
EE364a, Winter 2007-08 Prof. S. Boyd

EE364a Homework 1 solutions

2.1 Let C ⊆ Rn be a convex set, with x1, . . . , xk ∈ C, and let θ1, . . . , θk ∈ R satisfy θi ≥ 0,
θ1 + · · ·+ θk = 1. Show that θ1x1 + · · ·+ θkxk ∈ C. (The definition of convexity is that
this holds for k = 2; you must show it for arbitrary k.) Hint. Use induction on k.

Solution. This is readily shown by induction from the definition of convex set. We
illustrate the idea for k = 3, leaving the general case to the reader. Suppose that
x1, x2, x3 ∈ C, and θ1 + θ2 + θ3 = 1 with θ1, θ2, θ3 ≥ 0. We will show that y =
θ1x1 + θ2x2 + θ3x3 ∈ C. At least one of the θi is not equal to one; without loss of
generality we can assume that θ1 6= 1. Then we can write

y = θ1x1 + (1 − θ1)(µ2x2 + µ3x3)

where µ2 = θ2/(1 − θ1) and µ2 = θ3/(1 − θ1). Note that µ2, µ3 ≥ 0 and

µ1 + µ2 =
θ2 + θ3

1 − θ1

=
1 − θ1

1 − θ1

= 1.

Since C is convex and x2, x3 ∈ C, we conclude that µ2x2 + µ3x3 ∈ C. Since this point
and x1 are in C, y ∈ C.

2.2 Show that a set is convex if and only if its intersection with any line is convex. Show
that a set is affine if and only if its intersection with any line is affine.

Solution. We prove the first part. The intersection of two convex sets is convex.
Therefore if S is a convex set, the intersection of S with a line is convex.

Conversely, suppose the intersection of S with any line is convex. Take any two distinct
points x1 and x2 ∈ S. The intersection of S with the line through x1 and x2 is convex.
Therefore convex combinations of x1 and x2 belong to the intersection, hence also to
S.

2.5 What is the distance between two parallel hyperplanes {x ∈ Rn | aT x = b1} and
{x ∈ Rn | aT x = b2}?

Solution. The distance between the two hyperplanes is |b1 − b2|/‖a‖2. To see this,
consider the construction in the figure below.
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a x1 = (b1/‖a‖
2)a

x2 = (b2/‖a‖
2)a

aT x = b2

aT x = b1

The distance between the two hyperplanes is also the distance between the two points
x1 and x2 where the hyperplane intersects the line through the origin and parallel to
the normal vector a. These points are given by

x1 = (b1/‖a‖
2

2)a, x2 = (b2/‖a‖
2

2)a,

and the distance is
‖x1 − x2‖2 = |b1 − b2|/‖a‖2.

2.7 Voronoi description of halfspace. Let a and b be distinct points in Rn. Show that the
set of all points that are closer (in Euclidean norm) to a than b, i.e., {x | ‖x − a‖2 ≤
‖x − b‖2}, is a halfspace. Describe it explicitly as an inequality of the form cT x ≤ d.
Draw a picture.

Solution. Since a norm is always nonnegative, we have ‖x − a‖2 ≤ ‖x − b‖2 if and
only if ‖x − a‖2

2 ≤ ‖x − b‖2
2, so

‖x − a‖2
2 ≤ ‖x − b‖2

2 ⇐⇒ (x − a)T (x − a) ≤ (x − b)T (x − b)
⇐⇒ xT x − 2aT x + aT a ≤ xT x − 2bT x + bT b
⇐⇒ 2(b − a)T x ≤ bT b − aT a.

Therefore, the set is indeed a halfspace. We can take c = 2(b − a) and d = bT b − aT a.
This makes good geometric sense: the points that are equidistant to a and b are given
by a hyperplane whose normal is in the direction b − a.

2.8 Which of the following sets S are polyhedra? If possible, express S in the form S =
{x | Ax � b, Fx = g}.

(a) S = {y1a1 + y2a2 | − 1 ≤ y1 ≤ 1, − 1 ≤ y2 ≤ 1}, where a1, a2 ∈ Rn.

(b) S = {x ∈ Rn | x � 0, 1T x = 1,
∑n

i=1 xiai = b1,
∑n

i=1 xia
2
i = b2}, where

a1, . . . , an ∈ R and b1, b2 ∈ R.
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(c) S = {x ∈ Rn | x � 0, xT y ≤ 1 for all y with ‖y‖2 = 1}.

(d) S = {x ∈ Rn | x � 0, xT y ≤ 1 for all y with
∑n

i=1 |yi| = 1}.

Solution.

(a) S is a polyhedron. It is the parallelogram with corners a1 + a2, a1 − a2, −a1 + a2,
−a1 − a2, as shown below for an example in R2.

a1

a2c2

c1

For simplicity we assume that a1 and a2 are independent. We can express S as
the intersection of three sets:

• S1: the plane defined by a1 and a2

• S2 = {z + y1a1 + y2a2 | aT
1 z = aT

2 z = 0,−1 ≤ y1 ≤ 1}. This is a slab parallel
to a2 and orthogonal to S1

• S3 = {z + y1a1 + y2a2 | aT
1 z = aT

2 z = 0,−1 ≤ y2 ≤ 1}. This is a slab parallel
to a1 and orthogonal to S1

Each of these sets can be described with linear inequalities.

• S1 can be described as

vT
k x = 0, k = 1, . . . , n − 2

where vk are n − 2 independent vectors that are orthogonal to a1 and a2

(which form a basis for the nullspace of the matrix [a1 a2]
T ).

• Let c1 be a vector in the plane defined by a1 and a2, and orthogonal to a2.
For example, we can take

c1 = a1 −
aT

1 a2

‖a2‖2
2

a2.

Then x ∈ S2 if and only if

−|cT
1 a1| ≤ cT

1 x ≤ |cT
1 a1|.
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• Similarly, let c2 be a vector in the plane defined by a1 and a2, and orthogonal
to a1, e.g.,

c2 = a2 −
aT

2 a1

‖a1‖2
2

a1.

Then x ∈ S3 if and only if

−|cT
2 a2| ≤ cT

2 x ≤ |cT
2 a2|.

Putting it all together, we can describe S as the solution set of 2n linear inequal-
ities

vT
k x ≤ 0, k = 1, . . . , n − 2

−vT
k x ≤ 0, k = 1, . . . , n − 2

cT
1 x ≤ |cT

1 a1|
−cT

1 x ≤ |cT
1 a1|

cT
2 x ≤ |cT

2 a2|
−cT

2 x ≤ |cT
2 a2|.

(b) S is a polyhedron, defined by linear inequalities xk ≥ 0 and three equality con-
straints.

(c) S is not a polyhedron. It is the intersection of the unit ball {x | ‖x‖2 ≤ 1} and
the nonnegative orthant Rn

+. This follows from the following fact, which follows
from the Cauchy-Schwarz inequality:

xT y ≤ 1 for all y with ‖y‖2 = 1 ⇐⇒ ‖x‖2 ≤ 1.

Although in this example we define S as an intersection of halfspaces, it is not a
polyhedron, because the definition requires infinitely many halfspaces.

(d) S is a polyhedron. S is the intersection of the set {x | |xk| ≤ 1, k = 1, . . . , n}
and the nonnegative orthant Rn

+. This follows from the following fact:

xT y ≤ 1 for all y with
n
∑

i=1

|yi| = 1 ⇐⇒ |xi| ≤ 1, i = 1, . . . , n.

We can prove this as follows. First suppose that |xi| ≤ 1 for all i. Then

xT y =
∑

i

xiyi ≤
∑

i

|xi||yi| ≤
∑

i

|yi| = 1

if
∑

i |yi| = 1.

Conversely, suppose that x is a nonzero vector that satisfies xT y ≤ 1 for all y
with

∑

i |yi| = 1. In particular we can make the following choice for y: let k be
an index for which |xk| = maxi |xi|, and take yk = 1 if xk > 0, yk = −1 if xk < 0,
and yi = 0 for i 6= k. With this choice of y we have

xT y =
∑

i

xiyi = ykxk = |xk| = max
i

|xi|.
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Therefore we must have maxi |xi| ≤ 1.

All this implies that we can describe S by a finite number of linear inequalities:
it is the intersection of the nonnegative orthant with the set {x | − 1 � x � 1},
i.e., the solution of 2n linear inequalities

−xi ≤ 0, i = 1, . . . , n
xi ≤ 1, i = 1, . . . , n.

Note that as in part (c) the set S was given as an intersection of an infinite
number of halfspaces. The difference is that here most of the linear inequalities
are redundant, and only a finite number are needed to characterize S.

None of these sets are affine sets or subspaces, except in some trivial cases. For example,
the set defined in part (a) is a subspace (hence an affine set), if a1 = a2 = 0; the set
defined in part (b) is an affine set if n = 1 and S = {1}; etc.

2.11 Hyperbolic sets. Show that the hyperbolic set {x ∈ R2

+ | x1x2 ≥ 1} is convex. As a
generalization, show that {x ∈ Rn

+ |
∏n

i=1 xi ≥ 1} is convex. Hint. If a, b ≥ 0 and
0 ≤ θ ≤ 1, then aθb1−θ ≤ θa + (1 − θ)b; see §3.1.9.

Solution.

(a) We prove the first part without using the hint. Consider a convex combination z
of two points (x1, x2) and (y1, y2) in the set. If x � y, then z = θx + (1− θ)y � y
and obviously z1z2 ≥ y1y2 ≥ 1. Similar proof if y � x.

Suppose y 6� x and x 6� y, i.e., (y1 − x1)(y2 − x2) < 0. Then

(θx1 + (1 − θ)y1)(θx2 + (1 − θ)y2)

= θ2x1x2 + (1 − θ)2y1y2 + θ(1 − θ)x1y2 + θ(1 − θ)x2y1

= θx1x2 + (1 − θ)y1y2 − θ(1 − θ)(y1 − x1)(y2 − x2)

≥ 1.

(b) Assume that
∏

i xi ≥ 1 and
∏

i yi ≥ 1. Using the inequality in the hint, we have

∏

i

(θxi + (1 − θ)yi) ≥
∏

xθ
i y

1−θ
i = (

∏

i

xi)
θ(
∏

i

yi)
1−θ ≥ 1.

2.12 Which of the following sets are convex?

(a) A slab, i.e., a set of the form {x ∈ Rn | α ≤ aT x ≤ β}.

(b) A rectangle, i.e., a set of the form {x ∈ Rn | αi ≤ xi ≤ βi, i = 1, . . . , n}. A
rectangle is sometimes called a hyperrectangle when n > 2.

(c) A wedge, i.e., {x ∈ Rn | aT
1 x ≤ b1, aT

2 x ≤ b2}.
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(d) The set of points closer to a given point than a given set, i.e.,

{x | ‖x − x0‖2 ≤ ‖x − y‖2 for all y ∈ S}

where S ⊆ Rn.

(e) The set of points closer to one set than another, i.e.,

{x | dist(x, S) ≤ dist(x, T )},

where S, T ⊆ Rn, and

dist(x, S) = inf{‖x − z‖2 | z ∈ S}.

(f) The set {x | x + S2 ⊆ S1}, where S1, S2 ⊆ Rn with S1 convex.

(g) The set of points whose distance to a does not exceed a fixed fraction θ of the
distance to b, i.e., the set {x | ‖x− a‖2 ≤ θ‖x− b‖2}. You can assume a 6= b and
0 ≤ θ ≤ 1.

Solution.

(a) A slab is an intersection of two halfspaces, hence it is a convex set and a polyhe-
dron.

(b) As in part (a), a rectangle is a convex set and a polyhedron because it is a finite
intersection of halfspaces.

(c) A wedge is an intersection of two halfspaces, so it is convex and a polyhedron. It
is a cone if b1 = 0 and b2 = 0.

(d) This set is convex because it can be expressed as

⋂

y∈S

{x | ‖x − x0‖2 ≤ ‖x − y‖2},

i.e., an intersection of halfspaces. (Recall from exercise 2.7 that, for fixed y, the
set

{x | ‖x − x0‖2 ≤ ‖x − y‖2}

is a halfspace.)

(e) In general this set is not convex, as the following example in R shows. With
S = {−1, 1} and T = {0}, we have

{x | dist(x, S) ≤ dist(x, T )} = {x ∈ R | x ≤ −1/2 or x ≥ 1/2}

which clearly is not convex.
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(f) This set is convex. x + S2 ⊆ S1 if x + y ∈ S1 for all y ∈ S2. Therefore

{x | x + S2 ⊆ S1} =
⋂

y∈S2

{x | x + y ∈ S1} =
⋂

y∈S2

(S1 − y),

the intersection of convex sets S1 − y.

(g) The set is convex, in fact a ball.

{x | ‖x − a‖2 ≤ θ‖x − b‖2}

= {x | ‖x − a‖2

2 ≤ θ2‖x − b‖2

2}

= {x | (1 − θ2)xT x − 2(a − θ2b)T x + (aT a − θ2bT b) ≤ 0}

If θ = 1, this is a halfspace. If θ < 1, it is a ball

{x | (x − x0)
T (x − x0) ≤ R2},

with center x0 and radius R given by

x0 =
a − θ2b

1 − θ2
, R =

(

θ2‖b‖2
2 − ‖a‖2

2

1 − θ2
+ ‖x0‖

2

2

)1/2

.

2.15 Some sets of probability distributions. Let x be a real-valued random variable with
prob(x = ai) = pi, i = 1, . . . , n, where a1 < a2 < · · · < an. Of course p ∈ Rn lies in
the standard probability simplex P = {p | 1T p = 1, p � 0}. Which of the following
conditions are convex in p? (That is, for which of the following conditions is the set of
p ∈ P that satisfy the condition convex?)

(a) α ≤ E f(x) ≤ β, where E f(x) is the expected value of f(x), i.e., E f(x) =
∑n

i=1 pif(ai). (The function f : R → R is given.)

(b) prob(x > α) ≤ β.

(c) E |x3| ≤ αE |x|.

(d) E x2 ≤ α.

(e) E x2 ≥ α.

(f) var(x) ≤ α, where var(x) = E(x − E x)2 is the variance of x.

(g) var(x) ≥ α.

(h) quartile(x) ≥ α, where quartile(x) = inf{β | prob(x ≤ β) ≥ 0.25}.

(i) quartile(x) ≤ α.

Solution. We first note that the constraints pi ≥ 0, i = 1, . . . , n, define halfspaces,
and

∑n
i=1 pi = 1 defines a hyperplane, so P is a polyhedron.

The first five constraints are, in fact, linear inequalities in the probabilities pi.
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(a) E f(x) =
∑n

i=1 pif(ai), so the constraint is equivalent to two linear inequalities

α ≤
n
∑

i=1

pif(ai) ≤ β.

(b) prob(x ≥ α) =
∑

i: ai≥α pi, so the constraint is equivalent to a linear inequality

∑

i: ai≥α

pi ≤ β.

(c) The constraint is equivalent to a linear inequality

n
∑

i=1

pi(|a
3

i | − α|ai|) ≤ 0.

(d) The constraint is equivalent to a linear inequality

n
∑

i=1

pia
2

i ≤ α.

(e) The constraint is equivalent to a linear inequality

n
∑

i=1

pia
2

i ≥ α.

The first five constraints therefore define convex sets.

(f) The constraint

var(x) = E x2 − (E x)2 =
n
∑

i=1

pia
2

i − (
n
∑

i=1

piai)
2 ≤ α

is not convex in general. As a counterexample, we can take n = 2, a1 = 0, a2 = 1,
and α = 1/5. p = (1, 0) and p = (0, 1) are two points that satisfy var(x) ≤ α,
but the convex combination p = (1/2, 1/2) does not.

(g) This constraint is equivalent to

n
∑

i=1

a2

i pi + (
n
∑

i=1

aipi)
2 = bT p + pT Ap ≤ α

where bi = a2
i and A = aaT . This defines a convex set, since the matrix aaT is

positive semidefinite.

Let us denote quartile(x) = f(p) to emphasize it is a function of p. The figure
illustrates the definition. It shows the cumulative distribution for a distribution p with
f(p) = a2.
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β

prob(x ≤ β)

a1 a2 an

p1

p1 + p2

p1 + p2 + · · · + pn−1

0.25

1

(h) The constraint f(p) ≥ α is equivalent to

prob(x ≤ β) < 0.25 for all β < α.

If α ≤ a1, this is always true. Otherwise, define k = max{i | ai < α}. This is a
fixed integer, independent of p. The constraint f(p) ≥ α holds if and only if

prob(x ≤ ak) =
k
∑

i=1

pi < 0.25.

This is a strict linear inequality in p, which defines an open halfspace.

(i) The constraint f(p) ≤ α is equivalent to

prob(x ≤ β) ≥ 0.25 for all β ≥ α.

Here, let us define k = max{i | ai ≤ α}. Again, this is a fixed integer, independent
of p. The constraint f(p) ≤ α holds if and only if

prob(x ≤ ak) =
k
∑

i=1

pi ≥ 0.25.

If α ≤ a1, then no p satisfies f(p) ≤ α, which means that the set is empty.
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