
EE364a, Winter 2007-08 Prof. S. Boyd

EE364a Homework 7 solutions

8.16 Maximum volume rectangle inside a polyhedron. Formulate the following problem as a
convex optimization problem. Find the rectangle

R = {x ∈ Rn | l � x � u}

of maximum volume, enclosed in a polyhedron P = {x | Ax � b}. The variables are
l, u ∈ Rn. Your formulation should not involve an exponential number of constraints.

Solution. A straightforward, but very inefficient, way to express the constraint R ⊆ P
is to use the set of m2n inequalities Avi � b, where vi are the (2n) corners of R. (If the
corners of a box lie inside a polyhedron, then the box does.) Fortunately it is possible
to express the constraint in a far more efficient way. Define

a+
ij = max{aij, 0}, a−

ij = max{−aij, 0}.

Then we have R ⊆ P if and only if

n
∑

i=1

(a+
ijuj − a−

ijlj) ≤ bi, i = 1, . . . ,m,

The maximum volume rectangle is the solution of

maximize (
∏n

i=1(ui − li))
1/n

subject to
∑n

i=1(a
+
ijuj − a−

ijlj) ≤ bi, i = 1, . . . ,m,

with implicit constraint u � l. Another formulation can be found by taking the log of
the objective, which yields

maximize
∑n

i=1 log(ui − li)
subject to

∑n
i=1(a

+
ijuj − a−

ijlj) ≤ bi, i = 1, . . . ,m.

9.30 Gradient and Newton methods. Consider the unconstrained problem

minimize f(x) = −
∑m

i=1 log(1 − aT
i x) −

∑n
i=1 log(1 − x2

i ),

with variable x ∈ Rn, and dom f = {x | aT
i x < 1, i = 1, . . . ,m, |xi| < 1, i = 1, . . . , n}.

This is the problem of computing the analytic center of the set of linear inequalities

aT
i x ≤ 1, i = 1, . . . ,m, |xi| ≤ 1, i = 1, . . . , n.

Note that we can choose x(0) = 0 as our initial point. You can generate instances of
this problem by choosing ai from some distribution on Rn.

1



(a) Use the gradient method to solve the problem, using reasonable choices for the
backtracking parameters, and a stopping criterion of the form ‖∇f(x)‖2 ≤ η.
Plot the objective function and step length versus iteration number. (Once you
have determined p⋆ to high accuracy, you can also plot f − p⋆ versus iteration.)
Experiment with the backtracking parameters α and β to see their effect on
the total number of iterations required. Carry these experiments out for several
instances of the problem, of different sizes.

(b) Repeat using Newton’s method, with stopping criterion based on the Newton
decrement λ2. Look for quadratic convergence. You do not have to use an efficient
method to compute the Newton step, as in exercise 9.27; you can use a general
purpose dense solver, although it is better to use one that is based on a Cholesky
factorization.

Hint. Use the chain rule to find expressions for ∇f(x) and ∇2f(x).

Solution.

(a) Gradient method. The figures show the function values and step lengths versus
iteration number for an example with m = 200, n = 100. We used α = 0.01,
β = 0.5, and exit condition ‖∇f(x(k))‖2 ≤ 10−3.

0 100 200 300 400 500
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

k

f
(x

(k
) )
−

p⋆

0 100 200 300 400 500 600
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

k

t(
k
)

The following is a Matlab implementation.

randn(’state’,1);

m=200;

n=100;

ALPHA = 0.01;

BETA = 0.5;

MAXITERS = 1000;

NTTOL = 1e-8;

GRADTOL = 1e-3;

2



% generate random problem

A = randn(m,n);

% gradient method

vals = []; steps = [];

x = zeros(n,1);

for iter = 1:MAXITERS

val = -sum(log(1-A*x)) - sum(log(1+x)) - sum(log(1-x));

vals = [vals, val];

d = 1./(1-A*x);

grad = A’*d - 1./(1+x) + 1./(1-x);

v = -grad;

fprime = grad’*v;

norm(grad)

if norm(grad) < GRADTOL, break; end;

t = 1;

while ((max(A*(x+t*v)) >= 1) | (max(abs(x+t*v)) >= 1)),

t = BETA*t;

end;

while ( -sum(log(1-A*(x+t*v))) - sum(log(1-(x+t*v).^2)) > ...

val + ALPHA*t*fprime )

t = BETA*t;

end;

x = x+t*v;

steps = [steps,t];

end;

figure(1)

semilogy([0:(length(vals)-2)], vals(1:length(vals)-1)-optval, ’-’);

xlabel(’x’); ylabel(’z’);

figure(2)

plot([1:length(steps)], steps, ’:’,[1:length(steps)], steps, ’o’);

xlabel(’x’); ylabel(’z’);

(b) Newton method. The figures show the function values and step lengths versus

3



iteration number for the same example. We used α = 0.01, β = 0.5, and exit
condition λ(x(k))2 ≤ 10−8.

0 1 2 3 4 5 6 7
10

−10

10
−5

10
0

10
5

k

f
(x

(k
) )
−

p⋆

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

k

t(
k
)

The following is a Matlab implementation.

% Newton method

vals = []; steps = [];

x = zeros(n,1);

for iter = 1:MAXITERS

val = -sum(log(1-A*x)) - sum(log(1+x)) - sum(log(1-x));

vals = [vals, val];

d = 1./(1-A*x);

grad = A’*d - 1./(1+x) + 1./(1-x);

hess = A’*diag(d.^2)*A + diag(1./(1+x).^2 + 1./(1-x).^2);

v = -hess\grad;

fprime = grad’*v

if abs(fprime) < NTTOL, break; end;

t = 1;

while ((max(A*(x+t*v)) >= 1) | (max(abs(x+t*v)) >= 1)),

t = BETA*t;

end;

while ( -sum(log(1-A*(x+t*v))) - sum(log(1-(x+t*v).^2)) > ...

val + ALPHA*t*fprime )

t = BETA*t;

end;

x = x+t*v;

4



steps = [steps,t];

end;

optval = vals(length(vals));

figure(3)

semilogy([0:(length(vals)-2)], vals(1:length(vals)-1)-optval, ’-’, ...

[0:(length(vals)-2)], vals(1:length(vals)-1)-optval, ’o’);

xlabel(’x’); ylabel(’z’);

figure(4)

plot([1:length(steps)], steps, ’-’, [1:length(steps)], steps, ’o’);

axis([0, length(steps), 0, 1.1]);

xlabel(’x’); ylabel(’z’);

9.31 Some approximate Newton methods. The cost of Newton’s method is dominated by
the cost of evaluating the Hessian ∇2f(x) and the cost of solving the Newton system.
For large problems, it is sometimes useful to replace the Hessian by a positive definite
approximation that makes it easier to form and solve for the search step. In this
problem we explore some common examples of this idea.

For each of the approximate Newton methods described below, test the method on some
instances of the analytic centering problem described in exercise 9.30, and compare the
results to those obtained using the Newton method and gradient method.

(a) Re-using the Hessian. We evaluate and factor the Hessian only every N iterations,
where N > 1, and use the search step ∆x = −H−1∇f(x), where H is the last
Hessian evaluated. (We need to evaluate and factor the Hessian once every N
steps; for the other steps, we compute the search direction using back and forward
substitution.)

(b) Diagonal approximation. We replace the Hessian by its diagonal, so we only have
to evaluate the n second derivatives ∂2f(x)/∂x2

i , and computing the search step
is very easy.

Solution.

(a) The figure shows the function value versus approxmate total number of flops
required (for the same example as in the solution of exercise 9.30), for N = 1
(i.e., Newton’s method), N = 15, and N = 30.

5



0 0.5 1 1.5 2 2.5

x 10
6

10
−10

10
−5

10
0

10
5

# of flops
f
(x

(k
) )
−

p⋆

Newton
N = 15 N = 30

We see that the speed of convergence is increased using the method of using a
factorized Hessian for several steps, as measured by true effort (i.e., number of
flops required). Of course in terms of iterations, the method is worse than the
basic Newton method.

The following is a Matlab implementation.

randn(’state’,1);

m=200;

n=100;

ALPHA = 0.01;

BETA = 0.5;

MAXITERS = 1000;

NTTOL = 1e-9;

GRADTOL = 1e-3;

% generate random problem

A = randn(m,n);

% Newton method with periodically updated Hessian

for N = [1,15,30]; % re-compute Hessian every N iterations

vals = [];

flops = [];

flop = 0;

x = zeros(n,1);

for iter = 1:MAXITERS

val = -sum(log(1-A*x))-sum(log(1+x))-sum(log(1-x));

vals = [vals,val];

6



flops = [flops,flop];

d = 1./(1-A*x);

grad = A’*d-1./(1+x)+1./(1-x);

if (rem(iter-1,N) == 0)

H = A’*diag(d.^2)*A+diag(1./(1+x).^2+1./(1-x).^2);

L = chol(H,’lower’);

flop = (1/3)*n^3; % add flop for Cholesky factorization

else

flop = 0;

end

v = -L’\(L\grad);

flop = flop+2*n^2; % add flop for fwd/bwd substitution

fprime = grad’*v

if (abs(fprime) < NTTOL) break; end

t = 1;

while ((max(A*(x+t*v))>=1) | (max(abs(x+t*v))> 1)),

t = BETA*t;

end

while (-sum(log(1-A*(x+t*v)))-sum(log(1-(x+t*v).^2)) > ...

val + ALPHA*t*fprime )

t = BETA*t;

end

x = x+t*v;

end

if (N==1), optval = vals(length(vals)); end

figure(1)

cflops = cumsum(flops(1:end-1));

perror = vals(1:end-1)-optval;

semilogy(cflops,perror,’-’,cflops,perror,’o’);

hold on;

semilogy(cflops(1:N:end-1),perror(1:N:end-1),...

’mo’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’b’,’MarkerSize’,8);

text(cflops(end),perror(end),[’N’,num2str(N)]);

hold on;

end

7



xlabel(’x’); ylabel(’z’);

(b) The figure shows the function value versus iteration number (for the same example
as in the solution of exercise 9.30), for a diagonal approximation of the Hessian.
The experiment shows that the algorithm converges very much like the gradient
method.

0 200 400 600 800
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

k

f
(x

(k
) )
−

p⋆

The following is a Matlab implementation.

% Newton method with diagonal approximation of Hessian

vals = [];

x = zeros(n,1);

for iter = 1:MAXITERS

val = -sum(log(1-A*x)) - sum(log(1+x)) - sum(log(1-x));

vals = [vals, val];

d = 1./(1-A*x);

grad = A’*d - 1./(1+x) + 1./(1-x);

hess = A’*diag(d.^2)*A + diag(1./(1+x).^2 + 1./(1-x).^2);

H = diag(diag(hess));

norm(grad)

if norm(grad) < GRADTOL, break; end;

v = -H\grad; fprime = grad’*v;

if (fprime > 0), keyboard; end;

t = 1;

while ((max(A*(x+t*v)) >= 1) | (max(abs(x+t*v)) >= 1)),

t = BETA*t;

end

while ( -sum(log(1-A*(x+t*v))) - sum(log(1-(x+t*v).^2)) > ...

val + ALPHA*t*fprime )

8



t = BETA*t;

end

x = x+t*v;

end

figure(2)

semilogy([0:(length(vals)-2)], vals(1:length(vals)-1)-optval, ’-’);

xlabel(’x’); ylabel(’z’);

9



Solutions to additional exercises

Suggestions for exercise 9.30

We recommend the following to generate a problem instance:

n = 100;

m = 200;

randn(’state’,1);

A=randn(m,n);

Of course, you should try out your code with different dimensions, and different data as well.
In all cases, be sure that your line search first finds a step length for which the tentative

point is in dom f ; if you attempt to evaluate f outside its domain, you’ll get complex
numbers, and you’ll never recover.

To find expressions for ∇f(x) and ∇2f(x), use the chain rule (see Appendix A.4); if you
attempt to compute ∂2f(x)/∂xi∂xj, you will be sorry.

To compute the Newton step, you can use vnt=-H\g.

Suggestions for exercise 9.31

For 9.31a, you should try out N = 1, N = 15, and N = 30. You might as well compute and
store the Cholesky factorization of the Hessian, and then back solve to get the search direc-
tions, even though you won’t really see any speedup in Matlab for such a small problem. After
you evaluate the Hessian, you can find the Cholesky factorization as L=chol(H,’lower’).
You can then compute a search step as -L’\(L\g), where g is the gradient at the current
point. Matlab will do the right thing, i.e., it will first solve L\g using forward substitution,
and then it will solve -L’\(L\g) using backward substitution. Each substitution is order
n2.

To fairly compare the convergence of the three methods (i.e., N = 1, N = 15, N = 30),
the horizontal axis should show the approximate total number of flops required, and not the
number of iterations. You can compute the approximate number of flops using n3/3 for each
factorization, and 2n2 for each solve (where each ‘solve’ involves a forward substitution step
and a backward substitution step).

Additional exercises

1. Three-way linear classification. We are given data

x(1), . . . , x(N), y(1), . . . , y(M), z(1), . . . , z(P ),

three nonempty sets of vectors in Rn. We wish to find three affine functions on Rn,

fi(z) = aT
i z − bi, i = 1, 2, 3,

10



that satisfy the following properties:

f1(x
(j)) > max{f2(x

(j)), f3(x
(j))}, j = 1, . . . , N,

f2(y
(j)) > max{f1(y

(j)), f3(y
(j))}, j = 1, . . . ,M,

f3(z
(j)) > max{f1(z

(j)), f2(z
(j))}, j = 1, . . . , P.

In words: f1 is the largest of the three functions on the x data points, f2 is the largest
of the three functions on the y data points, f3 is the largest of the three functions on
the z data points. We can give a simple geometric interpretation: The functions f1,
f2, and f3 partition Rn into three regions,

R1 = {z | f1(z) > max{f2(z), f3(z)}},

R2 = {z | f2(z) > max{f1(z), f3(z)}},

R3 = {z | f3(z) > max{f1(z), f2(z)}},

defined by where each function is the largest of the three. Our goal is to find functions
with x(j) ∈ R1, y(j) ∈ R2, and z(j) ∈ R3.

Pose this as a convex optimization problem. You may not use strict inequalities in
your formulation.

Solve the specific instance of the 3-way separation problem given in sep3way_data.m,
with the columns of the matrices X, Y and Z giving the x(j), j = 1, . . . , N , y(j), j =
1, . . . ,M and z(j), j = 1, . . . , P . To save you the trouble of plotting data points and
separation boundaries, we have included the plotting code in sep3way_data.m. (Note
that a1, a2, a3, b1 and b2 contain arbitrary numbers; you should compute the correct
values using cvx.)

Solution. The inequalities

f1(x
(j)) > max{f2(x

(j)), f3(x
(j))}, j = 1, . . . , N,

f2(y
(j)) > max{f1(y

(j)), f3(y
(j))}, j = 1, . . . ,M,

f3(z
(j)) > max{f1(z

(j)), f2(z
(j))}, j = 1, . . . , P.

are homogeneous in ai and bi so we can express them as

f1(x
(j)) ≥ max{f2(x

(j)), f3(x
(j))} + 1, j = 1, . . . , N,

f2(y
(j)) ≥ max{f1(y

(j)), f3(y
(j))} + 1, j = 1, . . . ,M,

f3(z
(j)) ≥ max{f1(z

(j)), f2(z
(j))} + 1, j = 1, . . . , P.

Note that we can add any vector α to each of the ai, without affecting these inequalities
(which only refer to difference between ai’s), and we can add any number β to each of
the bi’s for the same reason. We can use this observation to normalize or simplify the
ai and bi. For example, we can assume without loss of generality that a1 + a2 + a3 = 0
and b1 + b2 + b3 = 0.

The following script implements this method for 3-way classification and tests it on a
small separable data set

11



clear all; close all;

% data for problem instance

M = 20;

N = 20;

P = 20;

X = [

3.5674 4.1253 2.8535 5.1892 4.3273 3.8133 3.4117 ...

3.8636 5.0668 3.9044 4.2944 4.7143 3.3082 5.2540 ...

2.5590 3.6001 4.8156 5.2902 5.1908 3.9802 ;...

-2.9981 0.5178 2.1436 -0.0677 0.3144 1.3064 3.9297 ...

0.2051 0.1067 -1.4982 -2.4051 2.9224 1.5444 -2.8687 ...

1.0281 1.2420 1.2814 1.2035 -2.1644 -0.2821];

Y = [

-4.5665 -3.6904 -3.2881 -1.6491 -5.4731 -3.6170 -1.1876 ...

-1.0539 -1.3915 -2.0312 -1.9999 -0.2480 -1.3149 -0.8305 ...

-1.9355 -1.0898 -2.6040 -4.3602 -1.8105 0.3096; ...

2.4117 4.2642 2.8460 0.5250 1.9053 2.9831 4.7079 ...

0.9702 0.3854 1.9228 1.4914 -0.9984 3.4330 2.9246 ...

3.0833 1.5910 1.5266 1.6256 2.5037 1.4384];

Z = [

1.7451 2.6345 0.5937 -2.8217 3.0304 1.0917 -1.7793 ...

1.2422 2.1873 -2.3008 -3.3258 2.7617 0.9166 0.0601 ...

-2.6520 -3.3205 4.1229 -3.4085 -3.1594 -0.7311; ...

-3.2010 -4.9921 -3.7621 -4.7420 -4.1315 -3.9120 -4.5596 ...

-4.9499 -3.4310 -4.2656 -6.2023 -4.5186 -3.7659 -5.0039 ...

-4.3744 -5.0559 -3.9443 -4.0412 -5.3493 -3.0465];

cvx_begin

variables a1(2) a2(2) a3(2) b1 b2 b3

a1’*X-b1 >= max(a2’*X-b2,a3’*X-b3)+1;

a2’*Y-b2 >= max(a1’*Y-b1,a3’*Y-b3)+1;

a3’*Z-b3 >= max(a1’*Z-b1,a2’*Z-b2)+1;

a1 + a2 + a3 == 0

b1 + b2 + b3 == 0

cvx_end

% now let’s plot the three-way separation induced by

% a1,a2,a3,b1,b2,b3

12



% find maximally confusing point

p = [(a1-a2)’;(a1-a3)’]\[(b1-b2);(b1-b3)];

% plot

t = [-7:0.01:7];

u1 = a1-a2; u2 = a2-a3; u3 = a3-a1;

v1 = b1-b2; v2 = b2-b3; v3 = b3-b1;

line1 = (-t*u1(1)+v1)/u1(2); idx1 = find(u2’*[t;line1]-v2>0);

line2 = (-t*u2(1)+v2)/u2(2); idx2 = find(u3’*[t;line2]-v3>0);

line3 = (-t*u3(1)+v3)/u3(2); idx3 = find(u1’*[t;line3]-v1>0);

plot(X(1,:),X(2,:),’*’,Y(1,:),Y(2,:),’ro’,Z(1,:),Z(2,:),’g+’,...

t(idx1),line1(idx1),’k’,t(idx2),line2(idx2),’k’,t(idx3),line3(idx3),’k’);

axis([-7 7 -7 7]);

The following figure is generated.

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

2. Efficient numerical method for a regularized least-squares problem. We consider a reg-
ularized least squares problem with smoothing,

minimize
k

∑

i=1

(aT
i x − bi)

2 + δ
n−1
∑

i=1

(xi − xi+1)
2 + η

n
∑

i=1

x2
i ,

where x ∈ Rn is the variable, and δ, η > 0 are parameters.

(a) Express the optimality conditions for this problem as a set of linear equations
involving x. (These are called the normal equations.)

13



(b) Now assume that k ≪ n. Describe an efficient method to solve the normal
equations found in (2a). Give an approximate flop count for a general method
that does not exploit structure, and also for your efficient method.

(c) A numerical instance. In this part you will try out your efficient method. We’ll
choose k = 100 and n = 2000, and δ = η = 1. First, randomly generate A and
b with these dimensions. Form the normal equations as in (2a), and solve them
using a generic method. Next, write (short) code implementing your efficient
method, and run it on your problem instance. Verify that the solutions found by
the two methods are nearly the same, and also that your efficient method is much
faster than the generic one.

Note: You’ll need to know some things about Matlab to be sure you get the speedup
from the efficient method. Your method should involve solving linear equations with
tridiagonal coefficient matrix. In this case, both the factorization and the back sub-
stitution can be carried out very efficiently. The Matlab documentation says that
banded matrices are recognized and exploited, when solving equations, but we found
this wasn’t always the case. To be sure Matlab knows your matrix is tridiagonal, you
can declare the matrix as sparse, using spdiags, which can be used to create a tridi-
agonal matrix. You could also create the tridiagonal matrix conventionally, and then
convert the resulting matrix to a sparse one using sparse.

One other thing you need to know. Suppose you need to solve a group of linear
equations with the same coefficient matrix, i.e., you need to compute F−1a1, ..., F

−1am,
where F is invertible and ai are column vectors. By concatenating columns, this can
be expressed as a single matrix

[

F−1a1 · · · F−1am

]

= F−1 [a1 · · · am] .

To compute this matrix using Matlab, you should collect the righthand sides into one
matrix (as above) and use Matlab’s backslash operator: F\A. This will do the right
thing: factor the matrix F once, and carry out multiple back substitutions for the
righthand sides.

Solution.

(a) The objective function is

xT (AT A + δ∆ + ηI)x − 2bT Ax + bT b,

where A ∈ Rk×n is the matrix with rows ai, and ∆ ∈ Rn×n is the tridiagonal

14



matrix

∆ =



























1 −1 0 · · · 0 0 0
−1 2 −1 · · · 0 0 0

0 −1 2 · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
0 0 0 · · · 0 −1 1



























.

Since the problem is unconstrained, the optimality conditions are

(AT A + δ∆ + ηI)x⋆ = AT b. (1)

(b) If no structure is exploited, then solving (1) costs approximately (1/3)n3 flops. If
k ≪ n, we need to solve a system Fx = g where F is the sum of a tridiagonal
and a (relatively) low-rank matrix. We can use the Sherman-Morrison-Woodbury
formula

x⋆ = (δ∆ + ηI)−1g − (δ∆ + ηI)−1AT (I + A(δ∆ + ηI)−1AT )−1A(δ∆ + ηI)−1g

to efficiently solve (1) as follows:

i. Solve (δ∆ + ηI)z1 = g and (δ∆ + ηI)Z2 = AT for z1 and Z2. Since δ∆ + ηI
is tridiagonal, the total cost for this is approximately 4nk + 5n flops (n for
factorization and 4n(k + 1) for the solves).

ii. Form Az1 and AZ2 (2nk + 2nk2 flops).

iii. Solve (I + AZ2)z3 = Az1 for z3 ((1/3)k3 flops).

iv. Form x⋆ = z1 − Z2z3 (2nk flops).

The total flop count, keeping only leading terms, is 2nk2 flops, which is much
smaller than (1/3)n3 when k ≪ n.

(c) Here’s the Matlab code:

clear all; close all;

n = 2000;

k = 100;

delta = 1;

eta = 1;

A = rand(k,n);

b = rand(k,1);

e = ones(n,1);

D = spdiags([-e 2*e -e],[-1 0 1], n,n);

15



D(1,1) = 1; D(n,n) = 1;

I = speye(n);

F = A’*A + eta*I + delta*D;

P = eta*I + delta*D; %P is cheap to invert since it’s tridiagonal

g = A’*b;

%Directly computing optimal solution

fprintf(’\nComputing solution directly\n’);

s1 = cputime;

x_gen = F\g;

s2 = cputime;

fprintf(’Done (in %g sec)\n’,s2-s1);

fprintf(’\nComputing solution using efficient method\n’);

%x_eff = P^{-1}g - P^{-1}A’(I +AP^{-1}A’)^{-1}AP^{-1}g.

t1= cputime;

Z_0 = P\[g A’];

z_1 = Z_0(:,1);

%z_2 = A*z_1;

Z_2 = Z_0(:,2:k+1);

z_3 = (sparse(1:k,1:k,1) +A*Z_2)\(A*z_1);

x_eff = z_1 - Z_2*z_3;

t2 = cputime;

fprintf(’Done (in %g sec)\n’,t2-t1);

fprintf(’\nrelative error = %e\n’,norm(x_eff-x_gen)/norm(x_gen) );

16


