EE364a Review

EE364a Review Session 2

session outline:

- dual cones
- convex functions
- conjugate function

Dual cones

for a cone K, the dual cone is $K^* = \{y \mid y^T x \ge 0 \text{ for all } x \in K\}$ $y \in K^*$ if and only if the halfspace $\{z \mid y^T z \ge 0\}$ contains K

ex. 2.32: Find the dual cone of $\{Ax \mid x \succeq 0\}$, where $A \in \mathbb{R}^{m \times n}$. **solution.**

$$K^* = \{ y \mid y^T x \ge 0 \text{ for all } x \in K \}$$
$$= \{ y \mid (A^T y)^T x \ge 0 \text{ for all } x \succeq 0 \}$$

this is equivalent to

$$K^* = \{ y \mid A^T y \succeq 0 \}$$

- sufficient: $A^T y \succeq 0 \Rightarrow (A^T y)^T x \ge 0$ for all $x \succeq 0$
- necessary: assume that $(A^T y)_i < 0$ for some *i*. then $(A^T y)^T e_i < 0$, which is a contradiction.

Convex functions

- tools
 - definition of convexity
 - first-order condition
 - second-order condition
 - restriction to a line
 - simple examples (negative log, norms, quadratic-over-linear, log-sum-exp, . . .)
- convexity-preserving operations
 - nonnegative weighted sum
 - composition with an affine function
 - pointwise maximum and supremum
 - minimization (over convex sets)
 - composition
 - perspective

example: sigmoid / logistic function

$$f(x) = \frac{1}{1 + e^{-x}}$$

- is it convex? concave?
- is it quasiconvex? quasiconcave?
- is it log-convex? log-concave?

• is it convex? concave?

$$f(x) = \frac{1}{1 + e^{-x}}$$

solution.

- by looking at the graph, it is neither convex nor concave.

- alternatively,
$$f''(x) = -\frac{e^{-x}(1-e^{-x})}{(1+e^{-x})^3} \begin{cases} > 0 & \text{if } x < 0 \\ \le 0 & \text{if } x \ge 0 \end{cases}$$

• is it quasiconvex? quasiconcave?

$$f(x) = \frac{1}{1 + e^{-x}}$$

solution.

- sublevel sets C_{α} are convex \Rightarrow quasiconvex
 - * for $\alpha \leq 0$, $C_{\alpha} = \emptyset$
 - * for $\alpha \geq 1$, $C_{\alpha} = \mathbf{R}$

$$*$$
 for $0, $C_{lpha}=(-\infty,f^{-1}(lpha)]$$

- similarly, superlevel sets are convex \Rightarrow quasiconcave
- for $x \in \mathbf{R}$, f(x) monotonic \Leftrightarrow quasiconvex and quasiconcave

• is it log-convex? log-concave?

solution.

- not log-convex
- is log-concave (log f(x) is negative of log-sum-exp, evaluated at $z_1 = 1, z_2 = -x$)

example: is the following a convex function (in $x, y, z \in \mathbf{R}$)?

$$f(x, y, z) = \frac{(x - z)^2}{y + 1} + \max\left(1 + |x| - y, \frac{1}{\sqrt{z}}, 0\right)$$

(with domain y + 1 > 0, z > 0)

solution. The following steps show that the function is convex:

- |x| is convex in x, and 1-y is affine, so 1+|x|-y is convex
- $\frac{1}{\sqrt{z}}$ is a negative-power function, so convex in z
- $\bullet \max$ term is convex, since its arguments are
- $\frac{(x-z)^2}{y+1}$ is composition of quadratic-over-linear functions $\frac{s^2}{t}$ with affine function that maps (x, y, z) to (x z, y + 1), so is convex
- sum of left and right terms is convex

Composition rules

composition of $g : \mathbf{R}^n \to \mathbf{R}^k$ and $h : \mathbf{R}^k \to \mathbf{R}$:

$$f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))$$

e.g., f is convex if g_i concave, h convex, \tilde{h} nonincreasing in each argument **proof:** (for n = 1, differentiable g, h)

$$f''(x) = g'(x)^T \underbrace{\nabla^2 h(g(x))}_{\succeq 0} g'(x) + \underbrace{\nabla h(g(x))}_{\preceq 0}^T \underbrace{g''(x)}_{\preceq 0}$$

ex. 3.22(b): Show that the following function is convex:

$$f(x, u, v) = -\sqrt{uv - x^T x}$$

on dom $f = \{(x, u, v) \mid uv > x^T x, u, v > 0\}$. Use the fact that $x^T x/u$ is convex in (x, u) for u > 0, and that $-\sqrt{x_1 x_2}$ is convex on \mathbf{R}^2_{++} .

solution.

• take
$$f(x,u,v) = -\sqrt{u(v-x^Tx/u)}$$

- $g_1(u, v, x) = u$ and $g_2(u, v, x) = v x^T x/u$ are concave
- the function

$$h(z_1, z_2) = \begin{cases} -\sqrt{z_1 z_2} & \text{if } z \succeq 0\\ 0 & \text{otherwise} \end{cases}$$

is convex and decreasing in each argument

•
$$f(u, v, x) = h(g(u, v, x))$$
 is convex

Conjugate function

the **conjugate** of a function f is

$$f^*(y) = \sup_{x \in \operatorname{dom} f} (y^T x - f(x))$$

ex. 3.36(a): Derive the conjugate of the max function

$$f(x) = \max_{i=1,\dots,n} x_i \text{ on } \mathbf{R}^n$$

solution (partial). we see what happens for n = 2

- first, want to determine the domain for y of the conjugate function $f^*(y)$ (*i.e.*, where $y^T x f(x)$ is bounded above)
- try y with some $y_k < 0$:
 - e.g., choose y = (-1, 0)- then if $x = -te_1$, we have $y^T x - \max x_i = t - 0 \to \infty$ as $t \to \infty$ - so $y \succeq 0$
- (continued on next slide. . .)

- now look at $y \succeq 0$:
 - try y = (0.7, 0.7)- then if $x = t\mathbf{1}$, we have $y^T x - \max x_i = t(\mathbf{1}^T y) - t = 1.4t - t \to \infty$ as $t \to \infty$
 - $y = (0.7, 0.7) \not\in \operatorname{\mathbf{dom}} f^*$
 - for $x = t\mathbf{1}$, if $y \succeq 0$, we need $\mathbf{1}^T y = 1$ for $y^T x \max x_i$ to be bounded above

• for
$$y \in \{y \succeq 0 \mid \mathbf{1}^T y = 1\}$$
, what is

$$\sup_{x \in \operatorname{dom} f} (y^T x - \max_{i=1,\dots,n} x_i)?$$

- can show that $y^T x \leq \max x_i$ (why?), and equality holds when x = 0
- so for $y \succeq 0$ and $\mathbf{1}^T y = 1$, the \sup is always bounded above
- thus,

$$f^*(y) = \begin{cases} 0 & \text{if } y \succeq 0 \text{ and } \mathbf{1}^T y = 1 \\ \infty & \text{otherwise} \end{cases}$$