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topics:

• ML prediction with highly quantized measurements

• two-way partitioning
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Estimation with quantized measurements

given:

• a signal matrix A ∈ Rm×n

• measurements y = φ(Ax + v), where v ∼ N (0, σ2I) and

φi : R → {1, . . . , K}

φ−1

i (k) = (tk, tk+1]

• quantization levels

−∞ = t1 < t2 < t3 < · · · < tK < tK+1 = ∞

compute x̂, the maximum likelihood estimate of x, given y
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Estimation with quantized measurements
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how would you find x̂

• with no noise or quantization (v = 0 and φ(z) = z)?

• with noise, but not quantization (φ(z) = z)?

• with no noise, but quantization (v = 0)?
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Likelihood and log-likelihood

• likelihood:

p(y|x) =
m
∏

i=1

(

Φ

(

tyi+1 − (Ax)i

σ

)

− Φ

(

tyi
− (Ax)i

σ

))

• log-likelihood:

ly(x) =

m
∑

i=1

log

(

Φ

(

tyi+1 − (Ax)i

σ

)

− Φ

(

tyi
− (Ax)i

σ

))

where Φ is the cdf of the standard normal distribution

• ly(x) is concave, twice differentiable
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Interval log-normal cdf
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plot of f(x) = log(Φ((x + 1)/σ) − Φ((x − 1)/σ)), for σ = 0.3
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ML estimation

maximize ly(x)

• convex, unconstrained optimization problem

• can be efficiently solved using Newton’s method (next topic)

extensions:

• MAP, with prior distribution on x

• prior constraints on x
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Numerical example

problem instance:

• n = 10 variables, m = 200 measurements

• thresholds −∞,−1,+1,∞ (3 intervals ≈ 1.6 bits per measurement)

• Aij ∼ N (0, 1)

simulation:

• vary σ from 0.1 to 3

• generate 100 values of x, y, with x ∼ N (0, I)

• compute x̂

• evaluate relative estimation error ‖x̂ − x‖2/‖x‖2
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Results

0.5 1 1.5 2 2.5 3

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

σ

‖x̂
−

x
‖ 2

/
‖x

‖ 2

dashed: ML; solid: least-square, taking yi ∈ {−2, 0, +2}

EE364a Review Session 6 8



Two-way partitioning

• n vertices, labeled {1, . . . , n}

• we are given a set of symmetric weights on pairs of vertices, wij = wji

• find partition of vertices (Y,Z)
(i.e., Y ∪ Z = {1, . . . , n}, Y ∩ Z = ∅)
which maximizes total weight of cut,

J(Y,Z) =
∑

i∈Y

∑

j∈Z

wij

• encode partition via x ∈ {−1, 1}n; xi = −1 means x ∈ Y

• J(x) = 1TW1 − xTWx
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Two-way partitioning

can be cast as
minimize xTWx
subject to x2

i = 1

or equivalently
minimize tr(WX)
subject to Xii = 1, X � 0

rank(X) = 1

• a nonconvex combinatorial problem

• we will derive an SDP relaxation
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SDP relaxation

by dropping the rank constraint, we get

minimize tr(WX)
subject to Xii = 1, X � 0

randomized scheme:

• solve SDP for X⋆ (gives lower bound)

• sample v ∼ N (0, X⋆)

• set x = sign(v)

Goemans & Williamson proved that this lower bound is on average at most
14% suboptimal for the MAX-CUT problem (Wii = 0, Wij ≥ 0)
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SDP relaxation via dual

Lagrangian of original problem:

L(x, ν) = xTWx +
∑

i

νi(x
2
i − 1)

= tr
(

(W + diag(ν))xxT
)

− 1Tν

dual function:

g(ν) =

{

−1Tν, W + diag(ν) � 0
−∞, otherwise
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SDP relaxation via dual

dual problem:
maximize −1Tν
subject to W + diag(ν) � 0

dual of dual:
minimize tr(WX)
subject to Xii = 1, X � 0

same as dropping the rank constraint!
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