
EE364a, Winter 2007–08 Prof. S. Boyd

EE364a Homework 4 additional problems

1. Minimizing a function over the probability simplex. Find simple necessary and suffi-
cient conditions for x ∈ Rn to minimize a differentiable convex function f over the
probability simplex, {x | 1T x = 1, x � 0}.

2. Complex least-norm problem. We consider the complex least ℓp-norm problem

minimize ‖x‖p

subject to Ax = b,

where A ∈ Cm×n, b ∈ Cm, and the variable is x ∈ Cn. Here ‖ · ‖p denotes the ℓp-norm
on Cn, defined as

‖x‖p =

(

n
∑

i=1

|xi|
p

)1/p

for p ≥ 1, and ‖x‖∞ = maxi=1,...,n |xi|. We assume A is full rank, and m < n.

(a) Formulate the complex least ℓ2-norm problem as a least ℓ2-norm problem with
real problem data and variable. Hint. Use z = (ℜx,ℑx) ∈ R2n as the variable.

(b) Formulate the complex least ℓ∞-norm problem as an SOCP.

(c) Solve a random instance of both problems with m = 30 and n = 100. To generate
the matrix A, you can use the Matlab command A = randn(m,n) + i*randn(m,n).
Similarly, use b = randn(m,1) + i*randn(m,1) to generate the vector b. Use
the Matlab command scatter to plot the optimal solutions of the two problems
on the complex plane, and comment (briefly) on what you observe. You can solve
the problems using the cvx functions norm(x,2) and norm(x,inf), which are
overloaded to handle complex arguments. To utilize this feature, you will need to
declare variables to be complex in the variable statement. (In particular, you
do not have to manually form or solve the SOCP from part (b).)

3. Numerical perturbation analysis example. Consider the quadratic program

minimize x2
1 + 2x2

2 − x1x2 − x1

subject to x1 + 2x2 ≤ u1

x1 − 4x2 ≤ u2,
5x1 + 76x2 ≤ 1,

with variables x1, x2, and parameters u1, u2.

(a) Solve this QP, for parameter values u1 = −2, u2 = −3, to find optimal primal
variable values x⋆

1 and x⋆
2, and optimal dual variable values λ⋆

1, λ⋆
2 and λ⋆

3. Let
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p⋆ denote the optimal objective value. Verify that the KKT conditions hold for
the optimal primal and dual variables you found (within reasonable numerical
accuracy).

Hint: See §3.6 of the CVX users’ guide to find out how to retrieve optimal dual
variables. To specify the quadratic objective, use quad_form().

(b) We will now solve some perturbed versions of the QP, with

u1 = −2 + δ1, u2 = −3 + δ2,

where δ1 and δ2 each take values from {−0.1, 0, 0.1}. (There are a total of nine
such combinations, including the original problem with δ1 = δ2 = 0.) For each
combination of δ1 and δ2, make a prediction p⋆

pred of the optimal value of the
perturbed QP, and compare it to p⋆

exact, the exact optimal value of the perturbed
QP (obtained by solving the perturbed QP). Put your results in the two righthand
columns in a table with the form shown below. Check that the inequality p⋆

pred ≤
p⋆

exact holds.

δ1 δ2 p⋆
pred p⋆

exact

0 0
0 −0.1
0 0.1

−0.1 0
−0.1 −0.1
−0.1 0.1

0.1 0
0.1 −0.1
0.1 0.1

4. FIR filter design. Consider the (symmetric, linear phase) FIR filter described by

H(ω) = a0 +
N
∑

k=1

ak cos kω.

The design variables are the real coefficients a = (a0, . . . , aN) ∈ RN+1. In this problem
we will explore the design of a low-pass filter, with specifications:

• For 0 ≤ ω ≤ π/3, 0.89 ≤ H(ω) ≤ 1.12, i.e., the filter has about ±1dB ripple in
the ‘passband’ [0, π/3].

• For ωc ≤ ω ≤ π, |H(ω)| ≤ α. In other words, the filter achieves an attenuation
given by α in the ‘stopband’ [ωc, π]. ωc is called the ‘cutoff frequency’.

These specifications are depicted graphically in the figure below.

2



ω

H
(ω

)

0 π/3 ωc π−α
0

α

0.89

1.00

1.12

(a) Suppose we fix ωc and N , and wish to maximize the stop-band attenuation, i.e.,
minimize α such that the specifications above can be met. Explain how to pose
this as a convex optimization problem.

(b) Suppose we fix N and α, and want to minimize ωc, i.e., we set the stopband
attenuation and filter length, and wish to minimize the ‘transition’ band (between
π/3 and ωc). Explain how to pose this problem as a quasiconvex optimization
problem.

(c) Now suppose we fix ωc and α, and wish to find the smallest N that can meet
the specifications, i.e., we seek the shortest length FIR filter that can meet the
specifications. Can this problem be posed as a convex or quasiconvex problem?
If so, explain how. If you think it cannot be, briefly and informally explain why.

(d) Plot the optimal tradeoff curve of attenuation (α) versus cutoff frequency (ωc)
for N = 7. Is the set of achievable specifications convex? Briefly explain any
interesting features, e.g., flat portions, of the optimal tradeoff curve.

For this subproblem, you may sample the constraints in frequency, which means
the following. Choose K ≫ N (perhaps K ≈ 10N), and set ωk = kπ/K, k =
0, . . . , K. Then replace the specifications with

• For k with 0 ≤ ωk ≤ π/3, 0.89 ≤ H(ωk) ≤ 1.12.

• For k with ωc ≤ ωk ≤ π, |H(ωk)| ≤ α.

With this approximation, the problem in part (a) becomes an LP, which allows
you to solve part (d) numerically.

5. Minimum fuel optimal control. Solve the minimum fuel optimal control problem de-
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scribed in exercise 4.16 of Convex Optimization, for the instance with problem data

A =







−1 0.4 0.8
1 0 0
0 1 0






, b =







1
0

0.3






, xdes =







7
2

−6






, N = 30.

You can do this by forming the LP you found in your solution of exercise 4.16, or more
directly using cvx. Plot the actuator signal u(t) as a function of time t.
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