EE364a Review Session 6

topics:

- ML prediction with highly quantized measurements
- two-way partitioning

Estimation with quantized measurements

given:

- a signal matrix $A \in \mathbf{R}^{m \times n}$
- ullet measurements $y=\phi(Ax+v)$, where $v\sim\mathcal{N}(0,\sigma^2I)$ and

$$\phi_i: \mathbf{R} \to \{1, \dots, K\}$$

$$\phi_i^{-1}(k) = (t_k, t_{k+1}]$$

quantization levels

$$-\infty = t_1 < t_2 < t_3 < \dots < t_K < t_{K+1} = \infty$$

compute \hat{x} , the maximum likelihood estimate of x, given y

Estimation with quantized measurements

how would you find \hat{x}

- with no noise or quantization $(v = 0 \text{ and } \phi(z) = z)$?
- with noise, but not quantization $(\phi(z) = z)$?
- with no noise, but quantization (v = 0)?

Likelihood and log-likelihood

• likelihood:

$$p(y|x) = \prod_{i=1}^{m} \left(\Phi\left(\frac{t_{y_i+1} - (Ax)_i}{\sigma}\right) - \Phi\left(\frac{t_{y_i} - (Ax)_i}{\sigma}\right) \right)$$

• log-likelihood:

$$l_y(x) = \sum_{i=1}^{m} \log \left(\Phi\left(\frac{t_{y_i+1} - (Ax)_i}{\sigma}\right) - \Phi\left(\frac{t_{y_i} - (Ax)_i}{\sigma}\right) \right)$$

where Φ is the cdf of the standard normal distribution

• $l_y(x)$ is concave, twice differentiable

Interval log-normal cdf

plot of
$$f(x) = \log(\Phi((x+1)/\sigma) - \Phi((x-1)/\sigma))$$
, for $\sigma = 0.3$

ML estimation

maximize $l_y(x)$

- convex, unconstrained optimization problem
- can be efficiently solved using Newton's method (next topic)

extensions:

- ullet MAP, with prior distribution on x
- ullet prior constraints on x

Numerical example

problem instance:

- n=10 variables, m=200 measurements
- thresholds $-\infty, -1, +1, \infty$ (3 intervals ≈ 1.6 bits per measurement)
- $A_{ij} \sim \mathcal{N}(0,1)$

simulation:

- \bullet vary σ from 0.1 to 3
- generate 100 values of x, y, with $x \sim \mathcal{N}(0, I)$
- ullet compute \hat{x}
- evaluate relative estimation error $\|\hat{x} x\|_2 / \|x\|_2$

Results

dashed: ML; solid: least-square, taking $y_i \in \{-2, 0, +2\}$

Two-way partitioning

- n vertices, labeled $\{1,\ldots,n\}$
- ullet we are given a set of symmetric weights on pairs of vertices, $w_{ij}=w_{ji}$
- find partition of vertices (Y, Z) $(i.e., Y \cup Z = \{1, ..., n\}, Y \cap Z = \emptyset)$ which maximizes total weight of cut,

$$J(Y,Z) = \sum_{i \in Y} \sum_{j \in Z} w_{ij}$$

- encode partition via $x \in \{-1,1\}^n$; $x_i = -1$ means $x \in Y$
- $\bullet \ J(x) = \mathbf{1}^T W \mathbf{1} x^T W x$

Two-way partitioning

can be cast as

or equivalently

minimize
$$\mathbf{tr}(WX)$$

subject to $X_{ii} = 1, \quad X \succeq 0$
 $\mathbf{rank}(X) = 1$

- a nonconvex combinatorial problem
- we will derive an SDP relaxation

SDP relaxation

by dropping the rank constraint, we get

minimize
$$\mathbf{tr}(WX)$$

subject to $X_{ii} = 1, X \succeq 0$

randomized scheme:

- solve SDP for X^* (gives lower bound)
- sample $v \sim \mathcal{N}(0, X^\star)$
- set $x = \mathbf{sign}(v)$

Goemans & Williamson proved that this lower bound is on average at most 14% suboptimal for the MAX-CUT problem $(W_{ii} = 0, W_{ij} \ge 0)$

SDP relaxation via dual

Lagrangian of original problem:

$$L(x,\nu) = x^T W x + \sum_{i} \nu_i (x_i^2 - 1)$$
$$= \mathbf{tr} \left((W + \mathbf{diag}(\nu)) x x^T \right) - \mathbf{1}^T \nu$$

dual function:

$$g(\nu) = \begin{cases} -\mathbf{1}^T \nu, & W + \mathbf{diag}(\nu) \succeq 0 \\ -\infty, & \text{otherwise} \end{cases}$$

SDP relaxation via dual

dual problem:

$$\begin{array}{ll} \text{maximize} & -\mathbf{1}^T \nu \\ \text{subject to} & W + \mathbf{diag}(\nu) \succeq 0 \end{array}$$

dual of dual:

minimize
$$\mathbf{tr}(WX)$$
 subject to $X_{ii} = 1, X \succeq 0$

same as dropping the rank constraint!