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announcements:

• homeworks 1 and 2 graded

• homework 4 solutions (check solution to additional problem 1)

• scpd phone-in office hours: tuesdays 6-7pm (650-723-1156)
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Complementary slackness

consider the (not necessarily convex) optimization problem,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

let x⋆, and (λ⋆, ν⋆) be primal and dual optimal points, and suppose strong
duality holds (i.e., p⋆ = d⋆). this means,

f0(x
⋆) = g(λ⋆, ν⋆)

= inf
x

(

f0(x) +
m
∑

i=1

λ⋆
i fi(x) +

p
∑

i=1

ν⋆
i hi(x)

)

≤ f0(x
⋆) +

m
∑

i=1

λ⋆
i fi(x

⋆) +

p
∑

i=1

ν⋆
i hi(x

⋆)

≤ f0(x
⋆).
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this result has several important conclusions.

• x⋆ minimizes L(x, λ⋆, ν⋆) over x (although note that L(x, λ⋆, ν⋆) can
have other minimizers). we’ll see an application of this soon.

• another conclusion is that

m
∑

i=1

λ⋆
i fi(x

⋆) = 0.

what does this mean?
answer.

λ⋆fi(x
⋆) = 0, i = 1, . . . ,m.

or, equivalently,
λ⋆

i > 0 ⇒ fi(x
⋆) = 0,

or,
fi(x

⋆) < 0 ⇒ λ⋆
i = 0.
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Example: minimizing a linear function over a rectangle

let’s take a look at a familiar problem,

minimize cTx
subject to 0 � x � 1.

• what is the solution?
answer. if ci > 0, then x⋆

i = 0, if ci < 0 then x⋆
i = 1, and if ci = 0,

then 0 ≤ x⋆
i ≤ 1.

• we can look at this from another point of view. let us associate dual
variables λ with the constraint 0 � x, and dual variables µ with the
constraint x � 1. the Lagrangian is

L(x, λ, µ) = cTx − λTx + µT (x − 1).

this is bounded if and only if c = λ− µ. any dual optimal point (λ⋆, µ⋆)
must satisfy c = λ⋆ − µ⋆.
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• suppose ci > 0, what can we say about λ⋆
i x⋆

i and µ⋆
i ?

answer. λ⋆
i > 0, so by complementary slackness x⋆

i = 0, and therefore
µ⋆

i = 0.

• suppose ci < 0, what can we say about λ⋆
i x⋆

i and µ⋆
i ?

answer. µ⋆
i > 0, so by complementary slackness x⋆

i = 1, and therefore
λ⋆

i = 0.

• what about when ci = 0?
answer. then λ⋆

i − µ⋆
i = 0. but we cannot have both λ⋆

i > 0 and
µ⋆

i > 0, since that would imply both xi = 0 and xi = 1. as a result we
must have λ⋆

i = 0 and µ⋆
i = 0.

• can we write down λ⋆ and µ⋆?
answer. yes, λ⋆ is the positive part of c, and µ⋆ is the negative part of
c. i.e., λ⋆ = max(c, 0), µ⋆ = min(c, 0).
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• the Lagrange multipliers λ and ν are also a measure of how active a
constraint is at the optimum. for example, if we relax the first
constraint by −u1 ≤ x1. then

λ⋆
1 = −

∂p⋆

∂u1

∣

∣

∣

∣

u1=0

.

the optimal Lagrange multipliers are the local sensitivies of the optimal
value with respect to constraint perturbations.
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Primal and dual optimal points

suppose strong duality holds, i.e., we have p⋆ = d⋆, and both p⋆ and d⋆

are achieved.

• when can we find a primal optimal point x⋆, from a dual optimal point
(λ⋆, ν⋆)?

consider the Lagrangian, evaluated at (λ⋆, ν⋆),

L(x, λ⋆, ν⋆) = f0(x) +

m
∑

i=1

λ⋆
i fi(x) +

p
∑

i=1

ν⋆
i hi(x).

suppose the minimizer of L(x, λ⋆, ν⋆), x̃, is unique. since x⋆ minimizes
L(x, λ⋆, ν⋆), then we must have x̃ = x⋆.
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Example: least-norm solution over a polyhedron

consider the problem,

minimize xTx
subject to Ax � b,

with x ∈ R1000, A ∈ R10×1000. we will assume that A is full rank.
the Lagrangian is

L(x, λ) = xTx + λT (Ax − b),

with minimizer x = −(1/2)ATλ. the dual problem can be expressed as

maximize −(1/4)λTAATλ − bTλ
subject to λ � 0.

• does strong duality hold?
answer. yes, because we can solve Ax = b.
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• suppose λ⋆ is optimal for the dual problem, can we find a primal
optimal point? and if so, is it unique?
answer. yes, x̃ = −(1/2)ATλ⋆ minimizes the Lagrangian, but x̃ is
unique, so x̃ = x⋆.

• for the previous example, we can uniquely construct a primal optimal
point x⋆, given a dual optimal point λ⋆.

• how many variables does the primal problem have? answer. 1000

• how many variables does the dual problem have? answer. 10

• this is one advantage of solving the dual problem and then constructing
the solution of the primal problem from the solution of the dual. We
will see later however, that if we fully exploit the structure of the primal
problem, the time taken to solve these two problems are approximately
the same.
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Example: linear program

now consider the problem,

minimize cTx
subject to Ax � b,

where A is skinny and full rank. suppose also that strong duality holds,
and p⋆ and d⋆ are achieved. the Lagrangian is,

L(x, λ) = cTx + λT (Ax − b).

this is bounded if and only if ATλ + c = 0. the dual problem can be
expressed as,

maximize −bTλ
subject to ATλ + c = 0

λ � 0.
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• can we find a primal optimal point x⋆ from a dual optimal point λ⋆ by
minimizing the Lagrangian?
answer. no, we have,

L(x, λ⋆) = −bTλ⋆.

any x minimizes L(x, λ⋆), but not every x is optimal for the primal
problem.

• can we do this by any other method?
answer. using complementary slackness, we see that if λ⋆

i > 0, then we
must have aT

i x⋆ = bi. so if the solution to the resulting set of linear
equations is unique, it is a primal optimal point.

• it not always possible to construct a primal optimal point from a dual
optimal point, even when strong duality holds.
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Theorems of alternatives

we want to determine the feasibility of the following system of (not
necessarily convex) linear inequalities and equalities

fi(x) ≤ 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p. (1)

we will assume the domain D =
⋂m

i=1 dom fi ∩
⋂p

i=1 domhi is nonempty.
we can write this problem as

minimize 0
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

p⋆ =

{

0 (1) is feasible
∞ (1) is infeasible.
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the dual function is

g(λ, ν) = inf
x∈D

(

m
∑

i=1

λifi(x) +

p
∑

i=1

νihi(x)

)

• what happens if there exist λ � 0, and ν for which g(λ, ν) > 0?
answer. d⋆ = ∞.

• what happens if there does not exist λ � 0, and ν for which
g(λ, ν) > 0? answer. d⋆ = 0.
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so,

d⋆ =

{

∞ λ � 0, g(λ, ν) > 0 is feasible
0 λ � 0, g(λ, ν) > 0 is infeasible.

recall d⋆ ≤ p⋆. if (1) is feasible, then p⋆ = 0, so d⋆ = 0, which means that
the system

λ � 0, g(λ, ν) > 0 (2)

is infeasible. if (2) is feasible, then d⋆ = ∞, which means that p⋆ = ∞,
and so (1) is infeasible. note that both systems can be infeasible.

• (1) and (2) are called weak alternatives, since at most one of the two is
feasible.

• two systems are called strong alternatives if exactly one of the two
alternatives holds.
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• for theorems of alternatives, whether or not the system of inequalities is
strict makes a difference. for instance, if we had the system,

fi(x) < 0, i = 1, . . . ,m, hi(x) = 0, i = 1, . . . , p, (3)

then (2) would not longer be the weak alternative. instead the weak
alternative would be,

λ � 0, λ 6= 0, g(λ, ν) ≥ 0. (4)
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Farkas’ lemma

the system of inequalities

Ax � 0, cTx < 0,

where A ∈ Rm×n, c ∈ Rn, and the system of inequalities

ATy + c = 0, y � 0,

are strong alternatives.

• how can we show this?
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solution. use LP duality. consider the LP

minimize cTx
subject to Ax � 0,

and its dual
maximize 0
subject to ATy + c = 0

y � 0.

the primal LP is homogeneous, and so the optimal value is 0, if the
primal inequality system is not feasible, and −∞ if the the primal
inequality system is feasible. the dual has optimal value 0 if the dual
inequality system is feasible, and optimal value −∞ if the dual
inequality system is not feasible. since p⋆ = d⋆ (why?), the two systems
are strong alternatives.
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Application: arbitrage

consider n assets with prices p1, p2, . . . , pn. at the end of the investment
period the value of the assets is v1, v2, . . . , vn. x1, x2, . . . , xn represents
the initial investment in each asset (xj < 0 means that we are owe −xj

amount of asset j).

• cost of initial investment is pTx, and final value of the investment is
vTx.

• v is uncertain, there are m possible scenarios, v(1), . . . , v(m). if scenario
i occurs, then the final value of the investment is v(i)Tx.

• if there is an investment x with pTx < 0, and v(i)Tx ≥ 0, for
i = 1, . . . ,m, then an arbitrage is said to exist.
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• in finance, it is often assumed that no arbitrage exists. which means
that the system of inequalities

V x � 0, pTx < 0

is infeasible (V is a matrix with rows v(1)T , . . . , v(m)T ).

• by Farkas’ lemma, the above system is infeasible if and only if there
exists y such that

V Ty = p, y � 0.

• suppose that V is known, and all the prices except the last price pn is
known. we wish to find the set of prices pn that are consistent with the
no-arbitrage assumption. what kind of set is this?
solution. clearly, we must have p � 0, which is consistent with
intuition. the set must therefore be an interval (it is the projection of a
polyhedron onto R). we can find this interval by solving a pair of LPs.
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to find the minimum pn we solve,

minimize pn

subject to V Ty = p
y � 0.

and to find the maximum pn, we solve the same LP with maximization.
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