1,...n, j7=1,...,n,

e the second-order approximation of f, at or near z, is the quadratic
function of z defined by

AN

f(2) = f(z) + V[(z)"(z = 2) + (1/2)(z — 2) 'V f(2)(z - 2).
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Chain rule for second derivative

e Composition with scalar function
Suppose f: R" — R, g: R — R, and h(x) = g(f(x)).

The second derivative of h is

Vih(z) = ¢'(f(2))V*f(2) + " (f(2)V f(2)Vf(2)".

e Composition with affine function

Suppose g : R™ — R, A€ R™*", and b € R™. Define h: R" — R by
h(x) = g(Az + b).

The second derivative of h is

V2h(z) = ATV?g(Az + b) A.
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example A.4: Find the Hessian of h: R" — R,
h(x) = log Z exp(al x + b;),
i=1
where a1,...,a,, € R", and by,...,b,, € R.

Hint: For g(y) = log(>_.", expy;), we have

1 I €XP Y1 ]
Voly) = T f
i=1PYi | expy,, |
Vi(y) = diag(Vg(y)) — Vg(y)Va(y)’.

solution. using the chain rule for composition with affine function,

1 1
V2h(z) = AT (1—Tz diag(z) — zzT> A

where z; = exp(alz +b;), i=1,...,m
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Numerical linear algebra

factor-solve method for Az = b

e consider set of n linear equations in n variables, i.e., A is square

e computational cost f + s

— f is flop count of factorization
— s is flop count of solve step

e for single factorization and k solves, computational cost is f + ks
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LU factorization

e nonsingular matrix A can be decomposed as A = PLU
e f=(2/3)n> (Gaussian elimination)
e s = 2n? (forward and back substitution)

e for example, can compute n X n matrix inverse with cost
f+mns=(8/3)n° (why?)

solution.
— write AX =1 as Alzy---xp,] = ler - ep]
— then solve Ax; =¢; fori=1,...,n
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Cholesky factorization

e symmetric, positive definite matrix A can be decomposed as A = LL'

o f=(1/3)n°

o s = 2n?

e prob. 9.31a: only factor once every NN iterations, but solve every
iteration

— every N steps, computation is f + s = (1/3)n? + 2n? flops
— all other steps, computation is s = 2n? flops
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Exploiting structure

computational costs for solving Ax = b

structure of A f S

none (2/3)n3 2n?
symmetric, positive definite (1/3)n3 2n?
lower triangular 0 n?
k-banded (a;; =0 if i — j| > k) | 4nk? 6nk
block diag with m blocks (2/3)n®/m? | 2n°/m
DFT (using FFT to solve) 0 5n logn
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Block elimination

Ajr Aps X1 _ [ b1 ]
Aoy Ago T2 b

o first equation A1 + Aoz = by gives us

solve

r1 — Al_ll(bl — Algilfg)

e second equation is then

(Agg — Agi AT Aro)xg = by — Ag  ATDy.

e speedup if A;1 and S = Ayy — A21A1_11A12 are easy to invert
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example: Solve the set of equations

A0l [

0 B|*"7|e¢
where A e R"*" B e R"" beR", ¢ € R" and matrices A and B are
nonsingular

e flop count of brute-force method?

solution. (2/3)(2n)3 = (16/3)n?

e how can we exploit structure?
solution.

— partition x = (x1, x2)
—x1=A"1b, 2o =B ¢
— flop count: 2(2/3)n® = (4/3)n?
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example: Solve the set of equations

I B] [b

c I "7 by
where B € R™*"™, C € R™™™, and m > n: also assume that the whole
matrix is nonsingular

e flop count of brute-force method? solution. (2/3)(m + n)?

e how can we exploit structure?
solution.

— use block elimination to get equations
(I—CB)xQZbQ—Cbl and 1 :bl—Bxg
— flop count: forming I — CB costs 2mn?, by — Cb; is 2mn, solving for

To is (2/3)n?, and computing ;1 costs 2mn; overall complexity is
2mmn?
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Solving almost separable linear equations

Consider the following system of 2n + m equations

Ar+ By = c
Dx+Ey+Fz = g
Hy+Jz = k

where A,J ¢ R"*", B H ¢ R"™™ D,F e R™", Ee€ R™™ ¢ keR",
geR"and n>m
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e need to solve the following system

N
K

A B 0
D E F y | =
0 H J

e naive way: treat as dense

e can take advantage of the structure by first reordering the equations
and variables

A 0 B | T C
o J H z | =1 k
_DFE__y_ g

the system now looks like an “arrow” system, which we can efficiently
solve by block elimination.
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since

then

we know that

(D F}[$]+Ey:g

zZ

then plugging into the expression derived above

A e A~'B
J_lk o J—lH Y +Ey:g

therefore

D F]([

(E—-DA'B—-FJ 'Hy=9g—- DA 'c—FJ 'k
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We can therefore solve the system of equations efficiently by taking
advantage of structure in the following way

e form
M = A"'B, n=A""c,
P=J"H, q=J k.
e compute r =g — Dn — Flq.
e compute S=F — DM — FP.

e find
y:S_lr, xr=n— My, 2z =q— Py.
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Using sparsity in Matlab

e construct using sparse, spalloc, speye, spdiags, spones
e visualize and analyze using spy, nnz
e also have sprand, sprandn, eigs, svds

e be careful not to accidentally make sparse matrices dense
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using sparsity in additional problem 2

e the (sparse) tridiagonal matrix A € R"*"

1 -1 0 -~ 0 0

—1 2 -1 --- 0 0

0 —1 2 .- 0 0

A= : : : : :

0 0 0o --- 2 —1

0 0 o .-~ —1 2

0 0 0 - 0 -1

can be built in Matlab as follows:

e = ones(n,1);

D = spdiags([-e 2%e -e],[-1 0 1], n,n);
D(1,1) =1; D(n,n) = 1;

e the sparse identity matrix can be built using speye
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Sparse Cholesky factorization with permutations

consider factorizing downward arrow matrix Ay = LyL?%, with n = 3000

e nnz(A _d)=8998

e call using L_d=chol(A_d, ’lower’)
(use L_d=chol(A_d)’ in older versions of Matlab)

500 500

1000 1000

1500 1500

2000 2000

2500 2500

300 300
0 1000 2000 3000 0 1000 2000 3000

Ad Ld

e nnz(L_d)=5999:; factorization takes tf_d=0.0022 seconds

e to solve A x = b, call x=L_d’\ (L_d\b), which takes ts_d=0.0020
seconds to run
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now look at factorizing upward arrow matrix A, = LuLg

e again, nnz (A_u)=8998

e call using L_u=chol(A_u,’lower’)

50

100

150

200

250

0 1000 2000 3000 0 1000 2000 3000

Ay L,

e nnz(L_u)=4501500, and takes tf_u=3.7288 seconds to compute

e calling x=L_u’\(L_u\b) no longer efficient; takes ts_u=0.5673
seconds to run
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instead factorize A, with permutations, A, = PL,L[P"

e call using [L_p,pp,Pl=chol(A_u, ’lower’)

0 1000 2000 3000 0 1000 2000 3000

L, P
e P is Toeplitz matrix with 1's on the sub-diagonal and in upper right
corner, i.e., P1 , =1, Pry1p=1for k=1,...,n, all other entries 0

e factorization only takes tf_p=0.0028 seconds to compute

e solve A,x = b using x=P’\(L_p’\ (L_p\ (P\b))); solve takes
ts_p=0.0042 seconds
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