EE364a Review Session ¹

administrative info:

- office hours: tue 4-6pm, wed 4-8pm, packard ²⁷⁷
- review session: example problems and hw hints
- homeworks due thursdays by 5pm
- staff email: ee364a-win0708-staff@lists.stanford.edu

Combinations and hulls

$$
y = \theta_1 x_1 + \dots + \theta_k x_k
$$
 is a

- \bullet linear combination of x_1, \ldots, x_k
- $\bullet\,$ affine combination if $\sum_i\theta_i=1$
- $\bullet\,$ convex combination if $\sum_i \theta_i = 1,\ \theta_i \geq 0$
- $\bullet\,$ conic combination if $\theta_i\geq 0$

(linear, affine, \dots) hull of $S=\{x_1,\dots,x_k\}$ is a set of all (linear, affine, \dots) combinations from S

example: ^a few simple relations:

 $\mathbf{conv}(S) \subseteq \mathbf{aff}(S) \subseteq \mathrm{span}(S), \quad \mathbf{conv}(S) \subseteq \mathbf{cone}(S) \subseteq \mathrm{span}(S).$

example: $S = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\} \subseteq \mathbb{R}^3$

what is the linear hull? affine hull? convex hull? conic hull?

- •• linear hull: R^3 .
- \bullet affine hull: hyperplane passing through $(1,0,0), (0,1,0), (0,0,1)$.
- convex hull: triangle with vertices at $(1, 0, 0), (0, 1, 0), (0, 0, 1)$.
- • \bullet conic hull: ${\sf R}^3_+$

Important rules

• intersection

example: a *polyhedron* is intersection of a finite number of halfspaces and hyperplanes.

• functions that preserve convexity examples: affine, perspective, and linear fractional functions. if C is convex, and f is an affine/perspective/linear fractional function, $f(\mathscr{A})$: then $f(C)$ is convex and $f^{-1}(C)$ is convex.

Quantized measurements

consider the measurement setup,

 $y = 0.1$ floor $(10Ax)$

where $x\in\textbf{R}^2$ is the input, $y\in\textbf{R}^5$ are the measurements, and $A\in\textbf{R}^5$ $\times 2$.

 $\bullet\,$ given a measurement y , we want to find the set of inputs that are consistent with the measurements. $i.e.,$ the set

$$
\mathcal{X} = \{x \mid 0 \le a_i^T x - y_i \le 0.1, i = 1, \dots, 5\}.
$$

we can explore this set by simulating, and plotting points that areinside the set. we randomly choose an $x\in{\bf R}^2$. if x is consistent with $y,$ then we plot $x.$ we repeat this a number of times. in the following plot, the blue circles represent points inside $\mathcal X$, and the red dot is the least squares solution, $x_{\rm ls} = A^{\dagger} y.$

Quantized measurements

from the simulations we suspect that $\mathcal X$ is a polyhedron. $\emph{i.e.},$

$$
\mathcal{X} = \{x \mid Fx \le g\}.
$$

it is easy to show that,

$$
F = \begin{bmatrix} -a_1^T \\ a_1^T \\ \vdots \\ -a_5^T \\ a_5^T \end{bmatrix}, \quad g = \begin{bmatrix} -y_1 \\ y_1 + 0.1 \\ \vdots \\ -y_5 \\ y_5 + 0.1 \end{bmatrix}
$$

.

Solution set of ^a quadratic inequality

let $C\subseteq\mathbf{R}^n$ be the solution set of a quadratic inequality,

$$
C = \{x \in \mathbf{R}^n \mid x^T A x + b^T x + c \le 0\},\
$$

with $A\in\mathbf{S}^n$ n , $b\in\mathbf{R}^n$, and $c\in\mathbf{R}$.

• show that C is convex if $A \succeq 0$.

we will show that the intersection of C with an arbitrary line $\{\hat{x}+t v\mid t\in\mathbf{R}\}$ is convex. we have,

$$
(\hat{x} + tv)^T A(\hat{x} + tv) + b^T(\hat{x} + tv) + c = \alpha t^2 + \beta t + \gamma
$$

where,

$$
\alpha = v^T A v, \quad \beta = b^T v + 2\hat{x}^T A v, \quad \gamma = c + b^T \hat{x} + \hat{x}^T A \hat{x}.
$$

the intersection of C with the line defined by \hat{x} and v is the set

$$
\{\hat{x} + tv \mid \alpha t^2 + \beta t + \gamma \le 0\},\
$$

which is convex if $\alpha \geq 0$. This is true for any v if $A \succeq 0$.

Voronoi sets and polyhedral decomposition

let $x_0, \ldots, x_K \in \mathbf{R}^n$. consider the set of points that are closer (in Euclidean norm) to x_0 than the other $x_i, \ i.e.,$

$$
V = \{x \in \mathbf{R}^n \mid ||x - x_0||_2 \le ||x - x_i||_2, i = 1, ..., K\}.
$$

• what kind of set is V ?

answer. V is a polyhedron. we can express V as $V=\{x \mid Ax \preceq b\}$ with

$$
A = 2\begin{bmatrix} x_1 - x_0 \\ x_2 - x_0 \\ \vdots \\ x_K - x_0 \end{bmatrix}, \quad b = \begin{bmatrix} x_1^T x_1 - x_0^T x_0 \\ x_2^T x_2 - x_0^T x_0 \\ \vdots \\ x_K^T x_K - x_0^T x_0 \end{bmatrix}
$$

(check this!)

Conic hull of outer products

consider the set of rank- k *outer products*, defined as

$$
\{XX^T \mid X \in \mathbf{R}^{n \times k}, \ \ \mathrm{rank}\, X = k \}.
$$

describe its conic hull in simple terms.

 $\mathop{\rm solution.}\nolimits$ we have XX^T combination of such matrices can have rank up to $n,$ but never less than $T\succeq 0$ and $\mathbf{rank}(XX^T)=k.$ a positive $k.$ indeed, let A and B be positive semidefinite matrices of rank $k.$ suppose $v \in \mathcal{N}(A+B)$, then

$$
(A + B)v = 0 \Leftrightarrow v^T (A + B)v = 0 \Leftrightarrow v^T Av + v^T Bv = 0.
$$

this implies,

$$
v^T A v = 0 \Leftrightarrow Av = 0, \quad v^T B v = 0 \Leftrightarrow B v = 0.
$$

hence any vector in the $\mathcal{N}(A+B)$ must be in $\mathcal{N}(A)$, and $\mathcal{N}(B).$

this implies that $\dim \mathcal{N}(A + B)$ cannot be greater than $\dim \mathcal{N}(A)$ or
dim $\mathcal{N}(B)$ because a positive sembination of positive semidefinite matri $\dim \mathcal{N}(B)$, hence a positive combination of positive semidefinite matrices
see anly sain rank can only gain rank.

it follows that the conic hull of the set of rank- k outer products is the set of positive semidefinite matrices of rank greater than or equal to k , along with the zero matrix.