EE364a Review Session ⁶

topics:

- ML prediction with highly quantized measurements
- two-way partitioning

Estimation with quantized measurements

given:

- \bullet a signal matrix $A \in \mathbf{R}^{m \times n}$
- measurements $y = \phi(Ax + v)$, where $v \sim \mathcal{N}(0, \sigma^2)$ $^{2}I)$ and

$$
\phi_i: \mathbf{R} \to \{1, \dots, K\}
$$

$$
\phi_i^{-1}(k) = (t_k, t_{k+1}]
$$

• quantization levels

$$
-\infty = t_1 < t_2 < t_3 < \cdots < t_K < t_{K+1} = \infty
$$

compute \hat{x} , the maximum likelihood estimate of x , given y

Estimation with quantized measurements

how would you find \hat{x}

- $\bullet\,$ with no noise or quantization $(v=0$ and $\phi(z)=z$)?
- $\bullet\,$ with noise, but not quantization $(\phi(z)=z)$?
- $\bullet\,$ with no noise, but quantization $\left(v=0\right)$?

Likelihood and log-likelihood

• likelihood:

$$
p(y|x) = \prod_{i=1}^{m} \left(\Phi \left(\frac{t_{y_i+1} - (Ax)_i}{\sigma} \right) - \Phi \left(\frac{t_{y_i} - (Ax)_i}{\sigma} \right) \right)
$$

• log-likelihood:

$$
l_y(x) = \sum_{i=1}^{m} \log \left(\Phi \left(\frac{t_{y_i+1} - (Ax)_i}{\sigma} \right) - \Phi \left(\frac{t_{y_i} - (Ax)_i}{\sigma} \right) \right)
$$

where Φ is the cdf of the standard normal distribution

 \bullet $l_{y}(x)$ is concave, twice differentiable

Interval log-normal cdf

plot of $f(x) = \log(\Phi((x+1)/\sigma) - \Phi((x-1)/\sigma))$, for $\sigma = 0.3$

ML estimation

maximize $l_y(x)$

- convex, unconstrained optimization problem
- can be efficiently solved using Newton's method (next topic)

extensions:

- $\bullet\,$ MAP, with prior distribution on x
- $\bullet\,$ prior constraints on x

Numerical example

problem instance:

- $n = 10$ variables, $m = 200$ measurements
- thresholds $-\infty, -1, +1, \infty$ $(3$ intervals ≈ 1.6 bits per measurement)
- $A_{ij} \sim \mathcal{N}(0, 1)$

simulation:

- vary σ from 0.1 to 3
- generate 100 values of x, y , with $x \sim \mathcal{N}(0, I)$
- \bullet compute \hat{x}
- $\bullet\,$ evaluate relative estimation error $\|\hat{x} x\|_2/\|x\|_2$

Results

dashed: ML; solid: least-square, taking $y_i \in \{-2,0,+2\}$

Two-way partitioning

- $\bullet\hspace{1mm} n$ vertices, labeled $\{1,\ldots,n\}$
- $\bullet\,$ we are given a set of symmetric weights on pairs of vertices, $w_{ij}=w_{ji}$
- \bullet find partition of vertices (Y,Z) $(i.e., Y \cup Z = \{1, \ldots, n\}, Y \cap Z = \emptyset)$ which maximizes total weight of cut,

$$
J(Y, Z) = \sum_{i \in Y} \sum_{j \in Z} w_{ij}
$$

- encode partition via $x \in \{-1,1\}^n$; $x_i = -1$ means $x \in Y$
- $J(x) = \mathbf{1}^T W \mathbf{1} x^T W x$

Two-way partitioning

can be cast as

minimize $x^T W x$ subject to $x_i^2 = 1$ $i^2 = 1$

or equivalently

$$
\begin{array}{ll}\text{minimize} & \mathbf{tr}(WX) \\ \text{subject to} & X_{ii} = 1, \quad X \succeq 0 \\ & \mathbf{rank}(X) = 1 \end{array}
$$

- ^a nonconvex combinatorial problem
- we will derive an SDP relaxation

SDP relaxation

by dropping the rank constraint, we get

minimize
$$
\mathbf{tr}(WX)
$$

subject to $X_{ii} = 1, \quad X \succeq 0$

randomized scheme:

- $\bullet\,$ solve SDP for X^\star (gives lower bound)
- sample $v \sim \mathcal{N}(0, X^\star)$
- set $x = sign(v)$

Goemans & Williamson proved that this lower bound is on average at most 14% suboptimal for the MAX-CUT problem $(W_{ii}=0,\ W_{ij}\geq 0)$

SDP relaxation via dual

Lagrangian of original problem:

$$
L(x,\nu) = x^T W x + \sum_i \nu_i (x_i^2 - 1)
$$

= tr ((W + diag(\nu))xx^T) - $\mathbf{1}^T \nu$

dual function:

$$
g(\nu) = \begin{cases} -\mathbf{1}^T \nu, & W + \mathbf{diag}(\nu) \succeq 0\\ -\infty, & \text{otherwise} \end{cases}
$$

SDP relaxation via dual

dual problem: maximize $-1^T\nu$ subject to $W + diag(\nu) \succeq 0$

dual of dual:

$$
\begin{array}{ll}\text{minimize} & \mathbf{tr}(WX) \\ \text{subject to} & X_{ii} = 1, \quad X \succeq 0 \end{array}
$$

same as dropping the rank constraint!