EE364a, Winter 2007-08 Prof. S. Boyd

EE364a Homework 6 additional problems

1. Minimaz rational fit to the exponential. (See exercise 6.9.) We consider the specific
problem instance with data

ti=—-3+6(i—1)/(k—1), yizetia =1,k

where k& = 201. (In other words, the data are obtained by uniformly sampling the
exponential function over the interval [—3,3].) Find a function of the form

ap + ait + ast?
1+ byt + byt?

ft) =

that minimizes max;—;__ ¢ |f(t;) — vi|- (We require that 1 + bit; + bot? > 0 for i =

1,..., k)

Find optimal values of ag, a1, as, by, by, and give the optimal objective value, com-
puted to an accuracy of 0.001. Plot the data and the optimal rational function fit on
the same plot. On a different plot, give the fitting error, i.e., f(t;) — v;.

-----

Hint. You can use strcmp(cvx_status, ’Solved’), after cvx_end, to check if a feasi-
bility problem is feasible.

2. Maximum likelihood prediction of team ability. A set of n teams compete in a tourna-
ment. We model each team’s ability by a number a; € [0,1], j = 1,...,n. When teams
j and k play each other, the probability that team j wins is equal to prob(a; —a;+v >
0), where v ~ N(0,0?).

You are given the outcome of m past games. These are organized as
(j(z)7k(1)7y(z))7 /1:217"'7m7

meaning that game i was played between teams 7 and k@; y® = 1 means that team
7% won, while y) = —1 means that team k) won. (We assume there are no ties.)

(a) Formulate the problem of finding the maximum likelihood estimate of team abil-
ities, a € R", given the outcomes, as a convex optimization problem. You will
find the game incidence matriz A € R™", defined as

y(z:) | = j(i.)
Ay =< —y® [ =kO
0 otherwise,

useful.



The prior constraints a; € [0, 1] should be included in the problem formulation.
Also, we note that if a constant is added to all team abilities, there is no change in
the probabilities of game outcomes. This means that a is determined only up to
a constant, like a potential. But this doesn’t affect the ML estimation problem,
or any subsequent predictions made using the estimated parameters.

(b) Find a for the team data given in team_data.m, in the matrix train. (This
matrix gives the outcomes for a tournament in which each team plays each other
team once.)

CVX does not support the concave function log @, where ® is the cumulative dis-
tribution of a unit Gaussian, but we have provided a good enough approximation,
log_normcdf, on the course web site. This function is overloaded to handle vector
inputs (elementwise).

You can form A using the commands

A = sparse(l:m,train(:,1),train(:,3),m,n) + ...
sparse(l:m,train(:,2),-train(:,3),m,n);

(c¢) Use the maximum likelihood estimate @ found in part (b) to predict the out-
comes of next year’s tournament games, given in the matrix test, using ¢ =
sign(a;i — am). Compare these predictions with the actual outcomes, given in
the third column of test. Given the fraction of correctly predicted outcomes.

The games played in train and test are the same, so another, simpler method
for predicting the outcomes in test it to just assume the team that won last year’s
match will also win this year’s match. Give the percentage of correctly predicted
outcomes using this simple method.

3. Piecewnse-linear fitting. In many applications some function in the model is not given
by a formula, but instead as tabulated data. The tabulated data could come from
empirical measurements, historical data, numerically evaluating some complex expres-
sion or solving some problem, for a set of values of the argument. For use in a convex
optimization model, we then have to fit these data with a convex function that is com-
patible with the solver or other system that we use. In this problem we explore a very
simple problem of this general type.

Suppose we are given the data (x;,v;), ¢ = 1,...,m, with z;, y; € R. We will assume
that x; are sorted, 7.e., 1 < x93 < -++ < xp,. Let ag < a1 < ay < -+ < ak be a
set of fixed knot points, with ag < 1 and ax > x,,. Explain how to find the convex
piecewise linear function f, defined over [ag, ax], with knot points a;, that minimizes
the least-squares fitting criterion

m

Z(f(l"z) - yi)z-

i=1

You must explain what the variables are and how they parametrize f, and how you
ensure convexity of f.



Hints. One method to solve this problem is based on the Lagrange basis, fy,..., [k,
which are the piecewise linear functions that satisfy

fila;) =055, 1,5 =0,...,K.

Another method is based on defining f(z) = a;x + f;, for © € (a;_1,a;]. You then
have to add conditions on the parameters a; and 3; to ensure that f is continuous and
convex.

Apply your method to the data in the file pwl_fit_data.m, which contains data with
x; € [0,1]. Find the best affine fit (which corresponds to a = (0,1)), and the best
piecewise-linear convex function fit for 1, 2, and 3 internal knot points, evenly spaced
in [0,1]. (For example, for 3 internal knot points we have ag = 0, a; = 0.25, as =
0.50, a3 = 0.75, a4 = 1.) Give the least-squares fitting cost for each one. Plot the
data and the piecewise-linear fits found. Express each function in the form

flz) = igl?),([((oéix + ;).

(In this form the function is easily incorporated into an optimization problem.)

. Robust least-squares with interval coefficient matriz. An interval matriz in R™*" is a
matrix whose entries are intervals:

A:{AERmxn | ’A’L]_A’L]| SRij; izl,...,m, jzl,,n}
The matrix A € R™" is called the nominal value or center value, and R € R™",

which is elementwise nonnegative, is called the radius.

The robust least-squares problem, with interval matrix, is
minimize supye 4 [|[Az — b||2,

with optimization variable x € R". The problem data are A (i.e., A and R) and
b € R™. The objective, as a function of x, is called the worst-case residual norm. The
robust least-squares problem is evidently a convex optimization problem.

(a) Formulate the interval matrix robust least-squares problem as a standard opti-
mization problem, e.g., a QP, SOCP, or SDP. You can introduce new variables
if needed. Your reformulation should have a number of variables and constraints
that grows linearly with m and n, and not exponentially.

(b) Consider the specific problem instance with m =4, n = 3,

60 £0.05 45+£0.05 —8+0.05 —6

A= 90+ 0.05 30=x=0.05 —30=£0.05 b— -3
0£0.05 -8£0.05 —4£0.05 |’ 18
30+£0.05 10+£0.05 —10=£0.05 -9



(The first part of each entry in A gives A;;; the second gives R;;, which are all 0.05
here.) Find the solution zjs of the nominal problem (i.e., minimize ||Az — b|2),
and robust least-squares solution z,;5. For each of these, find the nominal residual
norm, and also the worst-case residual norm. Make sure the results make sense.

5. Total variation image interpolation. A grayscale image is represented as an m X n
matrix of intensities U8, You are given the values U;}rig, for (i,75) € IC, where K C
{1,...,m} x{1,...,n}. Your job is to interpolate the image, by guessing the missing
values. The reconstructed image will be represented by U € R™ ", where U satisfies
the interpolation conditions Uy = U™ for (i, ) € K.

The reconstruction is found by minimizing a roughness measure subject to the inter-
polation conditions. One common roughness measure is the /5 variation (squared),

n

i Z ((Uij —Ui1y)* + (Uy — Ui’j,l)Q) _

i=2 j=2

Another method minimizes instead the total variation,

DY (Uij = Uiyl + Uy — Ui i) -
1=2 j=2

J

Evidently both methods lead to convex optimization problems.

Carry out ¢, and total variation interpolation on the problem instance with data given
in tv_img_interp.m. This will define m, n, and matrices Uorig and Known. The matrix
Known is m X n, with (4, j) entry one if (i,j) € K, and zero otherwise. The mfile also
has skeleton plotting code. (We give you the entire original image so you can compare
your reconstruction to the original; obviously your solution cannot access U;}rig for

(i,7) K.)

6. Relazed and discrete A-optimal experiment design. This problem concerns the A-
optimal experiment design problem, described on page 387, with data generated as
follows.

n = 5; 7 dimension of parameters to be estimated

p = 20; % number of available types of measurements

m 30; % total number of measurements to be carried out
randn(’state’, 0);

V=randn(n,p); % columns are vi, the possible measurement vectors

Solve the relaxed A-optimal experiment design problem,

1
minimize (1/m)tr ( b, )xﬂ)ﬂf)
subject to 1TA =1, X >0,

4



with variable A € R?. Find the optimal point A* and the associated optimal value of
the relaxed problem. This optimal value is a lower bound on the optimal value of the
discrete A-optimal experiment design problem,

-1
minimize tr (Zle mvvl )
subject to my+---+m,=m, m; €{0,...,m}, i=1,...,p,

with variables my,...,m,. To get a suboptimal point for this discrete problem, round
the entries in mA* to obtain integers m;. If needed, adjust these by hand or some other
method to ensure that they sum to m, and compute the objective value obtained. This
is, of course, an upper bound on the optimal value of the discrete problem. Give the
gap between this upper bound and the lower bound obtained from the relaxed problem.
Note that the two objective values can be interpreted as mean-square estimation error
E||& — 3.



