
EE364a, Winter 2007–08 Prof. S. Boyd

EE364a Homework 5 additional problems

1. Schur complements. Consider a matrix X = XT ∈ Rn×n partitioned as

X =

[

A B
BT C

]

,

where A ∈ Rk×k. If det A 6= 0, the matrix S = C − BT A−1B is called the Schur

complement of A in X. Schur complements arise in many situations and appear in
many important formulas and theorems. For example, we have det X = det A det S.
(You don’t have to prove this.)

(a) The Schur complement arises when you minimize a quadratic form over some of
the variables. Let f(u, v) = [uT vT ]X[uT vT ]T , where u ∈ Rk. Let g(v) be the
minimum value of f over u, i.e., g(v) = infu f(u, v). Of course g(v) can be −∞.

Show that if A ≻ 0, we have g(v) = vT Sv.

(b) The Schur complement arises in several characterizations of positive definiteness
or semidefiniteness of a block matrix. As examples we have the following three
theorems:

• X ≻ 0 if and only if A ≻ 0 and S ≻ 0.

• If A ≻ 0, then X � 0 if and only if S � 0.

• X � 0 if and only if A � 0, BT (I − AA†) = 0 and C − BT A†B � 0, where
A† is the pseudo-inverse of A. (C − BT A†B serves as a generalization of the
Schur complement in the case where A is positive semidefinite but singular.)

Prove one of these theorems. (You can choose which one.)

(c) Recognizing Schur complements often helps to represent nonlinear convex con-
straints as linear matrix inequalities (LMIs). Consider the function

f(x) = (Ax + b)T (P0 + x1P1 + · · · + xnPn)−1(Ax + b)

where A ∈ Rm×n, b ∈ Rm, and Pi = P T
i ∈ Rm×m, with domain

dom f = {x ∈ Rn | P0 + x1P1 + · · · + xnPn ≻ 0}.

This is the composition of the matrix fractional function and an affine mapping,
and so is convex. Give an LMI representation of epi f . That is, find a symmetric
matrix F (x, t), affine in (x, t), for which

x ∈ dom f, f(x) ≤ t ⇐⇒ F (x, t) � 0.
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2. Formulate the following optimization problems as semidefinite programs. The variable
is x ∈ Rn; F (x) is defined as

F (x) = F0 + x1F1 + x2F2 + · · · + xnFn

with Fi ∈ Sm. The domain of f in each subproblem is dom f = {x ∈ Rn | F (x) ≻ 0}.

(a) Minimize f(x) = cT F (x)−1c where c ∈ Rm.

(b) Minimize f(x) = maxi=1,...,K cT
i F (x)−1ci where ci ∈ Rm, i = 1, . . . , K.

(c) Minimize f(x) = sup
‖c‖2≤1

cT F (x)−1c.

(d) Minimize f(x) = E(cT F (x)−1c) where c is a random vector with mean E c = c̄
and covariance E(c − c̄)(c − c̄)T = S.

3. Optimality conditions and dual for log-optimal investment problem.

(a) Show that the optimality conditions for the log-optimal investment problem de-
scribed in exercise 4.60 can be expressed as: 1T x = 1, x � 0, and for each i,

xi > 0 ⇒
m

∑

j=1

πj

pij

pT
j x

= 1, xi = 0 ⇒
m

∑

j=1

πj

pij

pT
j x

≤ 1.

We can interpret this as follows. pij/p
T
j x is a random variable, which gives the

ratio of the investment gain with asset i only, to the investment gain with our
mixed portfolio x. The optimality condition is that, for each asset we invest in,
the expected value of this ratio is one, and for each asset we do not invest in,
the expected value cannot exceed one. Very roughly speaking, this means our
portfolio does as well as any of the assets that we choose to invest in, and cannot
do worse than any assets that we do not invest in.

Hint. You can start from the simple criterion given in §4.2.3, or the KKT condi-
tions, or additional exercise 1 from homework 4.

(b) In this part we will derive the dual of the log-optimal investment problem. We
start by writing the problem as,

minimize −
∑m

j=1 πj log yj

subject to y = P T x, x � 0, 1T x = 1.

Here, P has columns p1, . . . , pm, and we have the introduced new variables y1, . . . , ym,
with the implicit constraint y ≻ 0. We will associate dual variables ν, λ and ν0

with the constraints y = P T x, x � 0, and 1T x = 1, respectively. Defining
ν̃j = νj/ν0 for j = 1, . . . ,m, show that the dual problem can be written as

maximize
∑m

j=1 πj log(ν̃j/πj)
subject to P ν̃ � 1,

with variable ν̃. The objective here is the (negative) Kullback-Leibler divergence
between the given distribution π and the dual variable ν̃.
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4. Log-optimal investment strategy. In this problem you will solve a specific instance
of the log-optimal investment problem described in exercise 4.60, with n = 5 assets
and m = 10 possible outcomes in each period. The problem data are defined in
log_opt_invest.m, with the rows of the matrix P giving the asset return vectors pT

j .
The outcomes are equiprobable, i.e., we have πj = 1/m. Each column of the matrix
P gives the return of the associated asset in the different posible outcomes. You can
examine the columns to get an idea of the types of assets. For example, the last asset
gives a fixed and certain return of 1%; the first asset is a very risky one, with occasional
large return, and (more often) substantial loss.

Find the log-optimal investment strategy x⋆, and its associated long term growth rate
R⋆

lt. Compare this to the long term growth rate obtained with a uniform allocation
strategy, i.e., x = (1/n)1, and also with a pure investment in each asset.

For the optimal investment strategy, and also the uniform investment strategy, plot
10 sample trajectories of the accumulated wealth, i.e., W (T ) = W (0)

∏T
t=1 λ(t), for

T = 0, . . . , 200, with initial wealth W (0) = 1.

To save you the trouble of figuring out how to simulate the wealth trajectories or plot
them nicely, we’ve included the simulation and plotting code in log_opt_invest.m;
you just have to add the code needed to find x⋆.

Hint: The current version of cvx doesn’t handle the logarithm, but you can use
geomean() to solve the problem.

5. Maximizing house profit in a gamble and imputed probabilities. A set of n participants
bet on which one of m outcomes, labeled 1, . . . ,m, will occur. Participant i offers to
purchase up to qi > 0 gambling contracts, at price pi > 0, that the true outcome will
be in the set Si ⊂ {1, . . . ,m}. The house then sells her xi contracts, with 0 ≤ xi ≤ qi.
If the true outcome j is in Si, then participant i receives $1 per contract, i.e., xi.
Otherwise, she loses, and receives nothing. The house collects a total of x1p1+· · ·+xnpn,
and pays out an amount that depends on the outcome j,

∑

j∈Si

xi.

The difference is the house profit.

(a) Optimal house strategy. How should the house decide on x so that its worst-case
profit (over the possible outcomes) is maximized? (The house determines x after
examining all the participant offers.)

(b) Imputed probabilities. Suppose x⋆ maximizes the worst-case house profit. Show
that there exists a probability distribution π on the possible outcomes (i.e., π ∈
Rm

+ , 1T π = 1) for which x⋆ also maximizes the expected house profit. Explain
how to find π.

Hint. Formulate the problem in part (a) as an LP; you can construct π from
optimal dual variables for this LP.
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Remark. Given π, the ‘fair’ price for offer i is pfair
i =

∑

j∈Si
πj. All offers with

pi > pfair
i will be completely filled (i.e., xi = qi); all offers with pi < pfair

i will be
rejected (i.e., xi = 0).

Remark. This exercise shows how the probabilities of outcomes (e.g., elections)
can be guessed from the offers of a set of gamblers.

(c) Numerical example. Carry out your method on the simple example below with
n = 5 participants, m = 5 possible outcomes, and participant offers

Participant i pi qi Si

1 0.50 10 {1,2}
2 0.60 5 {4}
3 0.60 5 {1,4,5}
4 0.60 20 {2,5}
5 0.20 10 {3}

Compare the optimal worst-case house profit with the worst-case house profit, if
all offers were accepted (i.e., xi = qi). Find the imputed probabilities.

6. Heuristic suboptimal solution for Boolean LP. This exercise builds on exercises 4.15
and 5.13, which involve the Boolean LP

minimize cT x
subject to Ax � b

xi ∈ {0, 1}, i = 1, . . . , n,

with optimal value p⋆. Let xrlx be a solution of the LP relaxation

minimize cT x
subject to Ax � b

0 � x � 1,

so L = cT xrlx is a lower bound on p⋆. The relaxed solution xrlx can also be used to
guess a Boolean point x̂, by rounding its entries, based on a threshold t ∈ [0, 1]:

x̂i =

{

1 xrlx
i ≥ t

0 otherwise,

for i = 1, . . . , n. Evidently x̂ is Boolean (i.e., has entries in {0, 1}). If it is feasible for
the Boolean LP, i.e., if Ax̂ � b, then it can be considered a guess at a good, if not
optimal, point for the Boolean LP. Its objective value, U = cT x̂, is an upper bound on
p⋆. If U and L are close, then x̂ is nearly optimal; specifically, x̂ cannot be more than
(U − L)-suboptimal for the Boolean LP.

This rounding need not work; indeed, it can happen that for all threshold values, x̂ is
infeasible. But for some problem instances, it can work well.
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Of course, there are many variations on this simple scheme for (possibly) constructing
a feasible, good point from xrlx.

Finally, we get to the problem. Generate problem data using

rand(’state’,0);

n=100;

m=300;

A=rand(m,n);

b=A*ones(n,1)/2;

c=-rand(n,1);

You can think of xi as a job we either accept or decline, and −ci as the (positive)
revenue we generate if we accept job i. We can think of Ax � b as a set of limits on
m resources. Aij, which is positive, is the amount of resource i consumed if we accept
job j; bi, which is positive, is the amount of resource i available.

Find a solution of the relaxed LP and examine its entries. Note the associated lower
bound L. Carry out threshold rounding for (say) 100 values of t, uniformly spaced over
[0, 1]. For each value of t, note the objective value cT x̂ and the maximum constraint
violation maxi(Ax̂ − b)i. Plot the objective value and the maximum violation versus
t. Be sure to indicate on the plot the values of t for which x̂ is feasible, and those for
which it is not.

Find a value of t for which x̂ is feasible, and gives minimum objective value, and note
the associated upper bound U . Give the gap U − L between the upper bound on p⋆

and the lower bound on p⋆. If you define vectors obj and maxviol, you can find the
upper bound as U=min(obj(find(maxviol<=0))).
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