
EE364a, Winter 2007-08 Prof. S. Boyd

EE364a Homework 2 solutions

2.28 Positive semidefinite cone for n = 1, 2, 3. Give an explicit description of the positive
semidefinite cone Sn

+, in terms of the matrix coefficients and ordinary inequalities, for
n = 1, 2, 3. To describe a general element of Sn, for n = 1, 2, 3, use the notation

x1,

[

x1 x2

x2 x3

]

,







x1 x2 x3

x2 x4 x5

x3 x5 x6





 .

Solution. For n = 1 the condition is x1 ≥ 0. For n = 2 the condition is

x1 ≥ 0, x3 ≥ 0, x1x3 − x2
2 ≥ 0.

For n = 3 the condition is

x1 ≥ 0, x4 ≥ 0, x6 ≥ 0, x1x4−x2
2 ≥ 0, x4x6−x2

5 ≥ 0, x1x6−x2
3 ≥ 0

and
x1x4x6 + 2x2x3x5 − x1x

2
5 − x6x

2
2 − x4x

2
3 ≥ 0,

i.e., all principal minors must be nonnegative.

We give the proof for n = 3, assuming the result is true for n = 2. The matrix

X =







x1 x2 x3

x2 x4 x5

x3 x5 x6







is positive semidefinite if and only if

zT Xz = x1z
2
1 + 2x2z1z2 + 2x3z1z3 + x4z

2
2 + 2x5z2z3 + x6z

2
3 ≥ 0

for all z.

If x1 = 0, we must have x2 = x3 = 0, so X � 0 if and only if
[

x4 x5

x5 x6

]

� 0.

Applying the result for the 2× 2-case, we conclude that if x1 = 0, X � 0 if and only if

x2 = x3 = 0, x4 ≥ 0, x6 ≥ 0, x4x6 − x2
5 ≥ 0.

Now assume x1 6= 0. We have

zT Xz = x1(z1+(x2/x1)z2+(x3/x1)z3)
2+(x4−x2

2/x1)z
2
2+(x6−x2

3/x1)z
2
3+2(x5−x2x3/x1)z2z3,
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so it is clear that we must have x1 > 0 and
[

x4 − x2
2/x1 x5 − x2x3/x1

x5 − x2x3/x1 x6 − x2
3/x1

]

� 0.

By the result for 2 × 2-case studied above, this is equivalent to

x1x4 − x2
2 ≥ 0, x1x6 − x2

3 ≥ 0, (x4 − x2
2/x1)(x6 − x2

3/x1)− (x5 − x2x3/x1)
2 ≥ 0.

The third inequality simplifies to

(x1x4x6 + 2x2x3x5 − x1x
2
5 − x6x

2
2 − x4x

2
3)/x1 ≥ 0.

Therefore, if x1 > 0, then X � 0 if and only if

x1x4−x2
2 ≥ 0, x1x6−x2

3 ≥ 0, (x1x4x6 +2x2x3x5−x1x
2
5−x6x

2
2−x4x

2
3)/x1 ≥ 0.

We can combine the conditions for x1 = 0 and x1 > 0 by saying that all 7 principal
minors must be nonnegative.

2.33 The monotone nonnegative cone. We define the monotone nonnegative cone as

Km+ = {x ∈ Rn | x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}.

i.e., all nonnegative vectors with components sorted in nonincreasing order.

(a) Show that Km+ is a proper cone.

(b) Find the dual cone K∗

m+. Hint. Use the identity

n
∑

i=1

xiyi = (x1 − x2)y1 + (x2 − x3)(y1 + y2) + (x3 − x4)(y1 + y2 + y3) + · · ·

+ (xn−1 − xn)(y1 + · · · + yn−1) + xn(y1 + · · · + yn).

Solution.

(a) The set Km+ is defined by n homogeneous linear inequalities, hence it is a closed
(polyhedral) cone.

The interior of Km+ is nonempty, because there are points that satisfy the in-
equalities with strict inequality, for example, x = (n, n − 1, n − 2, . . . , 1).

To show that Km+ is pointed, we note that if x ∈ Km+, then −x ∈ Km+ only if
x = 0. This implies that the cone does not contain an entire line.

(b) Using the hint, we see that yT x ≥ 0 for all x ∈ Km+ if and only if

y1 ≥ 0, y1 + y2 ≥ 0, . . . , y1 + y2 + · · · + yn ≥ 0.

Therefore

K∗

m+ = {y |
k
∑

i=1

yi ≥ 0, k = 1, . . . , n}.
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3.2 Level sets of convex, concave, quasiconvex, and quasiconcave functions. Some level sets
of a function f are shown below. The curve labeled 1 shows {x | f(x) = 1}, etc.

1

2

3

Could f be convex (concave, quasiconvex, quasiconcave)? Explain your answer. Repeat
for the level curves shown below.

1 2 3 4 5 6

Solution. The first function could be quasiconvex because the sublevel sets appear to
be convex. It is definitely not concave or quasiconcave because the superlevel sets are
not convex.

It is also not convex, for the following reason. We plot the function values along the
dashed line labeled I.
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1

2

3

I

II

Along this line the function passes through the points marked as black dots in the
figure below. Clearly along this line segment, the function is not convex.

1

2

3

If we repeat the same analysis for the second function, we see that it could be concave
(and therefore it could be quasiconcave). It cannot be convex or quasiconvex, because
the sublevel sets are not convex.

3.5 Running average of a convex function. Suppose f : R → R is convex, with R+ ⊆
dom f . Show that its running average F , defined as

F (x) =
1

x

∫ x

0
f(t) dt, domF = R++,

is convex. You can assume f is differentiable.

Solution. F is differentiable with

F ′(x) = −(1/x2)
∫ x

0
f(t) dt + f(x)/x
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F ′′(x) = (2/x3)
∫ x

0
f(t) dt − 2f(x)/x2 + f ′(x)/x

= (2/x3)
∫ x

0
(f(t) − f(x) − f ′(x)(t − x)) dt.

Convexity now follows from the fact that

f(t) ≥ f(x) + f ′(x)(t − x)

for all x, t ∈ dom f , which implies F ′′(x) ≥ 0.

Here’s another (simpler?) proof. For each s, the function f(sx) is convex in x. There-
fore

∫ 1

0
f(sx) ds

is a convex function of x. Now we use the variable substitution t = sx to get

∫ 1

0
f(sx) ds =

1

x

∫ x

0
f(t) dt.

3.6 Functions and epigraphs. When is the epigraph of a function a halfspace? When is the
epigraph of a function a convex cone? When is the epigraph of a function a polyhedron?

Solution. If the function is convex, and it is affine, positively homogeneous (f(αx) =
αf(x) for α ≥ 0), and piecewise-affine, respectively.

3.15 A family of concave utility functions. For 0 < α ≤ 1 let

uα(x) =
xα − 1

α
,

with domuα = R+. We also define u0(x) = log x (with domu0 = R++).

(a) Show that for x > 0, u0(x) = limα→0 uα(x).

(b) Show that uα are concave, monotone increasing, and all satisfy uα(1) = 0.

These functions are often used in economics to model the benefit or utility of some
quantity of goods or money. Concavity of uα means that the marginal utility (i.e., the
increase in utility obtained for a fixed increase in the goods) decreases as the amount
of goods increases. In other words, concavity models the effect of satiation.

Solution.

(a) In this limit, both the numerator and denominator go to zero, so we use l’Hopital’s
rule:

lim
α→0

uα(x) = lim
α→0

(d/dα)(xα − 1)

(d/dα)α
= lim

α→0

xα log x

1
= log x.
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(b) By inspection we have

uα(1) =
1α − 1

α
= 0.

The derivative is given by
u′

α(x) = xα−1,

which is positive for all x (since 0 < α < 1), so these functions are increasing. To
show concavity, we examine the second derivative:

u′′

α(x) = (α − 1)xα−2.

Since this is negative for all x, we conclude that uα is strictly concave.

3.16 For each of the following functions determine whether it is convex, concave, quasicon-
vex, or quasiconcave.

(b) f(x1, x2) = x1x2 on R2
++.

Solution. The Hessian of f is

∇2f(x) =

[

0 1
1 0

]

,

which is neither positive semidefinite nor negative semidefinite. Therefore, f is
neither convex nor concave. It is quasiconcave, since its superlevel sets

{(x1, x2) ∈ R2
++ | x1x2 ≥ α}

are convex. It is not quasiconvex.

(c) f(x1, x2) = 1/(x1x2) on R2
++.

Solution. The Hessian of f is

∇2f(x) =
1

x1x2

[

2/(x2
1) 1/(x1x2)

1/(x1x2) 2/x2
2

]

� 0

Therefore, f is convex and quasiconvex. It is not quasiconcave or concave.

(d) f(x1, x2) = x1/x2 on R2
++.

Solution. The Hessian of f is

∇2f(x) =

[

0 −1/x2
2

−1/x2
2 2x1/x

3
2

]

which is not positive or negative semidefinite. Therefore, f is not convex or
concave.

It is quasiconvex and quasiconcave (i.e., quasilinear), since the sublevel and su-
perlevel sets are halfspaces.
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(e) f(x1, x2) = x2
1/x2 on R × R++.

Solution. f is convex, as mentioned on page 72. (See also figure 3.3). This is
easily verified by working out the Hessian:

∇2f(x) =

[

2/x2 −2x1/x
2
2

−2x1/x
2
2 2x2

1/x
3
2

]

= (2/x2)

[

1
−x1/x2

]

[

1 −x1/x2

]

� 0.

Therefore, f is convex and quasiconvex. It is not concave or quasiconcave (see
the figure).

3.18 Adapt the proof of concavity of the log-determinant function in §3.1.5 to show the
following.

(b) f(X) = (det X)1/n is concave on dom f = Sn
++.

Solution.

(b) Define g(t) = f(Z + tV ), where Z ≻ 0 and V ∈ Sn.

g(t) = (det(Z + tV ))1/n

=
(

det Z1/2 det(I + tZ−1/2V Z−1/2) det Z1/2
)1/n

= (det Z)1/n

(

n
∏

i=1

(1 + tλi)

)1/n

where λi, i = 1, . . . , n, are the eigenvalues of Z−1/2V Z−1/2. From the last equality
we see that g is a concave function of t on {t | Z + tV ≻ 0}, since det Z > 0 and
the geometric mean (

∏n
i=1 xi)

1/n is concave on Rn
++.

3.24 Some functions on the probability simplex. Let x be a real-valued random variable
which takes values in {a1, . . . , an} where a1 < a2 < · · · < an, with prob(x = ai) = pi,
i = 1, . . . , n. For each of the following functions of p (on the probability simplex
{p ∈ Rn

+ | 1T p = 1}), determine if the function is convex, concave, quasiconvex, or
quasiconcave.

(f) quartile(x) = inf{β | prob(x ≤ β) ≥ 0.25}.

Solution. The sublevel and the superlevel sets of quartile(x) are convex (see
problem 2.15), so it is quasiconvex and quasiconcave.

quartile(x) is not continuous (it takes values in a discrete set {a1, . . . , an}, so it
is not convex or concave. (A convex or a concave function is always continuous
on the relative interior of its domain.)

(g) The cardinality of the smallest set A ⊆ {a1, . . . , an} with probability ≥ 90%. (By
cardinality we mean the number of elements in A.)

Solution. f is integer-valued, so it can not be convex or concave. (A convex or
a concave function is always continuous on the relative interior of its domain.)
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f is quasiconcave because its superlevel sets are convex. We have f(p) ≥ α if and
only if

k
∑

i=1

p[i] < 0.9,

where k = max{i = 1, . . . , n | i < α} is the largest integer less than α, and p[i] is
the ith largest component of p. We know that

∑k
i=1 p[i] is a convex function of p,

so the inequality
∑k

i=1 p[i] < 0.9 defines a convex set.

In general, f(p) is not quasiconvex. For example, we can take n = 2, a1 = 0 and
a2 = 1, and p1 = (0.1, 0.9) and p2 = (0.9, 0.1). Then f(p1) = f(p2) = 1, but
f((p1 + p2)/2) = f(0.5, 0.5) = 2.

(h) The minimum width interval that contains 90% of the probability, i.e.,

inf {β − α | prob(α ≤ x ≤ β) ≥ 0.9} .

Solution. The minimum width interval that contains 90% of the probability
must be of the form [ai, aj] with 1 ≤ i ≤ j ≤ n, because

prob(α ≤ x ≤ β) =
j
∑

k=i

pk = prob(ai ≤ x ≤ aj)

where i = min{k | ak ≥ α}, and j = max{k | ak ≤ β}.

We show that the function is quasiconcave. We have f(p) ≥ γ if and only if all
intervals of width less than γ have a probability less than 90%,

j
∑

k=i

pk < 0.9

for all i, j that satisfy aj − ai < γ. This defines a convex set.

Since the function takes values on a finite set, it is not continuous and therefore
neither convex nor concave. In addition it is not quasiconvex in general. Consider
the example with n = 2, a1 = 0, a2 = 1, p1 = (0.95, 0.05) and p2 = (0.05, 0.95).
Then f(p1) = 0, f(p2) = 0, but f((p1 + p2)/2) = 1.

3.36 Derive the conjugates of the following functions.

(a) Max function. f(x) = maxi=1,...,n xi on Rn.

Solution. We will show that

f ∗(y) =

{

0 if y � 0, 1T y = 1
∞ otherwise.

We first verify the domain of f ∗. First suppose y has a negative component, say
yk < 0. If we choose a vector x with xk = −t, xi = 0 for i 6= k, and let t go to
infinity, we see that

xT y − max
i

xi = −tyk → ∞,
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so y is not in dom f ∗. Next, assume y � 0 but 1T y > 1. We choose x = t1 and
let t go to infinity, to show that

xT y − max
i

xi = t1T y − t

is unbounded above. Similarly, when y � 0 and 1T y < 1, we choose x = −t1 and
let t go to infinity.

The remaining case for y is y � 0 and 1T y = 1. In this case we have

xT y ≤ max
i

xi

for all x, and therefore xT y − maxi xi ≤ 0 for all x, with equality for x = 0.
Therefore f ∗(y) = 0.

(d) Power function. f(x) = xp on R++, where p > 1. Repeat for p < 0.

Solution. We’ll use standard notation: we define q by the equation 1/p+1/q = 1,
i.e., q = p/(p − 1).

We start with the case p > 1. Then xp is strictly convex on R+. For y < 0 the
function yx − xp achieves its maximum for x > 0 at x = 0, so f ∗(y) = 0. For
y > 0 the function achieves its maximum at x = (y/p)1/(p−1), where it has value

y(y/p)1/(p−1) − (y/p)p/(p−1) = (p − 1)(y/p)q.

Therefore we have

f ∗(y) =

{

0 y ≤ 0
(p − 1)(y/p)q y > 0.

For p < 0 similar arguments show that dom f ∗ = −R+ and f ∗(y) = p
q
(y/p)q.
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