
EE364a, Winter 2007-08 Prof. S. Boyd

EE364a Homework 4 solutions

4.11 Problems involving ℓ1- and ℓ∞-norms. Formulate the following problems as LPs. Ex-
plain in detail the relation between the optimal solution of each problem and the
solution of its equivalent LP.

(a) Minimize ‖Ax − b‖∞ (ℓ∞-norm approximation).

(b) Minimize ‖Ax − b‖1 (ℓ1-norm approximation).

(c) Minimize ‖Ax − b‖1 subject to ‖x‖∞ ≤ 1.

(d) Minimize ‖x‖1 subject to ‖Ax − b‖∞ ≤ 1.

(e) Minimize ‖Ax − b‖1 + ‖x‖∞.

In each problem, A ∈ Rm×n and b ∈ Rm are given. (See §6.1 for more problems
involving approximation and constrained approximation.)

Solution.

(a) Equivalent to the LP
minimize t
subject to Ax − b � t1

Ax − b � −t1.

in the variables x ∈ Rn, t ∈ R. To see the equivalence, assume x is fixed in this
problem, and we optimize only over t. The constraints say that

−t ≤ aT
k x − bk ≤ t

for each k, i.e., t ≥ |aT
k x − bk|, i.e.,

t ≥ max
k

|aT
k x − bk| = ‖Ax − b‖∞.

Clearly, if x is fixed, the optimal value of the LP is p⋆(x) = ‖Ax− b‖∞. Therefore
optimizing over t and x simultaneously is equivalent to the original problem.

(b) Equivalent to the LP
minimize 1T s
subject to Ax − b � s

Ax − b � −s

with variables x ∈ Rn ands ∈ Rm. Assume x is fixed in this problem, and we
optimize only over s. The constraints say that

−sk ≤ aT
k x − bk ≤ sk
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for each k, i.e., sk ≥ |aT
k x− bk|. The objective function of the LP is separable, so

we achieve the optimum over s by choosing

sk = |aT
k x − bk|,

and obtain the optimal value p⋆(x) = ‖Ax− b‖1. Therefore optimizing over x and
s simultaneously is equivalent to the original problem.

(c) Equivalent to the LP

minimize 1T y
subject to −y � Ax − b � y

−1 � x � 1,

with variables x ∈ Rn and y ∈ Rm.

(d) Equivalent to the LP

minimize 1T y
subject to −y � x � y

−1 � Ax − b � 1

with variables x ∈ Rn and y ∈ Rn.

Another reformulation is to write x as the difference of two nonnegative vectors
x = x+ − x−, and to express the problem as

minimize 1T x+ + 1T x−

subject to −1 � Ax+ − Ax− − b � 1

x+ � 0, x− � 0,

with variables x+ ∈ Rn and x− ∈ Rn.

(e) Equivalent to
minimize 1T y + t
subject to −y � Ax − b � y

−t1 � x � t1,

with variables x ∈ Rn, y ∈ Rm, and t ∈ R.

4.16 Minimum fuel optimal control. We consider a linear dynamical system with state
x(t) ∈ Rn, t = 0, . . . , N , and actuator or input signal u(t) ∈ R, for t = 0, . . . , N − 1.
The dynamics of the system is given by the linear recurrence

x(t + 1) = Ax(t) + bu(t), t = 0, . . . , N − 1,

where A ∈ Rn×n and b ∈ Rn are given. We assume that the initial state is zero, i.e.,
x(0) = 0.

2



The minimum fuel optimal control problem is to choose the inputs u(0), . . . , u(N − 1)
so as to minimize the total fuel consumed, which is given by

F =
N−1
∑

t=0

f(u(t)),

subject to the constraint that x(N) = xdes, where N is the (given) time horizon, and
xdes ∈ Rn is the (given) desired final or target state. The function f : R → R is the
fuel use map for the actuator, and gives the amount of fuel used as a function of the
actuator signal amplitude. In this problem we use

f(a) =

{

|a| |a| ≤ 1
2|a| − 1 |a| > 1.

This means that fuel use is proportional to the absolute value of the actuator signal,
for actuator signals between −1 and 1; for larger actuator signals the marginal fuel
efficiency is half.

Formulate the minimum fuel optimal control problem as an LP.

Solution. The minimum fuel optimal control problem is equivalent to the LP

minimize 1T t
subject to Hu = xdes

−y � u � y
t � y
t � 2y − 1,

with variables u ∈ RN , y ∈ RN , and t ∈ R, where

H =
[

AN−1b AN−2b · · · Ab b
]

.

There are several other possible LP formulations. For example, we can keep the state
trajectory x(0), . . . , x(N) as optimization variables, and replace the equality constraint
above, Hu = xdes, with the equality constraints

x(t + 1) = Ax(t) + bu(t), t = 0, . . . , N − 1, x(0) = 0, x(N) = xdes.

In this formulation, the variables are u ∈ RN , x(0), . . . , x(N) ∈ Rn, as well as y ∈ RN

and t ∈ RN .

Yet another variation is to not use the intermediate variable y introduced above, and
express the problem just in terms of the variable t (and u):

−t � u � t, 2u − 1 � t, −2u − 1 � t,

with variables u ∈ RN and t ∈ RN .
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4.29 Maximizing probability of satisfying a linear inequality. Let c be a random variable in
Rn, normally distributed with mean c̄ and covariance matrix R. Consider the problem

maximize prob(cT x ≥ α)
subject to Fx � g, Ax = b.

Find the conditions under which this is equivalent to a convex or quasiconvex optimiza-
tion problem. When these conditions hold, formulate the problem as a QP, QCQP, or
SOCP (if the problem is convex), or explain how you can solve it by solving a sequence
of QP, QCQP, or SOCP feasibility problems (if the problem is quasiconvex).

Solution. Define u = cT x, a scalar random variable, normally distributed with mean
Eu = c̄T x and variance E(u − Eu)2 = xT Rx. The random variable

u − c̄T x√
xT Rx

has a normal distribution with mean zero and unit variance, so

prob(u ≥ α) = prob

(

u − c̄T x√
xT Rx

≥ α − c̄T x√
xT Rx

)

= 1 − Φ

(

α − c̄T x√
xT Rx

)

,

where Φ(z) = 1√
2π

∫ z
−∞ e−t2/2 dt is the standard normal CDF.

To maximize prob(u ≥ α), we can minimize (α− c̄T x)/
√

xT Rx (since Φ is increasing),
i.e., solve the problem

maximize (c̄T x − α)/
√

xT Rx
subject to Fx � g

Ax = b.

(1)

This is not a convex optimization problem, since the objective is not concave.

The problem can, however, be solved by quasiconvex optimization provided a condtion
holds. (We’ll derive the condition below.) The objective exceeds a value t if and only
if

c̄T x − α ≥ t
√

xT Rx

holds. This last inequality is convex, in fact a second-order cone constraint, provided
t ≥ 0. So now we can state the condition: There exists a feasible x for which c̄T x ≥ α.
(This condition is easily checked as an LP feasibility problem.) This condition, by the
way, can also be stated as: There exists a feasible x for which prob(u ≥ α) ≥ 1/2.
Assume that this condition holds. This means that the optimal value of our original
problem is at least 0.5, and the optimal value of the problem (1) is at least 0. This
means that we can state our problem as

maximize t
subject to Fx � g, Ax = b

c̄T x − α ≥ t
√

xT Rx,
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where we can assume that t ≥ 0. This can be solved by bisection on t, by solving an
SOCP feasibility problem at each step. In other words: the function (c̄T x−α)/

√
xT Rx

is quasiconcave, provided it is nonnegative.

In fact, provided the condition above holds (i.e., there exists a feasible x with c̄T x ≥ α)
we can solve the problem (1) via convex optimization. We make the change of variables

y =
x

c̄T x − α
, s =

1

c̄T x − α
,

so x = y/s. This yields the problem

minimize
√

yT Ry

subject to Fy � gs
Ay = bs
c̄T y − αs = 1
s ≥ 0.

4.30 A heated fluid at temperature T (degrees above ambient temperature) flows in a pipe
with fixed length and circular cross section with radius r. A layer of insulation, with
thickness w ≪ r, surrounds the pipe to reduce heat loss through the pipe walls. The
design variables in this problem are T , r, and w.

The heat loss is (approximately) proportional to Tr/w, so over a fixed lifetime, the
energy cost due to heat loss is given by α1Tr/w. The cost of the pipe, which has
a fixed wall thickness, is approximately proportional to the total material, i.e., it is
given by α2r. The cost of the insulation is also approximately proportional to the total
insulation material, i.e., α3rw (using w ≪ r). The total cost is the sum of these three
costs.

The heat flow down the pipe is entirely due to the flow of the fluid, which has a fixed
velocity, i.e., it is given by α4Tr2. The constants αi are all positive, as are the variables
T , r, and w.

Now the problem: maximize the total heat flow down the pipe, subject to an upper
limit Cmax on total cost, and the constraints

Tmin ≤ T ≤ Tmax, rmin ≤ r ≤ rmax, wmin ≤ w ≤ wmax, w ≤ 0.1r.

Express this problem as a geometric program.

Solution. The problem is

maximize α4Tr2

subject to α1Tw−1 + α2r + α3rw ≤ Cmax

Tmin ≤ T ≤ Tmax

rmin ≤ r ≤ rmax

wmin ≤ w ≤ wmax

w ≤ 0.1r.
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This is equivalent to the GP

minimize (1/α4)T
−1r−2

subject to (α1/Cmax)Tw−1 + (α2/Cmax)r + (α3/Cmax)rw ≤ 1
(1/Tmax)T ≤ 1, TminT

−1 ≤ 1
(1/rmax)r ≤ 1, rminr

−1 ≤ 1
(1/wmax)w ≤ 1, wminw

−1 ≤ 1
10wr−1 ≤ 1

(with variables T , r, w).

5.1 A simple example. Consider the optimization problem

minimize x2 + 1
subject to (x − 2)(x − 4) ≤ 0,

with variable x ∈ R.

(a) Analysis of primal problem. Give the feasible set, the optimal value, and the
optimal solution.

(b) Lagrangian and dual function. Plot the objective x2 + 1 versus x. On the same
plot, show the feasible set, optimal point and value, and plot the Lagrangian
L(x, λ) versus x for a few positive values of λ. Verify the lower bound property
(p⋆ ≥ infx L(x, λ) for λ ≥ 0). Derive and sketch the Lagrange dual function g.

(c) Lagrange dual problem. State the dual problem, and verify that it is a concave
maximization problem. Find the dual optimal value and dual optimal solution
λ⋆. Does strong duality hold?

(d) Sensitivity analysis. Let p⋆(u) denote the optimal value of the problem

minimize x2 + 1
subject to (x − 2)(x − 4) ≤ u,

as a function of the parameter u. Plot p⋆(u). Verify that dp⋆(0)/du = −λ⋆.

Solution.

(a) The feasible set is the interval [2, 4]. The (unique) optimal point is x⋆ = 2, and
the optimal value is p⋆ = 5.

The plot shows f0 and f1.
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(b) The Lagrangian is

L(x, λ) = (1 + λ)x2 − 6λx + (1 + 8λ).

The plot shows the Lagrangian L(x, λ) = f0 + λf1 as a function of x for different
values of λ ≥ 0. Note that the minimum value of L(x, λ) over x (i.e., g(λ)) is
always less than p⋆. It increases as λ varies from 0 toward 2, reaches its maximum
at λ = 2, and then decreases again as λ increases above 2. We have equality
p⋆ = g(λ) for λ = 2.
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For λ > −1, the Lagrangian reaches its minimum at x̃ = 3λ/(1 + λ). For λ ≤ −1
it is unbounded below. Thus

g(λ) =

{

−9λ2/(1 + λ) + 1 + 8λ λ > −1
−∞ λ ≤ −1

which is plotted below.
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We can verify that the dual function is concave, that its value is equal to p⋆ = 5
for λ = 2, and less than p⋆ for other values of λ.

(c) The Lagrange dual problem is

maximize −9λ2/(1 + λ) + 1 + 8λ
subject to λ ≥ 0.

The dual optimum occurs at λ = 2, with d⋆ = 5. So for this example we can
directly observe that strong duality holds (as it must — Slater’s constraint qual-
ification is satisfied).

(d) The perturbed problem is infeasible for u < −1, since infx(x
2 − 6x + 8) = −1.

For u ≥ −1, the feasible set is the interval

[3 −
√

1 + u, 3 +
√

1 + u],

given by the two roots of x2 − 6x + 8 = u. For −1 ≤ u ≤ 8 the optimum is
x⋆(u) = 3 −

√
1 + u. For u ≥ 8, the optimum is the unconstrained minimum of

f0, i.e., x⋆(u) = 0. In summary,

p⋆(u) =











∞ u < −1
11 + u − 6

√
1 + u −1 ≤ u ≤ 8

1 u ≥ 8.

The figure shows the optimal value function p⋆(u) and its epigraph.
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Finally, we note that p⋆(u) is a differentiable function of u, and that

dp⋆(0)

du
= −2 = −λ⋆.
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Solutions to additional exercises

1. Minimizing a function over the probability simplex. Find simple necessary and suffi-
cient conditions for x ∈ Rn to minimize a differentiable convex function f over the
probability simplex, {x | 1T x = 1, x � 0}.
Solution. The simple basic optimality condition is that x is feasible, i.e., x � 0,
1T x = 1, and that ∇f(x)T (y − x) ≥ 0 for all feasible y. We’ll first show this is
equivalent to

min
i=1,...,n

∇f(x)i ≥ ∇f(x)T x.

To see this, suppose that ∇f(x)T (y − x) ≥ 0 for all feasible y. Then in particular, for
y = ei, we have ∇f(x)i ≥ ∇f(x)T x, which is what we have above. To show the other
way, suppose that ∇f(x)i ≥ ∇f(x)T x holds, for i = 1, . . . , n. Let y be feasible, i.e.,
y � 0, 1T y = 1. Then multiplying ∇f(x)i ≥ ∇f(x)T x by yi and summing, we get

n
∑

i=1

yi∇f(x)i ≥
(

n
∑

i=1

yi

)

∇f(x)T x = ∇f(x)T x.

The lefthand side is yT∇f(x), so we have ∇f(x)T (y − x) ≥ 0.

Now we can simplify even further. The condition above can be written as

min
i=1,...,n

∂f

∂xi

≥
n
∑

i=1

xi
∂f

∂xi

.

But since 1T x = 1, x � 0, we have

min
i=1,...,n

∂f

∂xi

≤
n
∑

i=1

xi
∂f

∂xi

,

and it follows that

min
i=1,...,n

∂f

∂xi

=
n
∑

i=1

xi
∂f

∂xi

.

The right hand side is a mixture of ∂f/∂xi terms and equals the minimum of all of the
terms. This is possible only if xk = 0 whenever ∂f/∂xk > mini ∂f/∂xi.

Thus we can write the (necessary and sufficient) optimality condition as 1T x = 1,
x � 0, and, for each k,

xk > 0 ⇒ ∂f

∂xk

= min
i=1,...,n

∂f

∂xi

.

In particular, for k’s with xk > 0, ∂f/∂xk are all equal.

2. Complex least-norm problem. We consider the complex least ℓp-norm problem

minimize ‖x‖p

subject to Ax = b,
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where A ∈ Cm×n, b ∈ Cm, and the variable is x ∈ Cn. Here ‖ · ‖p denotes the ℓp-norm
on Cn, defined as

‖x‖p =

(

n
∑

i=1

|xi|p
)1/p

for p ≥ 1, and ‖x‖∞ = maxi=1,...,n |xi|. We assume A is full rank, and m < n.

(a) Formulate the complex least ℓ2-norm problem as a least ℓ2-norm problem with
real problem data and variable. Hint. Use z = (ℜx,ℑx) ∈ R2n as the variable.

(b) Formulate the complex least ℓ∞-norm problem as an SOCP.

(c) Solve a random instance of both problems with m = 30 and n = 100. To generate
the matrix A, you can use the Matlab command A = randn(m,n) + i*randn(m,n).
Similarly, use b = randn(m,1) + i*randn(m,1) to generate the vector b. Use
the Matlab command scatter to plot the optimal solutions of the two problems
on the complex plane, and comment (briefly) on what you observe. You can solve
the problems using the cvx functions norm(x,2) and norm(x,inf), which are
overloaded to handle complex arguments. To utilize this feature, you will need to
declare variables to be complex in the variable statement. (In particular, you
do not have to manually form or solve the SOCP from part (b).)

Solution.

(a) Define z = (ℜx,ℑx) ∈ R2n, so ‖x‖2
2 = ‖z‖2

2. The complex linear equations Ax = b
is the same as ℜ(Ax) = ℜb, ℑ(Ax) = ℑb, which in turn can be expressed as the
set of linear equations

[

ℜA −ℑA
ℑA ℜA

]

z =

[

ℜb
ℑb

]

.

Thus, the complex least ℓ2-norm problem can be expressed as

minimize ‖z‖2

subject to

[

ℜA −ℑA
ℑA ℜA

]

z =

[

ℜb
ℑb

]

.

(This is readily solved analytically).

(b) Using epigraph formulation, with new variable t, we write the problem as

minimize t

subject to

∥

∥

∥

∥

∥

[

zi

zn+i

]∥

∥

∥

∥

∥

2

≤ t, i = 1, . . . , n

[

ℜA −ℑA
ℑA ℜA

]

z =

[

ℜb
ℑb

]

.

This is an SOCP with n second-order cone constraints (in R3).
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(c) % complex minimum norm problem

%

randn(’state’,0);

m = 30; n = 100;

% generate matrix A

Are = randn(m,n); Aim = randn(m,n);

bre = randn(m,1); bim = randn(m,1);

A = Are + i*Aim;

b = bre + i*bim;

% 2-norm problem (analytical solution)

Atot = [Are -Aim; Aim Are];

btot = [bre; bim];

z_2 = Atot’*inv(Atot*Atot’)*btot;

x_2 = z_2(1:100) + i*z_2(101:200);

% 2-norm problem solution with cvx

cvx_begin

variable x(n) complex

minimize( norm(x) )

subject to

A*x == b;

cvx_end

% inf-norm problem solution with cvx

cvx_begin

variable xinf(n) complex

minimize( norm(xinf,Inf) )

subject to

A*xinf == b;

cvx_end

% scatter plot

figure(1)

scatter(real(x),imag(x)), hold on,

scatter(real(xinf),imag(xinf),[],’filled’), hold off,

axis([-0.2 0.2 -0.2 0.2]), axis square,

xlabel(’Re x’); ylabel(’Im x’);

The plot of the components of optimal p = 2 (empty circles) and p = ∞ (filled
circles) solutions is presented below. The optimal p = ∞ solution minimizes the
objective maxi=1,...,n |xi| subject to Ax = b, and the scatter plot of xi shows that
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almost all of them are concentrated around a circle in the complex plane. This
should be expected since we are minimizing the maximum magnitude of xi, and
thus almost all of xi’s should have about an equal magnitude |xi|.
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3. Numerical perturbation analysis example. Consider the quadratic program

minimize x2
1 + 2x2

2 − x1x2 − x1

subject to x1 + 2x2 ≤ u1

x1 − 4x2 ≤ u2,
5x1 + 76x2 ≤ 1,

with variables x1, x2, and parameters u1, u2.

(a) Solve this QP, for parameter values u1 = −2, u2 = −3, to find optimal primal
variable values x⋆

1 and x⋆
2, and optimal dual variable values λ⋆

1, λ⋆
2 and λ⋆

3. Let
p⋆ denote the optimal objective value. Verify that the KKT conditions hold for
the optimal primal and dual variables you found (within reasonable numerical
accuracy).

Hint: See §3.6 of the CVX users’ guide to find out how to retrieve optimal dual
variables. To specify the quadratic objective, use quad_form().

(b) We will now solve some perturbed versions of the QP, with

u1 = −2 + δ1, u2 = −3 + δ2,

where δ1 and δ2 each take values from {−0.1, 0, 0.1}. (There are a total of nine
such combinations, including the original problem with δ1 = δ2 = 0.) For each
combination of δ1 and δ2, make a prediction p⋆

pred of the optimal value of the
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perturbed QP, and compare it to p⋆
exact, the exact optimal value of the perturbed

QP (obtained by solving the perturbed QP). Put your results in the two righthand
columns in a table with the form shown below. Check that the inequality p⋆

pred ≤
p⋆

exact holds.

δ1 δ2 p⋆
pred p⋆

exact

0 0
0 −0.1
0 0.1

−0.1 0
−0.1 −0.1
−0.1 0.1

0.1 0
0.1 −0.1
0.1 0.1

Solution.

(a) The following Matlab code sets up the simple QP and solves it using CVX:

Q = [1 -1/2; -1/2 2];

f = [-1 0]’;

A = [1 2; 1 -4; 5 76];

b = [-2 -3 1]’;

cvx_begin

variable x(2)

dual variable lambda

minimize(quad_form(x,Q)+f’*x)

subject to

lambda: A*x <= b

cvx_end

p_star = cvx_optval

When we run this, we find the optimal objective value is p⋆ = 8.22 and the optimal
point is x⋆

1 = −2.33, x⋆
2 = 0.17. (This optimal point is unique since the objective

is strictly convex.) A set of optimal dual variables is λ⋆
1 = 1.46, λ⋆

2 = 3.77 and
λ⋆

3 = 0.12. (The dual optimal point is unique too, but it’s harder to show this,
and it doesn’t matter anyway.)
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The KKT conditions are

x⋆
1 + 2x⋆

2 ≤ u1, x⋆
1 − 4x⋆

2 ≤ u2, 5x⋆
1 + 76x⋆

2 ≤ 1
λ⋆

1 ≥ 0, λ⋆
2 ≥ 0, λ⋆

3 ≥ 0
λ⋆

1(x
⋆
1 + 2x⋆

2 − u1) = 0, λ⋆
2(x

⋆
1 − 4x⋆

2 − u2) = 0, λ⋆
3(5x

⋆
1 + 76x⋆

2 − 1) = 0,
2x⋆

1 − x⋆
2 − 1 + λ⋆

1 + λ⋆
2 + 5λ⋆

3 = 0,
4x⋆

2 − x⋆
1 + 2λ⋆

1 − 4λ⋆
2 + 76λ⋆

3 = 0.

We check these numerically. The dual variable λ⋆
1, λ⋆

2 and λ⋆
3 are all greater than

zero and the quantities

A*x-b

2*Q*x+f+A’*lambda

are found to be very small. Thus the KKT conditions are verified.

(b) The predicted optimal value is given by

p⋆
pred = p⋆ − λ⋆

1δ1 − λ⋆
2δ2.

The following matlab code fills in the table

arr_i = [0 -1 1];

delta = 0.1;

pa_table = [];

for i = arr_i

for j = arr_i

p_pred = p_star - [lambda(1) lambda(2)]*[i; j]*delta;

cvx_begin

variable x(2)

minimize(quad_form(x,Q)+f’*x)

subject to

A*x <= b+[i;j;0]*delta

cvx_end

p_exact = cvx_optval;

pa_table = [pa_table; i*delta j*delta p_pred p_exact]

end

end

The values obtained are
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δ1 δ2 p⋆
pred p⋆

exact

0 0 8.22 8.22
0 −0.1 8.60 8.70
0 0.1 7.85 7.98

−0.1 0 8.34 8.57
−0.1 −0.1 8.75 8.82
−0.1 0.1 7.99 8.32

0.1 0 8.08 8.22
0.1 −0.1 8.45 8.71
0.1 0.1 7.70 7.75

The inequality p⋆
pred ≤ p⋆

exact is verified to be true in all cases.

4. FIR filter design. Consider the (symmetric, linear phase) FIR filter described by

H(ω) = a0 +
N
∑

k=1

ak cos kω.

The design variables are the real coefficients a = (a0, . . . , aN) ∈ RN+1. In this problem
we will explore the design of a low-pass filter, with specifications:

• For 0 ≤ ω ≤ π/3, 0.89 ≤ H(ω) ≤ 1.12, i.e., the filter has about ±1dB ripple in
the ‘passband’ [0, π/3].

• For ωc ≤ ω ≤ π, |H(ω)| ≤ α. In other words, the filter achieves an attenuation
given by α in the ‘stopband’ [ωc, π]. ωc is called the ‘cutoff frequency’.

These specifications are depicted graphically in the figure below.

ω

H
(ω

)

0 π/3 ωc π−α
0

α

0.89

1.00

1.12
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(a) Suppose we fix ωc and N , and wish to maximize the stop-band attenuation, i.e.,
minimize α such that the specifications above can be met. Explain how to pose
this as a convex optimization problem.

(b) Suppose we fix N and α, and want to minimize ωc, i.e., we set the stopband
attenuation and filter length, and wish to minimize the ‘transition’ band (between
π/3 and ωc). Explain how to pose this problem as a quasiconvex optimization
problem.

(c) Now suppose we fix ωc and α, and wish to find the smallest N that can meet
the specifications, i.e., we seek the shortest length FIR filter that can meet the
specifications. Can this problem be posed as a convex or quasiconvex problem?
If so, explain how. If you think it cannot be, briefly and informally explain why.

(d) Plot the optimal tradeoff curve of attenuation (α) versus cutoff frequency (ωc)
for N = 7. Is the set of achievable specifications convex? Briefly explain any
interesting features, e.g., flat portions, of the optimal tradeoff curve.

For this subproblem, you may sample the constraints in frequency, which means
the following. Choose K ≫ N (perhaps K ≈ 10N), and set ωk = kπ/K, k =
0, . . . , K. Then replace the specifications with

• For k with 0 ≤ ωk ≤ π/3, 0.89 ≤ H(ωk) ≤ 1.12.

• For k with ωc ≤ ωk ≤ π, |H(ωk)| ≤ α.

With this approximation, the problem in part (a) becomes an LP, which allows
you to solve part (d) numerically.

Solution.

(a) The first problem can be expressed as

minimize α
subject to f1(a) ≤ 1.12

f2(a) ≥ 0.89
f3(a) ≤ α
f4(a) ≥ −α

(2)

where
f1(a) = sup

0≤ω≤π/3

H(ω), f2(a) = inf
0≤ω≤π/3

H(ω),

f3(a) = sup
ωc≤ω≤π

H(ω), f4(a) = inf
ωc≤ω≤π

H(ω).

Problem (2) is convex in the variables a, α because f1 and f3 are convex functions
(pointwise supremum of affine functions), and f4 and f5 are concave functions
(pointwise infimum of affine functions).
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(b) This problem can be expressed

minimize f5(a)
subject to f1(a) ≤ 1.12

f2(a) ≥ 0.89

where f1 and f2 are the same functions as above, and

f5(a) = inf{Ω | − α ≤ H(ω) ≤ α for Ω ≤ ω ≤ π}.

This is a quasiconvex optimization problem in the variables a because f1 is convex,
f2 is concave, and f5 is quasiconvex: its sublevel sets are

{a | f5(a) ≤ Ω} = {a | − α ≤ H(ω) ≤ α for Ω ≤ ω ≤ π},

i.e., the intersection of an infinite number of halfspaces.

(c) This problem can be expressed as

minimize f6(a)
subject to f1(a) ≤ 1.12

f2(a) ≥ 0.89
f3(a) ≤ α
f4(a) ≥ −α

where f1, f2, f3, and f4 are defined above and

f6(a) = min{k | ak+1 = · · · = aN = 0}.

The sublevel sets of f6 are affine sets:

{a | f6(a) ≤ k} = {a | ak+1 = · · · = aN = 0}.

This means f6 is a quasiconvex function, and again we have a quasiconvex opti-
mization problem.

(d) After discretizing we can express the problem in part (a) as the LP

minimize α
subject to 0.89 ≤ H(ωi) ≤ 1.12 for 0 ≤ ωi ≤ π/3

−α ≤ H(ωi) ≤ α for ωc ≤ ωi ≤ π
(3)

with variables α and a. (For fixed ωi, H(ωi) is an affine function of a, hence all
constraints in this problem are linear inequalities in a and α.) We obtain the
tradeoff curve of α vs. ωc, by solving this LP for a sequence of values of ωc in the
interval (π/3, π].

Figure (1) was generated by the following matlab code.
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clear all

N = 7;

K = 10*N;

k = [0:N]’;

w = [0:K]’/K*pi;

idx= max(find(w<=pi/3));

alphas = [];

for i=idx:length(w)

cvx_begin

variables a(N+1,1)

minimize( norm(cos(w(i:end)*k’)*a,inf) )

subject to

cos(w(1:idx)*k’)*a >= 0.89

cos(w(1:idx)*k’)*a <= 1.12

cvx_end

alphas = [alphas; cvx_optval];

end;

plot(w(idx:end),alphas,’-’);

xlabel(’wc’);

ylabel(’alpha’);

5. Minimum fuel optimal control. Solve the minimum fuel optimal control problem de-
scribed in exercise 4.16 of Convex Optimization, for the instance with problem data

A =







−1 0.4 0.8
1 0 0
0 1 0





 , b =







1
0

0.3





 , xdes =







7
2

−6





 , N = 30.

You can do this by forming the LP you found in your solution of exercise 4.16, or more
directly using cvx. Plot the actuator signal u(t) as a function of time t.

Solution. The following Matlab code finds the solution

close all

clear all

n=3; % state dimension

N=30; % time horizon

A=[ -1 0.4 0.8; 1 0 0 ; 0 1 0];

b=[ 1 0 0.3]’;
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Figure 1 Tradeoff curve for problem 4d.

x0 = zeros(n,1);

xdes = [ 7 2 -6]’;

cvx_begin

variable X(n,N+1);

variable u(1,N);

minimize (sum(max(abs(u),2*abs(u)-1)))

subject to

X(:,2:N+1) == A*X(:,1:N)+b*u; % dynamics

X(:,1)== x0;

X(:,N+1)== xdes;

cvx_end

stairs(0:N-1,u,’linewidth’,2)

axis tight

xlabel(’t’)

ylabel(’u’)

The optimal actuator signal is shown in figure 2.
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Figure 2 Minimum fuel actuator signal.
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