
EE364 Convex Optimization Prof. S. Boyd
June 7 – 8 or June 8 – 9, 2006.

Final exam solutions

1. Optimizing processor speed. A set of n tasks is to be completed by n processors. The
variables to be chosen are the processor speeds s1, . . . , sn, which must lie between a
given minimum value smin and a maximum value smax. The computational load of task
i is αi, so the time required to complete task i is τi = αi/si.

The power consumed by processor i is given by pi = f(si), where f : R → R is positive,
increasing, and convex. Therefore, the total energy consumed is

E =
n
∑

i=1

αi

si

f(si).

(Here we ignore the energy used to transfer data between processors, and assume the
processors are powered down when they are not active.)

There is a set of precedence constraints for the tasks, which is a set of m ordered pairs
P ⊆ {1, . . . , n}×{1, . . . , n}. If (i, j) ∈ P, then task j cannot start until task i finishes.
(This would be the case, for example, if task j requires data that is computed in task
i.) When (i, j) ∈ P, we refer to task i as a precedent of task j, since it must precede
task j. We assume that the precedence constraints define a directed acyclic graph
(DAG), with an edge from i to j if (i, j) ∈ P.

If a task has no precedents, then it starts at time t = 0. Otherwise, each task starts
as soon as all of its precedents have finished. We let T denote the time for all tasks to
be completed.

To be sure the precedence constraints are clear, we consider the very small example
shown below, with n = 6 tasks and m = 6 precedence constraints.

P = {(1, 4), (1, 3), (2, 3), (3, 6), (4, 6), (5, 6)}.

1

2 3

4

5

6

1

In this example, tasks 1, 2, and 5 start at time t = 0 (since they have no precedents).
Task 1 finishes at t = τ1, task 2 finishes at t = τ2, and task 5 finishes at t = τ5. Task 3
has tasks 1 and 2 as precedents, so it starts at time t = max{τ1, τ2}, and ends τ3 seconds
later, at t = max{τ1, τ2} + τ3. Task 4 completes at time t = τ1 + τ4. Task 6 starts
when tasks 3, 4, and 5 have finished, at time t = max{max{τ1, τ2}+ τ3, τ1 + τ4, τ5}. It
finishes τ6 seconds later. In this example, task 6 is the last task to be completed, so
we have

T = max{max{τ1, τ2} + τ3, τ1 + τ4, τ5} + τ6.

(a) Formulate the problem of choosing processor speeds (between the given limits) to
minimize completion time T , subject to an energy limit E ≤ Emax, as a convex
optimization problem. The data in this problem are P , smin, smax, α1, . . . , αn,
Emax, and the function f . The variables are s1, . . . , sn.

Feel free to change variables or to introduce new variables. Be sure to explain
clearly why your formulation of the problem is convex, and why it is equivalent
to the problem statement above.

Important:

• Your formulation must be convex for any function f that is positive, increas-
ing, and convex. You cannot make any further assumptions about f .

• This problem refers to the general case, not the small example described
above.

(b) Consider the specific instance with data given in ps_data.m, and processor power

f(s) = 1 + s + s2 + s3.

The precedence constraints are given by an m × 2 matrix prec, where m is the
number of precedence constraints, with each row giving one precedence constraint
(the first column gives the precedents).

Plot the optimal trade-off curve of energy E versus time T , over a range of T
that extends from its minimum to its maximum possible value. (These occur
when all processors operate at smax and smin, respectively, since T is monotone
nonincreasing in s.) On the same plot, show the energy-time trade-off obtained
when all processors operate at the same speed s̄, which is varied from smin to smax.

Note: In this part of the problem there is no limit Emax on E as in part (a); you
are to find the optimal trade-off of E versus T .

Solution.

(a) First let’s look at the energy E. In general it is not a convex function of s. For
example consider f(s) = s1.5, which is increasing and convex. But (1/s)f(s) =√

s, which is not convex. So we’re going to need to reformulate the problem
somehow.

2

We introduce the variable τ ∈ Rn, defined as

τi = αi/si.

The variable τi is the time required to complete task i. We can recover si from τi

as si = αi/τi. We’ll use τi instead of si.

The energy E, as a function of τ , is

E =
n
∑

i=1

τif(αi/τi).

This is a convex function of τ , since each term is the perspective of f , yf(x/y),
evaluated at y = τi and x = αi. (This shows that E is jointly convex in τ and α,
but we take α constant here.)

The processor speed limits smin ≤ si ≤ smax are equivalent to

αi/smax ≤ τi ≤ αi/smin, i = 1, . . . , n.

Now let’s look at the precedence constraints. To tackle these, we introduce the
variable t ∈ Rn, where ti is an upper bound on the completion time of task i.
Thus, we have

T ≤ max
i

ti.

Task i cannot start before all its precedents have finished; after that, it takes at
least τi more time. Thus, we have

tj ≥ ti + τj, (i, j) ∈ P.

Tasks that have no precedent must satisfy ti ≥ τi. In fact, this holds for all tasks,
so we have

ti ≥ τi, i = 1, . . . , n.

We formulate the problem as

minimize maxi ti
subject to

∑n
i=1 τif(αi/τi) ≤ Emax

αi/smax ≤ τi ≤ αi/smin, i = 1, . . . , n
ti ≥ τi, i = 1, . . . , n
tj ≥ ti + τj, (i, j) ∈ P,

with variables t and τ . The energy constraint is convex, and the other constraints
are linear. The objective is convex.

(b) For this particular problem, we have

τif(αi/τi) = τi + αi + α2
i /τi + α3

i /τ
2
i .

3

To generate the optimal tradeoff curve we scalarize, and minimize T + λE for λ
varying over some range that gives us the full range of T . Thus, we solve the
problem

minimize maxi ti + λ
∑n

i=1 (τi + αi + α2
i /τi + α3

i /τ
2
i)

subject to αi/smax ≤ τi ≤ αi/smin, i = 1, . . . , n
ti ≥ τi, i = 1, . . . , n
tj ≥ ti + τj, (i, j) ∈ P,

for λ taking a values in some range.

If we constrain all processors to have the same speed s̄, we are in effect adding
the constraint τ = (1/s̄)α. In this case we can find the time required to complete
all processes by solving the problem

minimize maxi ti
subject to ti ≥ αi/s̄, i = 1, . . . , n

tj ≥ ti + αj/s̄, (i, j) ∈ P.

(We don’t really need to solve an optimization problem here; but it’s easier to
solve it than to write the code to evaluate T .) To generate the tradeoff curve for
the case when all processors are running at the same speed, we solve the problem
above for s̄ ranging between smin = 1 and smax = 5. This gives us the full range
of possible values of T : when s̄ = smax we find T = 3.243; when s̄ = smin we find
T = 16.212.

The following matlab code was used to plot the two tradeoff curves:

cvx_quiet(true);

ps_data

% Optimal power-time tradeoff curve

Eopt = []; Topt = [];

fprintf(1,’Optimal tradeoff curve\n’)

for lambda = logspace(0,-3,30);

fprintf(1,’Solving for lambda = %1.3f\n’,lambda);

cvx_begin

variables t(n) tau(n)

E = sum(tau+alpha+alpha.^2.*inv_pos(tau)+...

alpha.^3.*square_pos(inv_pos(tau)));

minimize(lambda*E+max(t))

subject to

t(prec(:,2)) >= t(prec(:,1))+tau(prec(:,2))

t >= tau

tau >= alpha/s_max

tau <= alpha/s_min

4

cvx_end

E = sum(tau+alpha+alpha.^2./tau+alpha.^3./(tau.^2));

T = max(t);

Eopt = [Eopt E];

Topt = [Topt T];

end

% Tradeoff-curve for constant speed

fprintf(1,’\nConstant speed tradeoff curve\n’)

Econst = []; Tconst = [];

for s_const = linspace(s_min,s_max,30);

fprintf(1,’Solving for s = %1.3f\n’,s_const);

cvx_begin

variables t(n)

minimize(max(t))

subject to

t(prec(:,2)) >= t(prec(:,1))+alpha(prec(:,2))/s_const

t >= alpha/s_const

cvx_end

E = sum(alpha*(1/s_const+1+s_const+s_const^2));

T = max(t);

Econst = [Econst E];

Tconst = [Tconst T];

end

plot(Tconst,Econst,’r--’)

hold on

plot(Topt,Eopt,’b-’)

xlabel(’Time’)

ylabel(’Energy’)

grid on

axis([0 20 0 4000])

print -depsc processor_speed.eps

The two tradeoff curves are shown in the following plot. The solid line corresponds
to the optimal tradeoff curve, while the dotted line corresponds to the tradeoff
curve with constant processor speed.

5

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

Time

E
n
er

gy

We see that the optimal processor speeds use significantly less energy than when
all processors have the same speed, adjusted to give the same T , especially when
T is small.

We note that this particular problem can be solved without using the formulation
given in part (a). For this particular power function we can actually use s as the
optimization variable; we don’t need to change coordinates to τ . This is because
E is a convex function of s; it has the form

E =
n
∑

i=1

αi

(

1/si + 1 + si + s2
i

)

.

To get the tradeoff curve we can solve the problem

minimize maxi ti + λ
∑n

i=1 αi (1/si + 1 + si + s2
i)

subject to smin ≤ si ≤ smax, i = 1, . . . , n
ti ≥ αi/si, i = 1, . . . , n
tj ≥ ti + αj/sj, (i, j) ∈ P,

with variables t and s, for a range of positive values of λ.

cvx_begin

variables s(n) t(n)

E = alpha’*(inv_pos(s)+1+s+square_pos(s));

minimize(lambda*E+max(t))

subject to

t(prec(:,2)) >= t(prec(:,1))+alpha(prec(:,2)).*...

inv_pos(s(prec(:,2)))

t >= alpha.*inv_pos(s)

6

s >= s_max

s <= s_min

cvx_end

Finally, we note that this specific problem can also be cast as a GP, since E is
a posynomial function of the speeds, and all the constraints can be written as
posynomial inequalities.

7

2. Exploring nearly optimal points. An optimization algorithm will find an optimal point
for a problem, provided the problem is feasible. It is often useful to explore the set
of nearly optimal points. When a problem has a ‘strong minimum’, the set of nearly
optimal points is small; all such points are close to the original optimal point found.
At the other extreme, a problem can have a ‘soft minimum’, which means that there
are many points, some quite far from the original optimal point found, that are feasible
and have nearly optimal objective value. In this problem you will use a typical method
to explore the set of nearly optimal points.

We start by finding the optimal value p⋆ of the given problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

as well as an optimal point x⋆ ∈ Rn. We then pick a small positive number ǫ, and a
vector c ∈ Rn, and solve the problem

minimize cT x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
f0(x) ≤ p⋆ + ǫ.

Note that any feasible point for this problem is ǫ-suboptimal for the original problem.
Solving this problem multiple times, with different c’s, will generate (perhaps different)
ǫ-suboptimal points. If the problem has a strong minimum, these points will all be
close to each other; if the problem has a weak minimum, they can be quite different.

There are different strategies for choosing c in these experiments. The simplest is
to choose the c’s randomly; another method is to choose c to have the form ±ei,
for i = 1, . . . , n. (This method gives the ‘range’ of each component of x, over the
ǫ-suboptimal set.)

You will carry out this method for the following problem, to determine whether it has
a strong minimum or a weak minimum. You can generate the vectors c randomly, with
enough samples for you to come to your conclusion. You can pick ǫ = 0.01p⋆, which
means that we are considering the set of 1% suboptimal points.

The problem is a minimum fuel optimal control problem for a vehicle moving in R2.
The position at time kh is given by p(k) ∈ R2, and the velocity by v(k) ∈ R2, for
k = 1, . . . , K. Here h > 0 is the sampling period. These are related by the equations

p(k + 1) = p(k) + hv(k), v(k + 1) = (1 − α)v(k) + (h/m)f(k), k = 1, . . . , K − 1,

where f(k) ∈ R2 is the force applied to the vehicle at time kh, m > 0 is the vehicle
mass, and α ∈ (0, 1) models drag on the vehicle; in the absense of any other force,
the vehicle velocity decreases by the factor 1 − α in each discretized time interval.

8

(These formulas are approximations of more accurate formulas that involve matrix
exponentials.)

The force comes from two thrusters, and from gravity:

f(k) =

[

cos θ1

sin θ1

]

u1(k) +

[

cos θ2

sin θ2

]

u2(k) +

[

0
−mg

]

, k = 1, . . . , K − 1.

Here u1(k) ∈ R and u2(k) ∈ R are the (nonnegative) thruster force magnitudes, θ1

and θ2 are the directions of the thrust forces, and g = 10 is the constant acceleration
due to gravity.

The total fuel use is

F =
K−1
∑

k=1

(u1(k) + u2(k)) .

(Recall that u1(k) ≥ 0, u2(k) ≥ 0.)

The problem is to minimize fuel use subject to the initial condition p(1) = 0, v(1) = 0,
and the way-point constraints

p(ki) = wi, i = 1, . . . ,M.

(These state that at the time hki, the vehicle must pass through the location wi ∈ R2.)
In addition, we require that the vehicle should remain in a square operating region,

‖p(k)‖∞ ≤ Pmax, k = 1, . . . , K.

Both parts of this problem concern the specific problem instance with data given in
thrusters_data.m.

(a) Find an optimal trajectory, and the associated minimum fuel use p⋆. Plot the
trajectory p(k) in R2 (i.e., in the p1, p2 plane). Verify that it passes through the
way-points.

(b) Generate several 1% suboptimal trajectories using the general method described
above, and plot the associated trajectories in R2. Would you say this problem
has a strong minimum, or a weak minimum?

Solution.

(a) The following Matlab script finds the optimal solution.

cvx_quiet(true);

thrusters_data;

F = [cos(theta1) cos(theta2);...

sin(theta1) sin(theta2)];

9

% finding optimal solution

cvx_begin

variables u(2,K-1) p(2,K) v(2,K)

minimize (sum(sum(u)))

p(:,1) == 0; % initial position

v(:,1) == 0; % initial velocity

% way-point constraints

p(:,k1) == w1;

p(:,k2) == w2;

p(:,k3) == w3;

p(:,k4) == w4;

for i=1:K-1

p(:,i+1) == p(:,i) + h*v(:,i);

v(:,i+1) == (1-alpha)*v(:,i) + h*F*u(:,i)/m + [0; -g*h];

end

u >= 0;

% constaints on positions (x,y)

p <= pmax;

p >= -pmax;

cvx_end

display(’The optimal fuel use is: ’);

optval = cvx_optval

plot(p(1,:),p(2,:));

hold on

ps = [zeros(2,1) w1 w2 w3 w4];

plot(ps(1,:),ps(2,:),’*’);

xlabel(’x’); ylabel(’y’); title(’optimal’);

axis([-6 6 -6 6]);

This Matlab script generates the following optimal trajectory.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

10

The optimal value fuel use is found to be 1055.3.

(b) The following script finds 1% suboptimal solutions.

% finding nearly optimal solutions

cvx_begin

variables u(2,K-1) p(2,K) v(2,K)

minimize (sum (sum (randn(2,K-1).*u)) + ...

sum (sum (randn(2,K).*p)) + ...

sum (sum (randn(2,K).*v)))

p(:,1) == 0; % initial position

v(:,1) == 0; % initial velocity

% way-point constraints

p(:,k1) == w1;

p(:,k2) == w2;

p(:,k3) == w3;

p(:,k4) == w4;

for i=1:K-1

p(:,i+1) == p(:,i) + h*v(:,i);

v(:,i+1) == (1-alpha)*v(:,i) + F*u(:,i) + [0; -g*h];

end

u >= 0;

sum(sum(u))<=1.01*optval;

% constaints on positions (x,y)

p <= pmax;

p >= -pmax;

cvx_end

figure;

plot(p(1,:),p(2,:));

hold on

ps = [zeros(2,1) w1 w2 w3 w4];

plot(ps(1,:),ps(2,:),’*’);

xlabel(’x’); ylabel(’y’); title(’suboptimal’);

axis([-6 6 -6 6]);

The MATLAB script returns 4 randomly-generated nearly optimal trajectories.

11

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

12

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

x

y

We see that these nearly optimal trajectories are very, very different. So in this
problem there is a weak minimum, i.e., a very large 1%-suboptimal set.

13

3. Estimating a vector with unknown nonlinear measurement nonlinearity. We want to
estimate a vector x ∈ Rn, given some measurements

yi = φ(aT
i x + vi), i = 1, . . . ,m.

Here ai ∈ Rn are known, vi are IID N (0, σ2) random noises, and φ : R → R is an
unknown monotonic increasing function, known to satisfy

α ≤ φ′(u) ≤ β,

for all u. (Here α and β are known positive constants, with α < β.) We want to find
a maximum likelihood estimate of x and φ, given yi. (We also know ai, σ, α, and β.)

This sounds like an infinite-dimensional problem, since one of the parameters we are
estimating is a function. In fact, we only need to know the m numbers zi = φ−1(yi),
i = 1, . . . ,m. So by estimating φ we really mean estimating the m numbers z1, . . . , zm.
(These numbers are not arbitrary; they must be consistent with the prior information
α ≤ φ′(u) ≤ β for all u.)

(a) Explain how to find a maximum likelihood estimate of x and φ (i.e., z1, . . . , zm)
using convex optimization.

(b) Carry out your method on the data given in nonlin_meas_data.m, which includes
a matrix A ∈ Rm×n, with rows aT

1 , . . . , aT
m. Give x̂ml, the maximum likelihood

estimate of x. Plot your estimated function φ̂ml. (You can do this by plotting
(ẑml)i versus yi, with yi on the vertical axis and (ẑml)i on the horizontal axis.)

Hint. You can assume the measurements are numbered so that yi are sorted in nonde-
creasing order, i.e., y1 ≤ y2 ≤ · · · ≤ ym. (The data given in the problem instance for
part (b) is given in this order.)

Solution.

(a) The measurement equations can be written

zi = φ−1(yi), i = 1, . . . ,m.

The function φ−1 is unknown (indeed, it is to be estimated), but it has derivative
that lies between 1/β and 1/α. In terms of the zi, this means

(1/β)(yi+1 − yi) ≤ zi+1 − zi ≤ (1/α)(yi+1 − yi), i = 1, . . . ,m − 1,

assuming that the data are given with yi in nondecreasing order.

The log-likelihood function has the form

l(z, x) = −(1/σ2)
m
∑

i=1

(zi − aT
i x)2

14

(plus a constant that isn’t relevant). Thus to find a maximum likelihood estimate
of x and z we solve the problem

maximize −(1/σ2)
∑m

i=1(zi − aT
i x)2

subject to (1/β)(yi+1 − yi) ≤ zi+1 − zi ≤ (1/α)(yi+1 − yi), i = 1, . . . ,m − 1,

with variables z ∈ Rm and x ∈ Rn. This is a QP.

(b) The following Matlab code solve the given problem

nonlin_meas_data

row=zeros(1,m);

row(1)=-1;

row(2)=1;

col=zeros(1,m-1);

col(1)=-1;

B=toeplitz(col,row);

cvx_begin

variable x(n);

variable z(m);

minimize(norm(z-A*x));

subject to

1/beta*B*y<=B*z;

B*z<=1/alpha*B*y;

cvx_end

disp(’estimated x:’); disp(x);

plot(z,y)

ylabel(’y’)

xlabel(’z’)

title(’ML estimate of \phi’)

The estimated x is x = (0.4819, − 0.4657, 0.9364, 0.9297). Figure 1 shows the
estimated z versus the measured value y.

15

−6 −5 −4 −3 −2 −1 0 1 2 3 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

z

φ̂
(z

)

Figure 1: Maximum likelihood estimate of φ.

16

4. Optimizing rates and time slot fractions. We consider a wireless system that uses time-
domain multiple access (TDMA) to support n communication flows. The flows have
(nonnegative) rates r1, . . . , rn, given in bits/sec. To support a rate ri on flow i requires
transmitter power

p = ai(e
br − 1),

where b is a (known) positive constant, and ai are (known) positive constants related
to the noise power and gain of receiver i.

TDMA works like this. Time is divided up into periods of some fixed duration T
(seconds). Each of these T -long periods is divided into n time-slots, with durations
t1, . . . , tn, that must satisfy t1 + · · · + tn = T , ti ≥ 0. In time-slot i, communications
flow i is transmitted at an instantaneous rate r = Tri/ti, so that over each T -long
period, Tri bits from flow i are transmitted. The power required during time-slot i is
ai(e

bTri/ti − 1), so the average transmitter power over each T -long period is

P = (1/T)
n
∑

i=1

aiti(e
bTri/ti − 1).

When ti is zero, we take P = ∞ if ri > 0, and P = 0 if ri = 0. (The latter corresponds
to the case when there is zero flow, and also, zero time allocated to the flow.)

The problem is to find rates r ∈ Rn and time-slot durations t ∈ Rn that maximize the
log utility function

U(r) =
n
∑

i=1

log ri,

subject to P ≤ Pmax. (This utility function is often used to ensure ‘fairness’; each
communication flow gets at least some positive rate.) The problem data are ai, b, T
and Pmax; the variables are ti and ri.

(a) Formulate this problem as a convex optimization problem. Feel free to introduce
new variables, if needed, or to change variables. Be sure to justify convexity of
the objective or constraint functions in your formulation.

(b) Give the optimality conditions for your formulation. Of course we prefer simpler
optimality conditions to complex ones. Note: We do not expect you to solve

the optimality conditions; you can give them as a set of equations (and possibly
inequalities).

Hint. With a log utility function, we cannot have ri = 0, and therefore we cannot have
ti = 0; therefore the constraints ri ≥ 0 and ti ≥ 0 cannot be active or tight. This will
allow you to simplify the optimality conditions.

Solution. The problem is

maximize
∑n

i=1 log ri

subject to 1T t = T
P = (1/T)

∑n
i=1 aiti(e

bTri/ti − 1) ≤ Pmax,

17

with variables r ∈ Rn and t ∈ Rn. There is an implicit constraint that ri > 0, and
also that ti > 0.

In fact, we don’t need to introduce any new variables, or to change any variables. This
is a convex optimization problem just as it stands. The objective is clearly concave,
and so can be maximized. The only question is whether or not the function P is convex
in r and t. To show this, we need to show that the function f(x, y) = xex/y is convex
in x and y, for y > 0. But this is nothing more than the perspective of the exponential
function, so it’s convex. The function P is just a positive weighted sum of functions of
this form (plus an affine function), so it’s convex.

We introduce a Lagrange multiplier ν ∈ R for the equality constraint, and λ ∈ R+

for the inequality constraint. We don’t need Lagrange multipliers for the implicit
constraints t � 0, r � 0; even if we did introduce them they’d be zero at the optimum,
since these constraints cannot be tight.

The KKT conditions are: primal feasibility,

1T t = T, (1/T)
n
∑

i=1

aiti(e
bTri/ti − 1) ≤ Pmax,

dual feasibility, λ ≥ 0,

∂L

∂ri

= −1/ri + λaibe
bTri/ti = 0, i = 1, . . . , n,

∂L

∂ti
= λ(ai/T)

(

ebTri/ti − 1 − (bTri/ti)e
bTri/ti

)

+ ν = 0, i = 1, . . . , n,

and the complementarity condition λ(P − Pmax) = 0.

In fact, the constraint P ≤ Pmax must be tight at the optimum, because the utility is
monotonic increasing in r, and if the power constraint were slack, we could increase
rates slightly, without violating the power limit, and get more utility. In other words,
we can replace P ≤ Pmax with P = Pmax. This means we can replace the second primal
feasibility condition with an equality, and also, we conclude that the complementarity
condition always holds.

Thus, the KKT conditions are

1T t = T,
(1/T)

∑n
i=1 aiti(e

bTri/ti − 1) = Pmax,
−1/ri + λaibe

bTri/ti = 0, i = 1, . . . , n,

(λai/T)
(

ebTri/ti − 1 − (bTri/ti)e
bTri/ti

)

+ ν = 0, i = 1, . . . , n,

λ ≥ 0.

We didn’t ask you to solve these equations. As far as we know, there’s no analytical
solution. But, after a huge and bloody algebra battle, it’s possible to solve the KKT

18

conditions using a one-parameter search, as in water-filling. Although this appears
to be a great solution, it actually has no better computational complexity than a
standard method, such as Newton’s method, for solving the KKT conditions, provided
the special structure in the Newton step equations is exploited properly. Either way,
you end up with a method that involves say a few tens of iterations, each one requiring
O(n) flops.

Remember, we didn’t ask you to solve the KKT equations. And you should be grateful
that we didn’t, because we certainly could have.

19

5. Feature selection and sparse linear separation. Suppose x(1), . . . , x(N) and y(1), . . . , y(M)

are two given nonempty collections or classes of vectors in Rn that can be (strictly)
separated by a hyperplane, i.e., there exists a ∈ Rn and b ∈ R such that

aT x(i) − b ≥ 1, i = 1, . . . , N, aT y(i) − b ≤ −1, i = 1, . . . ,M.

This means the two classes are (weakly) separated by the slab

S = {z | |aT z − b| ≤ 1},

which has thickness 2/‖a‖2. You can think of the components of x(i) and y(i) as
features ; a and b define an affine function that combines the features and allows us to
distinguish the two classes.

To find the thickest slab that separates the two classes, we can solve the QP

minimize ‖a‖2

subject to aT xi − b ≥ 1, i = 1, . . . , N
aT yi − b ≤ −1, i = 1, . . . ,M,

with variables a ∈ Rn and b ∈ R. (This is equivalent to the problem given in (8.23),
p424, §8.6.1; see also exercise 8.23.)

In this problem we seek (a, b) that separate the two classes with a thick slab, and
also has a sparse, i.e., there are many j with aj = 0. Note that if aj = 0, the affine
function aT z − b does not depend on zj, i.e., the jth feature is not used to carry out
classification. So a sparse a corresponds to a classification function that is parsimonius;
it depends on just a few features. So our goal is to find an affine classification function
that gives a thick separating slab, and also uses as few features as possible to carry
out the classification.

This is in general a hard combinatorial (bi-criterion) optimization problem, so we use
the standard heuristic of solving

minimize ‖a‖2 + λ‖a‖1

subject to aT xi − b ≥ 1, i = 1, . . . , N
aT yi − b ≤ −1, i = 1, . . . ,M,

where λ ≥ 0 is a weight vector that controls the trade-off between separating slab
thickness and (indirectly, through the ℓ1 norm) sparsity of a.

Get the data in sp_ln_sp_data.m, which gives xi and yi as the columns of matrices X
and Y, respectively. Find the thickness of the maximum thickness separating slab. Solve
the problem above for 100 or so values of λ over an appropriate range (we recommend
log spacing). For each value, record the separation slab thickness 2/‖a‖2 and card(a),
the cardinality of a (i.e., the number of nonzero entries). In computing the cardinality,
you can count an entry aj of a as zero if it satisfies |aj| ≤ 10−4. Plot these data with
slab thickness on the vertical axis and cardinality on the horizontal axis.

20

Use this data to choose a set of 10 features out of the 50 in the data. Give the indices
of the features you choose. You may have several choices of sets of features here;
you can just choose one. Then find the maximum thickness separating slab that uses
only the chosen features. (This is standard practice: once you’ve chosen the features
you’re going to use, you optimize again, using only those features, and without the ℓ1

regularization.

Solution: The MATLAB script used to solve this problem is

cvx_quiet(true);

sp_ln_sp_data;

% thickest slab

cvx_begin

variables a(n) b

minimize (norm(a))

a’*X - b >= 1

a’*Y - b <= -1

cvx_end

w_thickest = 2./norm(a);

disp(’The thickness of the maximum thickness separating slab is: ’);

disp(w_thickest);

% generating the trade-off curve

lambdas = logspace(-2,5);

A = zeros(n,length(lambdas));

for i=1:length(lambdas)

cvx_begin

variables a(n) b

minimize (norm(a) + lambdas(i)*norm(a,1))

a’*X - b >= 1

a’*Y - b <= -1

cvx_end

A(:,i) = a;

end

w = 2./norms(A); % width of the slab

card = sum((abs(A) > 1e-4));

plot(card,w)

hold on;

plot(card,w,’*’)

xlabel(’card(a)’);

ylabel(’w’);

title(’width of the slab versus cardinality of a’);

21

% feature selection (fixing card(a) to 10)

indices = find(card == 10);

idx = indices(end);

w_before = w(idx);

a_selected = A(:,idx);

features = find(abs(a_selected) > 1e-4);

num_feat = length(features);

X_sub = X(features,:);

Y_sub = Y(features,:);

cvx_begin

variables a(num_feat) b

minimize (norm(a))

a’*X_sub - b >= 1

a’*Y_sub - b <= -1

cvx_end

w_after = 2/norm(a);

disp(’Using only the following 10 features’);

disp(features’);

disp(’the width of the thickest slab returned by the regularized’);

disp(’optimization problem was: ’);

disp(w_before);

disp(’after reoptimizing, the width of the thickest slab is: ’);

disp(w_after)

The thickness of the maximum thickness separating slab is found to be 116.4244. The
script also generates the following trade-off curve

22

10 15 20 25 30 35 40 45 50
75

80

85

90

95

100

105

110

115

120

card(a)

2/
‖a

‖ 2

width of the slab versus card(a)

We find that, using only the features

1, 7, 8, 18, 19, 21, 23, 26, 27, 46,

the width of the thickest slab found from the regularized optimization problem is
77.0246. After re-optimizing over this subset of variables, we find that the width of
the thickest slab increases to 78.4697.

23

6. Bounding object position from multiple camera views. A small object is located at
unknown position x ∈ R3, and viewed by a set of m cameras. Our goal is to find a
box in R3,

B = {z ∈ R3 | l � z � u},
for which we can guarantee x ∈ B. We want the smallest possible such bounding box.
(Although it doesn’t matter, we can use volume to judge ‘smallest’ among boxes.)

Now we describe the cameras. The object at location x ∈ R3 creates an image on
image plane of camera i at location

vi =
1

cT
i x + di

(Aix + bi) ∈ R2.

The matrices Ai ∈ R2×3, vectors bi ∈ R2 and ci ∈ R3, and real numbers di ∈ R

are known, and depend on the camera positions and orientations. We assume that
cT
i x + di > 0. The 3 × 4 matrix

Pi =

[

Ai bi

cT
i di

]

is called the camera matrix (for camera i). It is often (but not always) the case the
that the first 3 columns of Pi (i.e., Ai stacked above cT

i) form an orthogonal matrix,
in which case the camera is called orthographic.

We do not have direct access to the image point vi; we only know the (square) pixel
that it lies in. In other words, the camera gives us a measurement v̂i (the center of the
pixel that the image point lies in); we are guaranteed that

‖vi − v̂i‖∞ ≤ ρi/2,

where ρi is the pixel width (and height) of camera i. (We know nothing else about vi;
it could be any point in this pixel.)

Given the data Ai, bi, ci, di, v̂i, ρi, we are to find the smallest box B (i.e., find the
vectors l and u) that is guaranteed to contain x. In other words, find the smallest box
in R3 that contains all points consistent with the observations from the camera.

(a) Explain how to solve this using convex or quasiconvex optimization. You must
explain any transformations you use, any new variables you introduce, etc. If the
convexity or quasiconvexity of any function in your formulation isn’t obvious, be
sure justify it.

(b) Solve the specific problem instance given in the file camera_data.m. Be sure that
your final numerical answer (i.e., l and u) stands out.

Solution:

24

(a) We get a subset P ⊆ R3 (which we’ll soon see is a polyhedron) of locations x
that are consistent with the camera measurements. To find the smallest box that
covers any subset in R3, all we need to do is maximize and minimize the (linear)
functions x1, x2, and x3 to get l and u. Here P is a polyhedron, so we’ll end up
solving 6 LPs, one to get each of l1, l2, l3, u1, u2, and u3.

Now let’s look more closely at P . Our measurements tell us that

v̂i − ρi/2 ≤ 1

cT
i x + di

(Aix + bi) ≤ v̂i + ρi/2, i = 1, . . . ,m.

We multiply through by cT
i x + di, which is positive, to get

(v̂i − ρi/2)(cT
i x + di) ≤ Aix + bi ≤ (v̂i + ρi/2)(cT

i x + di), i = 1, . . . ,m,

as set of 2m linear inequalities on x. In particular, it defines a polyhedron.

To get lk we solve the LP

minimize xk

subject to (v̂i − ρi/2)(cT
i x + di) ≤ Aix + bi, i = 1, . . . ,m,

Aix + bi ≤ (v̂i + ρi/2)(cT
i x + di), i = 1, . . . ,m,

for k = 1, 2, 3; to get uk we maximize the same objective.

(b) Here is a MATLAB script that solves given instance:

% load the data

camera_data;

A1 = P1(1:2,1:3); b1 = P1(1:2,4); c1 = P1(3,1:3); d1 = P1(3,4);

A2 = P2(1:2,1:3); b2 = P2(1:2,4); c2 = P2(3,1:3); d2 = P2(3,4);

A3 = P3(1:2,1:3); b3 = P3(1:2,4); c3 = P3(3,1:3); d3 = P3(3,4);

A4 = P4(1:2,1:3); b4 = P4(1:2,4); c4 = P4(3,1:3); d4 = P4(3,4);

cvx_quiet(true);

for bounds = 1:6

cvx_begin

variable x(3)

switch bounds

case 1

minimize x(1)

case 2

maximize x(1)

case 3

minimize x(2)

case 4

maximize x(2)

25

case 5

minimize x(3)

case 6

maximize x(3)

end

% constraints for 1st camera

(vhat(:,1)-rho(1)/2)*(c1*x + d1) <= A1*x + b1;

A1*x + b1 <= (vhat(:,1)+rho(1)/2)*(c1*x + d1);

% constraints for 2ns camera

(vhat(:,2)-rho(2)/2)*(c2*x + d2) <= A2*x + b2;

A2*x + b2 <= (vhat(:,2)+rho(2)/2)*(c2*x + d2);

% constraints for 3rd camera

(vhat(:,3)-rho(3)/2)*(c3*x + d3) <= A3*x + b3;

A3*x + b3 <= (vhat(:,3)+rho(3)/2)*(c3*x + d3);

% constraints for 4th camera

(vhat(:,4)-rho(4)/2)*(c4*x + d4) <= A4*x + b4;

A4*x + b4 <= (vhat(:,4)+rho(4)/2)*(c4*x + d4);

cvx_end

val(bounds) = cvx_optval;

end

disp([’l1 = ’ num2str(val(1))]);

disp([’l2 = ’ num2str(val(3))]);

disp([’l3 = ’ num2str(val(5))]);

disp([’u1 = ’ num2str(val(2))]);

disp([’u2 = ’ num2str(val(4))]);

disp([’u3 = ’ num2str(val(6))]);

The MATLAB script returns the following results:

l1 = -0.99561

l2 = 0.27531

l3 = -0.67899

u1 = -0.8245

u2 = 0.37837

u3 = -0.57352

26

7. ℓ1.5 optimization. Optimization and approximation methods that use both an ℓ2-norm
(or its square) and an ℓ1-norm are currently very popular in statistics, machine learn-
ing, and signal and image processing. Examples include Huber estimation, LASSO,
basis pursuit, SVM, various ℓ1-regularized classification methods, total variation de-
noising, etc. Very roughly, an ℓ2-norm corresponds to Euclidean distance (squared), or
the negative log-likelihood function for a Gaussian; in contrast the ℓ1-norm gives ‘ro-
bust’ approximation, i.e., reduced sensitivity to outliers, and also tends to yield sparse
solutions (of whatever the argument of the norm is). (All of this is just background;
you don’t need to know any of this to solve the problem.)

In this problem we study a natural method for blending the two norms, by using the
ℓ1.5-norm, defined as

‖z‖1.5 =

(

k
∑

i=1

|zi|3/2

)2/3

for z ∈ Rk. We will consider the simplest approximation or regression problem:

minimize ‖Ax − b‖1.5,

with variable x ∈ Rn, and problem data A ∈ Rm×n and b ∈ Rm. We will assume that
m > n and the A is full rank (i.e., rank n). The hope is that this ℓ1.5-optimal approx-
imation problem should share some of the good features of ℓ2 and ℓ1 approximation.

(a) Give optimality conditions for this problem. Try to make these as simple as
possible. Your solution should have the form ‘x is optimal for the ℓ1.5-norm
approximation problem if and only if . . . ’.

(b) Explain how to formulate the ℓ1.5-norm approximation problem as an SDP. (Your
SDP can include linear equality and inequality constraints.)

(c) Solve the specific numerical instance generated by the following code:

randn(’state’,0);

A=randn(100,30);

b=randn(100,1);

Numerically verify the optimality conditions. Give a histogram of the residuals,
and repeat for the ℓ2-norm and ℓ1-norm approximations. You can use any method
you like to solve the problem (but of course you must explain how you did it); in
particular, you do not need to use the SDP formulation found in part (b).

Solution:

(a) We can just as well minimize the objective to the 3/2 power, i.e., solve the problem

minimize f(x) =
∑m

i=1 |aT
i x − bi|3/2

27

This objective is differentiable, in fact, so the optimality condition is simply that
the gradient should vanish. (But it is not twice differentiable.) The gradient is

∇f(x) =
m
∑

i=1

(3/2) sign(aT
i x − bi)|aT

i x − bi|1/2ai,

so the optimality condition is just

m
∑

i=1

(3/2) sign(ri)|ri|1/2ai = 0,

where ri = aT
i x − bi is the ith residual. We can, of course, drop the factor 3/2.

(b) We can write an equivalent problem

minimize 1T t
subject to s3/2 � t,

−si � aT
i x − bi � si i = 1, . . . ,m,

with new variables t, s ∈ Rm.

We need a way to express s
3/2
i ≤ ti using LMIs. We first write it as s2

i ≤ ti
√

si.
We’re going to express this using some LMIs. Recall that the general 2 × 2 LMI

[

u v
v w

]

� 0

is equivalent to u ≥ 0, uw ≥ v2. So we can write s2
i ≤ ti

√
si as

[√
si si

si t

]

� 0.

Now this is not yet an LMI, because the 1, 1 entry is not affine in the variables. To
deal with this, we introduce a new variable y ∈ Rm, which satisfies 0 � y � √

s:
[

yi si

si ti

]

� 0,

[

si yi

yi 1

]

� 0.

These are LMIs in the variables. The first LMI is equivalent to yi ≥ 0, yiti ≥ s2
i .

The second LMI is equivalent to si ≥ y2
i , i.e.,

√
si ≥ |yi|. These two together are

equivalent to s2
i ≥ ti

√
si. (Here we use the fact that if we increase the 1, 1 entry

of a matrix, it gets more positive semidefinite. (That’s informal, but you know
what we mean.)

Now we can assemble an SDP to solve our ℓ1.5-norm approximation problem:

minimize 1T t
subject to −si � aT

i x − bi � si, i = 1, . . . ,m
[

yi si

si ti

]

� 0,

[

si yi

yi 1

]

� 0, i = 1, . . . ,m,

28

with variables x ∈ Rn, t ∈ Rm, y ∈ Rm, s ∈ Rm.

Here is another solution several of you used, which we like. The final SDP is

minimize z
subject to −si � aT

i x − bi � si, i = 1, . . . ,m
[

si yi

yi 1

]

� 0, i = 1, . . . ,m,
[

z sT

s diag(y)

]

� 0,

with variables x ∈ Rn, y ∈ Rm, s ∈ Rm, and z ∈ R.

The first set of inequalities is equivalent to |aT
i x − bi| ≤ si; the set of 2 × 2 LMIs

is equivalent to si ≥ y2
i , and the last (2m + 1) × (2m + 1) LMI is equivalent to

z ≥ sT (diag(y)−1)s =
m
∑

i=1

s2
i /yi.

Evidently we minimize z, and therefore the righthand side above. For si fixed,
the choice yi =

√
si minimizes the objective, so we are minimizing

m
∑

i=1

s2
i /yi =

m
∑

i=1

s
3/2
i .

(c) We’re going to use cvx to solve the problem. The function norm(r,1.5) isn’t
implemented yet, so we’ll have to do it ourselves. One simple way is to note
that |r|3/2 = r2/

√
r, which is the composition of the quadratic over linear func-

tion x2
1/x2 with x1 = r, x2 =

√
r. Fortunately, the result is convex, since the

quadratic over linear function is convex and decreasing in its second argument, so
it can accept a concave positive function there. In other words, cvx will accept
quad_over_lin(s,sqrt(s)), and recognize it as convex. So we have a snappy,
short way to express s3/2 for s > 0. Now we have to form the composition of this
with the convex function ri = aT

i x − bi. Here is one way to do this.

cvx_begin

variables x(n) s(m);

s >= abs(A*x-b);

minimize(sum(quad_over_lin(s,sqrt(s),0)));

cvx_end

The following code solve the problem for the different norms and plot histograms
of the residuals.

n=30;

m=100;

randn(’state’,0);

29

A=randn(m,n);

b=randn(m,1);

%l1.5 solution

cvx_begin

variables x(n) s(m);

s >= abs(A*x-b);

minimize(sum(quad_over_lin(s,sqrt(s),0)));

cvx_end

%l2 solution

xl2=A\b;

%l1 solution

cvx_begin

variables xl1(n);

minimize(norm(A*xl1-b,1));

cvx_end

r=A*x-b; %residuals

rl2=A*xl2-b;

rl1=A*xl1-b;

%check optimality condition

A’*(3/2*sign(r).*sqrt(abs(r)))

subplot(3,1,1)

hist(r)

axis([-2.5 2.5 0 50])

xlabel(’r’)

subplot(3,1,2)

hist(rl2)

axis([-2.5 2.5 0 50])

xlabel(’r2’)

subplot(3,1,3)

hist(rl1)

axis([-2.5 2.5 0 50])

xlabel(’r1’)

%solution using SDP

cvx_begin sdp

30

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

50

ℓ1.5-norm

ℓ2-norm

ℓ1-norm

Figure 2: Histogram of the residuals for ℓ1.5-norm, ℓ2-norm, and ℓ1-norm

variables xdf(n) r(m) y(m) t(m);

A*xdf-b<=r;

-r<=A*xdf-b;

minimize(sum(t));

for i=1:m

[y(i), r(i); r(i), t(i)]>=0;

[r(i), y(i); y(i), 1]>=0;

end

cvx_end

Figure 2 shows the histograms of the residuals for the three norms.

31

8. Three-way linear classification. We are given data

x(1), . . . , x(N), y(1), . . . , y(M), z(1), . . . , z(P),

three nonempty sets of vectors in Rn. We wish to find three affine functions on Rn,

fi(z) = aT
i z − bi, i = 1, 2, 3,

that satisfy the following properties:

f1(x
(j)) > max{f2(x

(j)), f3(x
(j))}, j = 1, . . . , N,

f2(y
(j)) > max{f1(y

(j)), f3(y
(j))}, j = 1, . . . ,M,

f3(z
(j)) > max{f1(z

(j)), f2(z
(j))}, j = 1, . . . , P.

In words: f1 is the largest of the three functions on the x data points, f2 is the largest
of the three functions on the y data points, f3 is the largest of the three functions on
the z data points. We can give a simple geometric interpretation: The functions f1,
f2, and f3 partition Rn into three regions,

R1 = {z | f1(z) > max{f2(z), f3(z)}},
R2 = {z | f2(z) > max{f1(z), f3(z)}},
R3 = {z | f3(z) > max{f1(z), f2(z)}},

defined by where each function is the largest of the three. Our goal is to find functions
with x(j) ∈ R1, y(j) ∈ R2, and z(j) ∈ R3.

Pose this as a convex optimization problem. You may not use strict inequalities in
your formulation.

Solution: We need

f1(x
(j)) > f2(x

(j)), j = 1, . . . , N,

f1(x
(j)) > f3(x

(j)), j = 1, . . . , N,

f2(y
(j)) > f1(y

(j)), j = 1, . . . ,M,

f2(y
(j)) > f3(y

(j)), j = 1, . . . ,M,

f3(z
(j)) > f1(z

(j)), j = 1, . . . , P,

f3(z
(j)) > f2(z

(j)), j = 1, . . . , P,

which is a set of 2(M +N +P) strict linear inequalities in the variables ai and bi. They
are homogeneous in ai and bi so we can express them as

f1(x
(j)) ≥ f2(x

(j)) + 1, j = 1, . . . , N,

f1(x
(j)) ≥ f3(x

(j)) + 1, j = 1, . . . , N,

f2(y
(j)) ≥ f1(y

(j)) + 1, j = 1, . . . ,M,

f2(y
(j)) ≥ f3(y

(j)) + 1, j = 1, . . . ,M,

f3(z
(j)) ≥ f1(z

(j)) + 1, j = 1, . . . , P,

f3(z
(j)) ≥ f2(z

(j)) + 1, j = 1, . . . , P,

32

an LP feasibility problem. More explicitly we have

(a1 − a2)
T x(j) − (b1 − b2) ≥ 1, j = 1, . . . , N,

(a1 − a3)
T x(j) − (b1 − b3) ≥ 1, j = 1, . . . , N,

(a2 − a1)
T y(j) − (b2 − b1) ≥ 1, j = 1, . . . ,M,

(a2 − a3)
T y(j) − (b2 − b3) ≥ 1, j = 1, . . . ,M,

(a3 − a1)
T z(j) − (b3 − b1) ≥ 1, j = 1, . . . , P,

(a3 − a2)
T z(j) − (b3 − b2) ≥ 1, j = 1, . . . , P.

The first and third state that the affine function (a1−a2)
T z−(b1−b2) strictly separates

the x(j) and y(j). The second and fifth state that the affine function (a1−a3)
T z−(b1−b3)

strictly separates the x(j) and z(j). The fourth and sixth state that the affine function
(a2 − a3)

T z − (b2 − b3) strictly separates the y(j) and z(j).

Note that we can add any vector α to each of the ai, without affecting these inequalities
(which only refer to difference between ai’s), and we can add any number β to each of
the bi’s for the same reason. We can use this observation to normalize or simplify the
ai and bi. For example, we can assume without loss of generality that a1 = 0, b1 = 0.
Or, in a more symmetric way, we can require that a1 +a2 +a3 = 0 and b1 + b2 + b3 = 0.

We didn’t ask you to try it out on numerical data. But we did, just for fun, and to be
sure our theory was really correct.

The following MATLAB script implements this method for 3-way classification and
tests it on a small separable data set

sep3way_data;

cvx_begin

variables a1(2) a2(2) a3(2) b1 b2 b3

(a1 - a2)’*X - (b1 - b2) >= 1

(a1 - a3)’*X - (b1 - b3) >= 1

(a2 - a1)’*Y - (b2 - b1) >= 1

(a2 - a3)’*Y - (b2 - b3) >= 1

(a3 - a1)’*Z - (b3 - b1) >= 1

(a3 - a2)’*Z - (b3 - b2) >= 1

a1 + a2 + a3 == 0

b1 + b2 + b3 == 0

cvx_end

% maximally confusing point

p = [(a1-a2)’;(a1-a3)’]\[(b1-b2);(b1-b3)];

% plot

33

plot(X(1,:),X(2,:),’*’);

hold on;

plot(Y(1,:),Y(2,:),’ro’);

plot(Z(1,:),Z(2,:),’g+’);

plot(p(1),p(2),’ks’);

t = [-5:0.01:8];

u1 = a1 - a2; v1 = b1 - b2;

u2 = a2 - a3; v2 = b2 - b3;

u3 = a3 - a1; v3 = b3 - b1;

line1 = (-t*u1(1) + v1)/u1(2);

idx1 = find(u2’*[t;line1] - v2 > 0);

plot(t(idx1),line1(idx1));

line2 = (-t*u2(1) + v2)/u2(2);

idx2 = find(u3’*[t; line2] - v3 > 0);

plot(t(idx2),line2(idx2),’r’);

line3 = (-t*u3(1) + v3)/u3(2);

idx3 = find(u1’*[t; line3] - v1 > 0);

plot(t(idx3),line3(idx3),’g’);

The following figure is generated.

−4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

6

34

