
EE364a, Winter 2007-08 Prof. S. Boyd

EE364a Homework 8 solutions

9.8 Steepest descent method in ℓ∞-norm. Explain how to find a steepest descent direction
in the ℓ∞-norm, and give a simple interpretation.

Solution. The normalized steepest descent direction is given by

∆xnsd = − sign(∇f(x)),

where the sign is taken componentwise. Interpretation: If the partial derivative with
respect to xk is positive we take a step that reduces xk; if it is positive, we take a step
that increases xk.

The unnormalized steepest descent direction is given by

∆xsd = −‖∇f(x)‖1 sign(∇f(x)).

10.1 Nonsingularity of the KKT matrix. Consider the KKT matrix
[

P AT

A 0

]

,

where P ∈ Sn
+, A ∈ Rp×n, and rankA = p < n.

(a) Show that each of the following statements is equivalent to nonsingularity of the
KKT matrix.

• N (P) ∩N (A) = {0}.
• Ax = 0, x 6= 0 =⇒ xT Px > 0.

• F T PF ≻ 0, where F ∈ Rn×(n−p) is a matrix for which R(F) = N (A).

• P + AT QA ≻ 0 for some Q � 0.

(b) Show that if the KKT matrix is nonsingular, then it has exactly n positive and p
negative eigenvalues.

Solution.

(a) • Conditions 1 and 2. If x ∈ N (A) ∩ N (P), x 6= 0, then Ax = 0, x 6= 0,
but xT Px = 0, contradicting the second statement. Conversely, suppose the
second statement fails to hold, i.e., there is an x with Ax = 0, x 6= 0, but
xT Px = 0. Since P � 0, we conclude Px = 0, i.e., x ∈ N (P), which
contradicts the first statement.

• Conditions 2 and 3. If Ax = 0, x 6= 0, then x must have the form x = Fz,
where z 6= 0 because rank(F) = n−p. Then we have xT Px = zT F T PFz > 0.

1

• Conditons 2 and 4. If the second condition holds then

xT (P + AT A)x = xT Px + ‖AT x‖2
2 > 0

for all nonzero x, so the last statement holds with Q = I.
If the last statement holds for some Q � 0 then

xT (P + AT QA)x = xT Px + xT AT QAx > 0

for all nonzero x. Therefore if Ax = 0 and x 6= 0, we must have xT Px > 0.

Now let us show that the four statements are equivalent to nonsingularity of the
KKT matrix. First suppose that x satisfies Ax = 0, Px = 0, and x 6= 0. Then

[

P AT

A 0

] [

x
0

]

= 0,

which shows that the KKT matrix is singular.

Now suppose the KKT matrix is singular, i.e., there are x, z, not both zero, such
that

[

P AT

A 0

] [

x
z

]

= 0.

This means that Px + AT z = 0 and Ax = 0, so multiplying the first equation
on the left by xT , we find xT Px + xT AT z = 0. Using Ax = 0, this reduces to
xT Px = 0, so we have Px = 0 (using P � 0). This contradicts (a), unless x = 0.
In this case, we must have z 6= 0. But then AT z = 0 contradicts rankA = p.

(b) From part (a), P + AT A ≻ 0. Therefore there exists a nonsingular matrix R ∈
Rn×n such that

RT (P + AT A)R = I.

Let AR = UΣV T
1 be the singular value decomposition of AR, with U ∈ Rp×p,

Σ = diag(σ1, . . . , σp) ∈ Rp×p and V1 ∈ Rn×p. Let V2 ∈ Rn×(n−p) be such that

V =
[

V1 V2

]

is orthogonal, and define
S =

[

Σ 0
]

∈ Rp×n.

We have AR = USV T , so

V T RT (P + AT A)RV = V T RT PRV + ST S = I.

Therefore V T RT PRV = I − ST S is diagonal. We denote this matrix by Λ:

Λ = V T RT PRV = diag(1 − σ2
1, . . . , 1 − σ2

p, 1, . . . , 1).

2

Applying a congruence transformation to the KKT matrix gives

[

V T RT 0
0 UT

] [

P AT

A 0

] [

RV 0
0 U

]

=

[

Λ ST

S 0

]

,

and the inertia of the KKT matrix is equal to the inertia of the matrix on the
right.

Applying a permutation to the matrix on the right gives a block diagonal matrix
with n diagonal blocks

[

λi σi

σi 0

]

, i = 1, . . . , p, λi = 1, i = p + 1, . . . , n.

The eigenvalues of the 2 × 2-blocks are

λi ±
√

λ2
i + 4σ2

i

2
,

i.e., one eigenvalue is positive and one is negative. We conclude that there are
p + (n − p) = n positive eigenvalues and p negative eigenvalues.

11.13 Self-concordance and negative entropy.

(a) Show that the negative entropy function x log x (on R++) is not self-concordant.

(b) Show that for any t > 0, tx log x − log x is self-concordant (on R++).

Solution.

(a) First we consider f(x) = x log x, for which

f ′(x) = 1 + log x, f ′′(x) =
1

x
, f ′′′(x) = − 1

x2
.

Thus
|f ′′′(x)|
f ′′(x)3/2

=
1/x2

1/x3/2
=

1√
x

which is unbounded above (as x → 0+). In particular, the self-concordance in-
equality |f ′′′(x)| ≤ 2f ′′(x)3/2 fails for x = 1/5, so f is not self-concordant.

(b) Now we consider g(x) = tx log x − log x, for which

g′(x) = −1

x
+ t + t log x, g′′(x) =

1

x2
+

t

x
, g′′′(x) = − 2

x3
− t

x2
.

Therefore
|g′′′(x)|
g′′(x)3/2

=
2/x3 + t/x2

(1/x2 + t/x)3/2
=

2 + tx

(1 + tx)3/2
.

3

Define

h(a) =
2 + a

(1 + a)3/2

so that

h(tx) =
|g′′′(x)|
g′′(x)3/2

.

We have h(0) = 2 and we will show that h′(a) < 0 for a > 0, i.e., h is decreasing
for a > 0. This will prove that h(a) ≤ h(0) = 2, and therefore

|g′′′(x)|
g′′(x)3/2

≤ 2.

We have

h′(a) =
(1 + a)3/2 − (3/2)(1 + a)1/2(2 + a)

(1 + a)3

=
(1 + a)1/2((1 + a) − (3/2)(2 + a))

(1 + a)3

= − (2 + a/2)

(1 + a)5/2

< 0,

for a > 0, so we are done.

4

Solutions to additional exercises

Standard form LP barrier method

In the following three exercises, you will implement a barrier method for solving the standard
form LP

minimize cT x
subject to Ax = b, x � 0,

with variable x ∈ Rn, where A ∈ Rm×n, with m < n. Throughout this exercise we will
assume that A is full rank, and the sublevel sets {x | Ax = b, x � 0, cT x ≤ γ} are all
bounded. (If this is not the case, the centering problem is unbounded below.)

1. Centering step. Implement Newton’s method for solving the centering problem

minimize cT x − ∑n
i=1 log xi

subject to Ax = b,

with variable x, given a strictly feasible starting point x0.

Your code should accept A, b, c, and x0, and return x⋆, the primal optimal point, ν⋆,
a dual optimal point, and the number of Newton steps executed.

Use the block elimination method to compute the Newton step. (You can also compute
the Newton step via the KKT system, and compare the result to the Newton step
computed via block elimination. The two steps should be close, but if any xi is very
small, you might get a warning about the condition number of the KKT matrix.)

Plot λ2/2 versus iteration k, for various problem data and initial points, to verify that
your implementation gives asymptotic quadratic convergence. As stopping criterion,
you can use λ2/2 ≤ 10−6. Experiment with varying the algorithm parameters α and β,
observing the effect on the total number of Newton steps required, for a fixed problem
instance. Check that your computed x⋆ and ν⋆ (nearly) satisfy the KKT conditions.

To generate some random problem data (i.e., A, b, c, x0), we recommend the following
approach. First, generate A randomly. (You might want to check that it has full rank.)
Then generate a random positive vector x0, and take b = Ax0. (This ensures that x0

is strictly feasible.) The parameter c can be chosen randomly. To be sure the sublevel
sets are bounded, you can add a row to A with all positive elements. If you want to
be able to repeat a run with the same problem data, be sure to set the state for the
uniform and normal random number generators.

Here are some hints that may be useful.

• We recommend computing λ2 using the formula λ2 = −∆xT
nt∇f(x). You don’t

really need λ for anything; you can work with λ2 instead. (This is important for
reasons described below.)

5

• There can be small numerical errors in the Newton step ∆xnt that you compute.
When x is nearly optimal, the computed value of λ2, i.e., λ2 = −∆xT

nt∇f(x), can
actually be (slightly) negative. If you take the squareroot to get λ, you’ll get a
complex number, and you’ll never recover. Moreover, your line search will never
exit. However, this only happens when x is nearly optimal. So if you exit on the
condition λ2/2 ≤ 10−6, everything will be fine, even when the computed value of
λ2 is negative.

• For the line search, you must first multiply the step size t by β until x + t∆xnt is
feasible (i.e., strictly positive). If you don’t, when you evaluate f you’ll be taking
the logarithm of negative numbers, and you’ll never recover.

2. LP solver with strictly feasible starting point. Using the centering code from part (1),
implement a barrier method to solve the standard form LP

minimize cT x
subject to Ax = b, x � 0,

with variable x ∈ Rn, given a strictly feasible starting point x0. Your LP solver should
take as argument A, b, c, and x0, and return x⋆.

You can terminate your barrier method when the duality gap, as measured by n/t,
is smaller than 10−3. (If you make the tolerance much smaller, you might run into
some numerical trouble.) Check your LP solver against the solution found by cvx, for
several problem instances.

The comments in part (1) on how to generate random data hold here too.

Experiment with the parameter µ to see the effect on the number of Newton steps per
centering step, and the total number of Newton steps required to solve the problem.

Plot the progress of the algorithm, for a problem instance with n = 500 and m = 100,
showing duality gap (on a log scale) on the vertical axis, versus the cumulative total
number of Newton steps (on a linear scale) on the horizontal axis.

Your algorithm should return a 2 × k matrix history, (where k is the total number
of centering steps), whose first row contains the number of Newton steps required
for each centering step, and whose second row shows the duality gap at the end of
each centering step. In order to get a plot that looks like the ones in the book (e.g.,
figure 11.4, page 572), you should use the following code:

[xx, yy] = stairs(cumsum(history(1,:)),history(2,:));

semilogy(xx,yy);

3. LP solver. Using the code from part (2), implement a general standard form LP
solver, that takes arguments A, b, c, determines (strict) feasibility, and returns an
optimal point if the problem is (strictly) feasible.

6

You will need to implement a phase I method, that determines whether the problem
is strictly feasible, and if so, finds a strictly feasible point, which can then be fed to
the code from part (2). In fact, you can use the code from part (2) to implement the
phase I method.

To find a strictly feasible initial point x0, we solve the phase I problem

minimize t
subject to Ax = b

x � (1 − t)1, t ≥ 0,

with variables x and t. If we can find a feasible (x, t), with t < 1, then x is strictly
feasible for the original problem. The converse is also true, so the original LP is strictly
feasible if and only if t⋆ < 1, where t⋆ is the optimal value of the phase I problem.

We can initialize x and t for the phase I problem with any x0 satisfying Ax0 = b, and
t0 = 2−mini x

0
i . (Here we can assume that min x0

i ≤ 0; otherwise x0 is already a strictly
feasible point, and we are done.) You can use a change of variable z = x + (t− 1)1 to
transform the phase I problem into the form in part (2).

Check your LP solver against cvx on several numerical examples, including both fea-
sible and infeasible instances.

Solution.

1. The Newton step ∆xnt is defined by the KKT system:
[

H AT

A 0

] [

∆xnt

w

]

=

[

−g
0

]

,

where H = diag(1/x2
1, . . . , 1/x

2
n), and g = c− (1/x1, . . . , 1/xn). The KKT system can

be efficiently solved by block elimination, i.e., by solving

AH−1AT w = −AH−1g,

and setting ∆xnt = −H−1(AT w + g). The KKT optimality condition is

AT ν⋆ + c − (1/x⋆
1, . . . , 1/x

⋆
n) = 0.

When the Newton method converges, i.e., ∆xnt ≈ 0, w is the dual optimal point ν⋆.

The following function computes the analytic center using Newton’s method.

function [x_star, nu_star, lambda_hist] = lp_acent(A,b,c,x_0)

% solves problem

% minimize c’*x - sum(log(x))

% subject to A*x = b

% using Newton’s method, given strictly feasible starting point x0

7

% input (A, b, c, x_0)

% returns primal and dual optimal points

% lambda_hist is a vector showing lambda^2/2 for each newton step

% returns [], [] if MAXITERS reached, or x_0 not feasible

% algorithm parameters

ALPHA = 0.01;

BETA = 0.5;

EPSILON = 1e-6;

MAXITERS = 100;

if (min(x_0) <= 0) || (norm(A*x_0 - b) > 1e-3) % x0 not feasible

fprintf(’FAILED’);

nu_star = []; x_star = []; lambda_hist=[];

return;

end

m = length(b);

n = length(x_0);

x = x_0; lambda_hist = [];

for iter = 1:MAXITERS

H = diag(x.^(-2));

g = c - x.^(-1);

% lines below compute newton step via whole KKT system

% M = [H A’; A zeros(m,m)];

% d = M\[-g; zeros(m,1)];

% dx = d(1:n);

% w = d(n+1:end);

% newton step by elimination method

w = (A*diag(x.^2)*A’)\(-A*diag(x.^2)*g);

dx = -diag(x.^2)*(A’*w + g);

lambdasqr = -g’*dx; % dx’*H*dx;

lambda_hist = [lambda_hist lambdasqr/2];

if lambdasqr/2 <= EPSILON break; end

% backtracking line search

% first bring the point inside the domain

t = 1; while min(x+t*dx) <= 0 t = BETA*t; end

% now do backtracking line search

8

while c’*(t*dx)-sum(log(x+t*dx))+sum(log(x))-ALPHA*t*g’*dx> 0

t = BETA*t;

end

x = x + t*dx;

end

if iter == MAXITERS % MAXITERS reached

fprintf(’ERROR: MAXITERS reached.\n’);

x_star = []; nu_star = [];

else

x_star = x;

nu_star = w;

end

The random data is generated as given in the problem statement, with A ∈ R100×500.
The Newton decrement versus number of Newton steps is plotted below. Quadratic
convergence is clear. The Newton direction computed by the two methods are very
close. The KKT optimality condtions are verified for the points returned by the func-
tion.

1 2 3 4 5 6 7 8 9 10 11
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

λ
2
/2

Newton steps

2. The following function solves the LP using the barrier method.

function [x_star, history, gap] = lp_barrier(A,b,c,x_0)

9

% solves standard form LP

% minimize c^T x

% subject to Ax = b, x >=0;

% using barrier method, given strictly feasible x0

% uses function std_form_LP_acent() to carry out centering steps

% returns:

% - primal optimal point x_star

% - history, a 2xk matrix that returns number of newton steps

% in each centering step (top row) and duality gap (bottom row)

% (k is total number of centering steps)

% - gap, optimal duality gap

% barrier method parameters

T_0 = 1;

MU = 20;

EPSILON = 1e-3; % duality gap stopping criterion

n = length(x_0);

t = T_0;

x = x_0;

history = [];

while(1)

[x_star, nu_star, lambda_hist] = lp_acent(A,b,t*c,x);

x = x_star;

gap = n/t;

history = [history [length(lambda_hist); gap]];

if gap < EPSILON break; end

t = MU*t;

end

The following script generates test data and plots the progress of the barrier method.
The script also checks the computed solution against cvx.

% script that generates data and tests the functions

% std_form_LP_acent

% std_form_LP_barrier

clear all;

m = 100;

n = 500;

rand(’seed’,0);

10

randn(’seed’,0);

A = [randn(m-1,n); ones(1,n)];

x_0 = rand(n,1) + 0.1;

b = A*x_0;

c = randn(n,1);

% analytic centering

figure

[x_star, nu_star, lambda_hist] = lp_acent(A,b,c,x_0);

semilogy(lambda_hist,’bo-’)

xlabel(’iters’)

ylabel(’lambdasqr/2’)

% solve the LP with barrier

figure

[x_star, history, gap] = lp_barrier(A,b,c,x_0);

[xx, yy] = stairs(cumsum(history(1,:)),history(2,:));

semilogy(xx,yy,’bo-’);

xlabel(’iters’)

ylabel(’gap’)

p_star = c’*x_star;

% solve LP using cvx for comparison

cvx_begin

variable x(n)

minimize(c’*x)

subject to

A*x == b

x >= 0

cvx_end

fprintf(’\n\nOptimal value found by barrier method:\n’);

p_star

fprintf(’Optimal value found by CVX:\n’);

cvx_optval

fprintf(’Duality gap from barrier method:\n’);

gap

11

10 15 20 25 30 35 40 45 50 55
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

D
u
al

it
y

ga
p

Newton steps

3. The following function implements the full LP solver (phase I and phase II).

function [x_star,p_star,gap,status,nsteps] = lp_solve(A,b,c);

% solves the LP

% minimize c^T x

% subject to Ax = b, x >= 0;

% using a barrier method

% computes a strictly feasible point by carrying out

% a phase I method

% returns:

% - a primal optimal point x_star

% - the primal optimal value p_star

% - status: either ’Infeasible’ or ’Solved’

% - nsteps(1): number of newton steps for phase I

% - nsteps(2): number of newton steps for phase I

[m,n] = size(A);

nsteps = zeros(2,1);

% phase I

x0 = A\b; t0 = 2+max(0,-min(x0));

A1 = [A,-A*ones(n,1)];

b1 = b-A*ones(n,1);

12

z0 = x0+t0*ones(n,1)-ones(n,1);

c1 = [zeros(n,1);1];

[z_star, history, gap] = lp_barrier(A1,b1,c1,[z0;t0]);

if (z_star(n+1) >= 1)

fprintf(’\nProblem is infeasible\n’);

x_star = []; p_star = Inf; status = ’Infeasible’;

nsteps(1) = sum(history(1,:)); gap = [];

return;

end

fprintf(’\nFeasible point found\n’);

nsteps(1) = sum(history(1,:));

x_0 = z_star(1:n)-z_star(n+1)*ones(n,1)+ones(n,1);

% phase II

[x_star, history, gap] = lp_barrier(A,b,c,x_0);

status = ’Solved’; p_star = c’*x_star;

nsteps(2) = sum(history(1,:));

We test our LP solver on two problem instances, one infeasible, and one feasible. We
check our results against the output of cvx.

% solves standard form LP for two problem instances

clear all;

m = 100;

n = 500;

% infeasible problem instance

rand(’seed’,0);

randn(’seed’,0);

A = [rand(m-1,n); ones(1,n)];

b = randn(m,1);

c = randn(n,1);

[x_star,p_star,gap,status,nsteps] = lp_solve(A,b,c);

% solve LP using cvx for comparison

cvx_begin

variable x(n)

minimize(c’*x)

subject to

A*x == b

x >= 0

cvx_end

13

% feasible problem instance

A = [randn(m-1,n); ones(1,n)];

v = rand(n,1) + 0.1;

b = A*v;

c = randn(n,1);

[x_star,p_star,gap,status,nsteps] = lp_solve(A,b,c);

% solve LP using cvx for comparison

cvx_begin

variable x(n)

minimize(c’*x)

subject to

A*x == b

x >= 0

cvx_end

fprintf(’\n\nOptimal value found by barrier method:\n’);

p_star

fprintf(’Optimal value found by CVX:\n’);

cvx_optval

fprintf(’Duality gap from barrier method:\n’);

gap

14

