EE364a Review

EE364a Review Session ²

session outline:

- dual cones
- convex functions
- conjugate function

Dual cones

for a cone K , the dual cone is $K^* = \{y \mid y^T x \geq 0$ for all $x \in K\}$ $y\in K^*$ if and only if the halfspace $\{z\mid y^Tz\geq 0\}$ contains K

ex. 2.32: Find the dual cone of $\{Ax \mid x \succeq 0\}$, where $A \in \mathbb{R}^{m \times n}$. solution.

$$
K^* = \{y \mid y^T x \ge 0 \text{ for all } x \in K\}
$$

$$
= \{y \mid (A^T y)^T x \ge 0 \text{ for all } x \succeq 0\}
$$

this is equivalent to

$$
K^* = \{ y \mid A^T y \succeq 0 \}
$$

- •• sufficient: $A^T y \succeq 0 \Rightarrow (A^T y)^T x \ge 0$ for all $x \succeq 0$
- •• *necessary*: assume that $(A^Ty)_i < 0$ for some *i*.
then $(A^T u)^T e_i < 0$, which is a contradiction. n $(A^Ty)^Te_i< 0$, which is a contradiction.

Convex functions

- tools
	- definition of convexity
	- first-order condition
	- second-order condition
	- restriction to ^a line
	- – simple examples (negative log, norms, quadratic-over-linear, log-sum-exp, . . .)
- convexity-preserving operations
	- nonnegative weighted sum
	- composition with an affine function
	- pointwise maximum and supremum
	- –— minimization (over convex sets)
	- composition
	- perspective

 $\boldsymbol{\mathsf{example}}\text{:}\ \mathsf{sigmoid}\ /\ \mathsf{logistic}\ \mathsf{function}$

$$
f(x) = \frac{1}{1 + e^{-x}}
$$

- is it convex? concave?
- is it quasiconvex? quasiconcave?
- is it log-convex? log-concave?

• is it convex? concave?

$$
f(x) = \frac{1}{1 + e^{-x}}
$$

solution.

 $-$ by looking at the graph, it is neither convex nor concave.

$$
-\text{ alternatively, } f''(x) = -\frac{e^{-x}(1-e^{-x})}{(1+e^{-x})^3} \begin{cases} > 0 & \text{if } x < 0 \\ < 0 & \text{if } x \ge 0 \end{cases}
$$

• is it quasiconvex? quasiconcave?

$$
f(x) = \frac{1}{1 + e^{-x}}
$$

solution.

- sublevel sets C_{α} are convex \Rightarrow quasiconvex
* for $\alpha < 0$ $C_{\alpha} = \emptyset$
	- * for $\alpha \leq 0$, $C_{\alpha} = \emptyset$
	- * for $\alpha \geq 1$, $C_{\alpha} = \mathbf{R}$

* for
$$
0 < \alpha < 1
$$
, $C_{\alpha} = (-\infty, f^{-1}(\alpha)]$

- $*$ for $0 < \alpha < 1$, $C_{\alpha} = (-\infty, f^{-1}(\alpha)]$

− similarly, superlevel sets are convex ⇒ quasiconcave

− for $x \in \mathbf{R}$, $f(x)$ monotonic ⇔ quasiconyex and quasi
- $f \vdash$ for $x \in \mathbf{R}$, $f(x)$ monotonic \Leftrightarrow quasiconvex and quasiconcave

• is it log-convex? log-concave?

solution.

- not log-convex
- $-$ is log-concave $(\log f(x)$ is negative of log-sum-exp, evaluated at $z_1 = 1, z_2 = -x$

example: is the following a convex function (in $x, y, z \in \mathbf{R}$)?

$$
f(x, y, z) = \frac{(x - z)^2}{y + 1} + \max\left(1 + |x| - y, \frac{1}{\sqrt{z}}, 0\right)
$$

(with domain $y + 1 > 0$, $z > 0$)

solution. The following steps show that the function is convex:

- $\bullet \,\, |x|$ is convex in $x,$ and $1-y$ is affine, so $1+|x|-y$ is convex
- • \bullet $\frac{1}{\sqrt{z}}$ is a negative-power function, so convex in z
- max term is convex, since its arguments are
- • \bullet $\frac{(x-z)^2}{y+1}$ is composition of quadratic-over-linear functions $\frac{s^2}{t}$ with affine function that maps (x,y,z) to $(x-z,y+1)$, so is convex
- sum of left and right terms is convex

Composition rules

composition of $g: \mathbf{R}^n \to \mathbf{R}^k$ and $h: \mathbf{R}^k \to \mathbf{R}$:

$$
f(x) = h(g(x)) = h(g_1(x), g_2(x), \dots, g_k(x))
$$

e.g., f is convex if g_i concave, h convex, \tilde{h} nonincreasing in each argument **proof:** (for $n = 1$, differentiable g, h)

$$
f''(x) = g'(x)^T \underbrace{\nabla^2 h(g(x))}_{\succeq 0} g'(x) + \underbrace{\nabla h(g(x))^T}_{\preceq 0} \underbrace{g''(x)}_{\preceq 0}
$$

ex. 3.22(b): Show that the following function is convex:

$$
f(x, u, v) = -\sqrt{uv - x^T x}
$$

on $\textbf{dom} \, f = \{(x, u, v) \mid uv > x^T x, \ u, \ v > 0\}.$ Use the fact that $x^T x/u$ is convex in (x, u) for $u > 0$ and that $-\sqrt{x_1 x_2}$ is convex on \mathbf{R}^2 convex in (x,u) for $u>0$, and that $-\sqrt{x_1x_2}$ is convex on R_{++}^2 .

solution.

• take
$$
f(x, u, v) = -\sqrt{u(v - x^{T}x/u)}
$$

- $g_1(u, v, x) = u$ and $g_2(u, v, x) = v x^T x/u$ are concave
- the function

$$
h(z_1, z_2) = \begin{cases} -\sqrt{z_1 z_2} & \text{if } z \ge 0\\ 0 & \text{otherwise} \end{cases}
$$

is convex and decreasing in each argument

•
$$
f(u, v, x) = h(g(u, v, x))
$$
 is convex

Conjugate function

the $\bf{conjugate}$ of a function f is

$$
f^*(y) = \sup_{x \in \text{dom } f} (y^T x - f(x))
$$

 $\mathsf{ex}.$ $\mathsf{3.36(a)}:$ Derive the conjugate of the max function

$$
f(x) = \max_{i=1,\dots,n} x_i
$$
 on \mathbf{R}^n

solution (partial). we see what happens for $n=2$

- $\bullet\,$ first, want to determine the domain for y of the conjugate function $f^*(y)$ $(i.e.,$ where $y^T x - f(x)$ is bounded above)
- try y with some $y_k < 0$:
	- – $-$ e.g., choose $y=(-1,0)$ – then if $x = -te_1$, we have $y^T x - \max x_i = t - 0 \to \infty$ as $t \to \infty$ $-$ so $y \succeq 0$
- (continued on next slide. . .)
- now look at $y \succeq 0$:
	- – $-$ try $y = (0.7, 0.7)$ $-$ then if $x = t\mathbf{1}$, we have $y^T x - \max x_i = t(\mathbf{1}^T y) - t = 1.4t - t \to \infty$ as $t\to\infty$
	- – $y = (0.7, 0.7) \notin \textbf{dom } f^*$
- for $x = t1$ if $y > 0$ we
	- f for $x = t\mathbf{1}$, if $y \succeq 0$, we need $\mathbf{1}^T y = 1$ for $y^T x \max x_i$ to be bounded above
- •• for $y \in \{y \succeq 0 \mid \mathbf{1}^T y = 1\}$, what is

$$
\sup_{x \in \text{dom } f} (y^T x - \max_{i=1,\dots,n} x_i)?
$$

- –- can show that $y^T x \le \max x_i$ (why?), and equality holds when $x = 0$
- $-$ so for $y \succeq 0$ and $\mathbf{1}^T y = 1$, the \sup is always bounded above
- thus,

$$
f^*(y) = \begin{cases} 0 & \text{if } y \succeq 0 \text{ and } \mathbf{1}^T y = 1 \\ \infty & \text{otherwise} \end{cases}
$$