
EE364 Convex Optimization Prof. S. Boyd
June 7 – 8 or June 8 – 9, 2006.

Final exam

You may use any books, notes, or computer programs (e.g., Matlab, cvx), but you may
not discuss the exam with anyone until June 10, after everyone has taken the exam. The
only exception is that you can ask the TAs or Stephen Boyd for clarification. We’ve tried
pretty hard to make the exam unambiguous and clear, so we’re unlikely to say much. Please
address email inquiries to ee364-spr0506-staff@lists.stanford.edu.

Please make a copy of your exam before handing it in.

Please attach the cover page to the front of your exam. Assemble your solutions in
order (problem 1, problem 2, problem 3, . . .), starting a new page for each problem.

Since this is a take home exam, you will be graded on clarity and conciseness as well as
accuracy and correctness. We will deduct points from long needlessly complex so-

lutions, even if they are correct. Our solutions are not long, so if you find that your
solution to a problem goes on and on for many pages, you should try to figure out a simpler
one. We expect neat, legible exams from everyone, including those enrolled Cr/N.

When a problem involves computation you must give all of the following: a clear discussion
and justification of exactly what you did, the Matlab (or other) source code that produces
the result, and the final numerical results or plots.

Some of the problems require you to download a Matlab file containing problem data. You’ll
have to type the whole URL given in the problem into your browser; there are no links on
the course web page pointing to these files. To get a file called data.m, for example, you’d
type www.stanford.edu/class/ee364/data.m into your browser.

Please respect the honor code. Although we allow you to work on homework assignments in
small groups, you cannot discuss the final with anyone, at least until everyone has taken it.

All problems have equal weight. Some are easier than they might appear at first glance.
(That’s why there are 8 questions this year . . .)

Very important: You will be using cvx during the exam. Be sure that you have downloaded
and installed the most recent version of cvx. We’ve tried very hard to make sure that no cvx

bug is going to rear its ugly head during the final exam, but of course this might happen.
If you’ve written down some cvx code that you think should work, but it doesn’t, don’t
hesitate to email us to check. Also, be sure to check your email often during the exam, just
in case we do need to send out an important announcement.

1

Please
address email inquiries to ee364-spr0506-staff@lists.stanford.eduu.

1. Optimizing processor speed. A set of n tasks is to be completed by n processors. The
variables to be chosen are the processor speeds s1, . . . , sn, which must lie between a
given minimum value smin and a maximum value smax. The computational load of task
i is αi, so the time required to complete task i is τi = αi/si.

The power consumed by processor i is given by pi = f(si), where f : R→ R is positive,
increasing, and convex. Therefore, the total energy consumed is

E =
n∑

i=1

αi

si

f(si).

(Here we ignore the energy used to transfer data between processors, and assume the
processors are powered down when they are not active.)

There is a set of precedence constraints for the tasks, which is a set of m ordered pairs
P ⊆ {1, . . . , n}×{1, . . . , n}. If (i, j) ∈ P, then task j cannot start until task i finishes.
(This would be the case, for example, if task j requires data that is computed in task
i.) When (i, j) ∈ P, we refer to task i as a precedent of task j, since it must precede
task j. We assume that the precedence constraints define a directed acyclic graph
(DAG), with an edge from i to j if (i, j) ∈ P.

If a task has no precedents, then it starts at time t = 0. Otherwise, each task starts
as soon as all of its precedents have finished. We let T denote the time for all tasks to
be completed.

To be sure the precedence constraints are clear, we consider the very small example
shown below, with n = 6 tasks and m = 6 precedence constraints.

P = {(1, 4), (1, 3), (2, 3), (3, 6), (4, 6), (5, 6)}.

1

2 3

4

5

6

In this example, tasks 1, 2, and 5 start at time t = 0 (since they have no precedents).
Task 1 finishes at t = τ1, task 2 finishes at t = τ2, and task 5 finishes at t = τ5. Task 3
has tasks 1 and 2 as precedents, so it starts at time t = max{τ1, τ2}, and ends τ3 seconds
later, at t = max{τ1, τ2} + τ3. Task 4 completes at time t = τ1 + τ4. Task 6 starts
when tasks 3, 4, and 5 have finished, at time t = max{max{τ1, τ2}+ τ3, τ1 + τ4, τ5}. It
finishes τ6 seconds later. In this example, task 6 is the last task to be completed, so
we have

T = max{max{τ1, τ2}+ τ3, τ1 + τ4, τ5}+ τ6.

2

(a) Formulate the problem of choosing processor speeds (between the given limits) to
minimize completion time T , subject to an energy limit E ≤ Emax, as a convex
optimization problem. The data in this problem are P , smin, smax, α1, . . . , αn,
Emax, and the function f . The variables are s1, . . . , sn.

Feel free to change variables or to introduce new variables. Be sure to explain
clearly why your formulation of the problem is convex, and why it is equivalent
to the problem statement above.

Important:

• Your formulation must be convex for any function f that is positive, increas-
ing, and convex. You cannot make any further assumptions about f .

• This problem refers to the general case, not the small example described
above.

(b) Consider the specific instance with data given in ps_data.m, and processor power

f(s) = 1 + s + s2 + s3.

The precedence constraints are given by an m × 2 matrix prec, where m is the
number of precedence constraints, with each row giving one precedence constraint
(the first column gives the precedents).

Plot the optimal trade-off curve of energy E versus time T , over a range of T
that extends from its minimum to its maximum possible value. (These occur
when all processors operate at smax and smin, respectively, since T is monotone
nonincreasing in s.) On the same plot, show the energy-time trade-off obtained
when all processors operate at the same speed s̄, which is varied from smin to smax.

Note: In this part of the problem there is no limit Emax on E as in part (a); you
are to find the optimal trade-off of E versus T .

3

2. Exploring nearly optimal points. An optimization algorithm will find an optimal point
for a problem, provided the problem is feasible. It is often useful to explore the set
of nearly optimal points. When a problem has a ‘strong minimum’, the set of nearly
optimal points is small; all such points are close to the original optimal point found.
At the other extreme, a problem can have a ‘soft minimum’, which means that there
are many points, some quite far from the original optimal point found, that are feasible
and have nearly optimal objective value. In this problem you will use a typical method
to explore the set of nearly optimal points.

We start by finding the optimal value p� of the given problem

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p,

as well as an optimal point x� ∈ Rn. We then pick a small positive number ε, and a
vector c ∈ Rn, and solve the problem

minimize cT x
subject to fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p
f0(x) ≤ p� + ε.

Note that any feasible point for this problem is ε-suboptimal for the original problem.
Solving this problem multiple times, with different c’s, will generate (perhaps different)
ε-suboptimal points. If the problem has a strong minimum, these points will all be
close to each other; if the problem has a weak minimum, they can be quite different.

There are different strategies for choosing c in these experiments. The simplest is
to choose the c’s randomly; another method is to choose c to have the form ±ei,
for i = 1, . . . , n. (This method gives the ‘range’ of each component of x, over the
ε-suboptimal set.)

You will carry out this method for the following problem, to determine whether it has
a strong minimum or a weak minimum. You can generate the vectors c randomly, with
enough samples for you to come to your conclusion. You can pick ε = 0.01p�, which
means that we are considering the set of 1% suboptimal points.

The problem is a minimum fuel optimal control problem for a vehicle moving in R2.
The position at time kh is given by p(k) ∈ R2, and the velocity by v(k) ∈ R2, for
k = 1, . . . , K. Here h > 0 is the sampling period. These are related by the equations

p(k + 1) = p(k) + hv(k), v(k + 1) = (1− α)v(k) + (h/m)f(k), k = 1, . . . , K − 1,

where f(k) ∈ R2 is the force applied to the vehicle at time kh, m > 0 is the vehicle
mass, and α ∈ (0, 1) models drag on the vehicle; in the absense of any other force,
the vehicle velocity decreases by the factor 1 − α in each discretized time interval.

4

(These formulas are approximations of more accurate formulas that involve matrix
exponentials.)

The force comes from two thrusters, and from gravity:

f(k) =

[
cos θ1

sin θ1

]
u1(k) +

[
cos θ2

sin θ2

]
u2(k) +

[
0

−mg

]
, k = 1, . . . , K − 1.

Here u1(k) ∈ R and u2(k) ∈ R are the (nonnegative) thruster force magnitudes, θ1

and θ2 are the directions of the thrust forces, and g = 10 is the constant acceleration
due to gravity.

The total fuel use is

F =
K−1∑
k=1

(u1(k) + u2(k)) .

(Recall that u1(k) ≥ 0, u2(k) ≥ 0.)

The problem is to minimize fuel use subject to the initial condition p(1) = 0, v(1) = 0,
and the way-point constraints

p(ki) = wi, i = 1, . . . ,M.

(These state that at the time hki, the vehicle must pass through the location wi ∈ R2.)
In addition, we require that the vehicle should remain in a square operating region,

‖p(k)‖∞ ≤ Pmax, k = 1, . . . , K.

Both parts of this problem concern the specific problem instance with data given in
thrusters_data.m.

(a) Find an optimal trajectory, and the associated minimum fuel use p�. Plot the
trajectory p(k) in R2 (i.e., in the p1, p2 plane). Verify that it passes through the
way-points.

(b) Generate several 1% suboptimal trajectories using the general method described
above, and plot the associated trajectories in R2. Would you say this problem
has a strong minimum, or a weak minimum?

5

3. Estimating a vector with unknown nonlinear measurement nonlinearity. We want to
estimate a vector x ∈ Rn, given some measurements

yi = φ(aT
i x + vi), i = 1, . . . ,m.

Here ai ∈ Rn are known, vi are IID N (0, σ2) random noises, and φ : R → R is an
unknown monotonic increasing function, known to satisfy

α ≤ φ′(u) ≤ β,

for all u. (Here α and β are known positive constants, with α < β.) We want to find
a maximum likelihood estimate of x and φ, given yi. (We also know ai, σ, α, and β.)

This sounds like an infinite-dimensional problem, since one of the parameters we are
estimating is a function. In fact, we only need to know the m numbers zi = φ−1(yi),
i = 1, . . . ,m. So by estimating φ we really mean estimating the m numbers z1, . . . , zm.
(These numbers are not arbitrary; they must be consistent with the prior information
α ≤ φ′(u) ≤ β for all u.)

(a) Explain how to find a maximum likelihood estimate of x and φ (i.e., z1, . . . , zm)
using convex optimization.

(b) Carry out your method on the data given in nonlin_meas_data.m, which includes
a matrix A ∈ Rm×n, with rows aT

1 , . . . , aT
m. Give x̂ml, the maximum likelihood

estimate of x. Plot your estimated function φ̂ml. (You can do this by plotting
(ẑml)i versus yi, with yi on the vertical axis and (ẑml)i on the horizontal axis.)

Hint. You can assume the measurements are numbered so that yi are sorted in nonde-
creasing order, i.e., y1 ≤ y2 ≤ · · · ≤ ym. (The data given in the problem instance for
part (b) is given in this order.)

6

4. Optimizing rates and time slot fractions. We consider a wireless system that uses time-
domain multiple access (TDMA) to support n communication flows. The flows have
(nonnegative) rates r1, . . . , rn, given in bits/sec. To support a rate ri on flow i requires
transmitter power

p = ai(e
br − 1),

where b is a (known) positive constant, and ai are (known) positive constants related
to the noise power and gain of receiver i.

TDMA works like this. Time is divided up into periods of some fixed duration T
(seconds). Each of these T -long periods is divided into n time-slots, with durations
t1, . . . , tn, that must satisfy t1 + · · · + tn = T , ti ≥ 0. In time-slot i, communications
flow i is transmitted at an instantaneous rate r = Tri/ti, so that over each T -long
period, Tri bits from flow i are transmitted. The power required during time-slot i is
ai(e

bTri/ti − 1), so the average transmitter power over each T -long period is

P = (1/T)
n∑

i=1

aiti(e
bTri/ti − 1).

When ti is zero, we take P = ∞ if ri > 0, and P = 0 if ri = 0. (The latter corresponds
to the case when there is zero flow, and also, zero time allocated to the flow.)

The problem is to find rates r ∈ Rn and time-slot durations t ∈ Rn that maximize the
log utility function

U(r) =
n∑

i=1

log ri,

subject to P ≤ Pmax. (This utility function is often used to ensure ‘fairness’; each
communication flow gets at least some positive rate.) The problem data are ai, b, T
and Pmax; the variables are ti and ri.

(a) Formulate this problem as a convex optimization problem. Feel free to introduce
new variables, if needed, or to change variables. Be sure to justify convexity of
the objective or constraint functions in your formulation.

(b) Give the optimality conditions for your formulation. Of course we prefer simpler
optimality conditions to complex ones. Note: We do not expect you to solve

the optimality conditions; you can give them as a set of equations (and possibly
inequalities).

Hint. With a log utility function, we cannot have ri = 0, and therefore we cannot have
ti = 0; therefore the constraints ri ≥ 0 and ti ≥ 0 cannot be active or tight. This will
allow you to simplify the optimality conditions.

7

5. Feature selection and sparse linear separation. Suppose x(1), . . . , x(N) and y(1), . . . , y(M)

are two given nonempty collections or classes of vectors in Rn that can be (strictly)
separated by a hyperplane, i.e., there exists a ∈ Rn and b ∈ R such that

aT x(i) − b ≥ 1, i = 1, . . . , N, aT y(i) − b ≤ −1, i = 1, . . . ,M.

This means the two classes are (weakly) separated by the slab

S = {z | |aT z − b| ≤ 1},

which has thickness 2/‖a‖2. You can think of the components of x(i) and y(i) as
features; a and b define an affine function that combines the features and allows us to
distinguish the two classes.

To find the thickest slab that separates the two classes, we can solve the QP

minimize ‖a‖2

subject to aT xi − b ≥ 1, i = 1, . . . , N
aT yi − b ≤ −1, i = 1, . . . ,M,

with variables a ∈ Rn and b ∈ R. (This is equivalent to the problem given in (8.23),
p424, §8.6.1; see also exercise 8.23.)

In this problem we seek (a, b) that separate the two classes with a thick slab, and
also has a sparse, i.e., there are many j with aj = 0. Note that if aj = 0, the affine
function aT z − b does not depend on zj, i.e., the jth feature is not used to carry out
classification. So a sparse a corresponds to a classification function that is parsimonius;
it depends on just a few features. So our goal is to find an affine classification function
that gives a thick separating slab, and also uses as few features as possible to carry
out the classification.

This is in general a hard combinatorial (bi-criterion) optimization problem, so we use
the standard heuristic of solving

minimize ‖a‖2 + λ‖a‖1

subject to aT xi − b ≥ 1, i = 1, . . . , N
aT yi − b ≤ −1, i = 1, . . . ,M,

where λ ≥ 0 is a weight vector that controls the trade-off between separating slab
thickness and (indirectly, through the
1 norm) sparsity of a.

Get the data in sp_ln_sp_data.m, which gives xi and yi as the columns of matrices X
and Y, respectively. Find the thickness of the maximum thickness separating slab. Solve
the problem above for 100 or so values of λ over an appropriate range (we recommend
log spacing). For each value, record the separation slab thickness 2/‖a‖2 and card(a),
the cardinality of a (i.e., the number of nonzero entries). In computing the cardinality,
you can count an entry aj of a as zero if it satisfies |aj| ≤ 10−4. Plot these data with
slab thickness on the vertical axis and cardinality on the horizontal axis.

8

Use this data to choose a set of 10 features out of the 50 in the data. Give the indices
of the features you choose. You may have several choices of sets of features here;
you can just choose one. Then find the maximum thickness separating slab that uses
only the chosen features. (This is standard practice: once you’ve chosen the features
you’re going to use, you optimize again, using only those features, and without the
1

regularization.

9

6. Bounding object position from multiple camera views. A small object is located at
unknown position x ∈ R3, and viewed by a set of m cameras. Our goal is to find a
box in R3,

B = {z ∈ R3 | l 	 z 	 u},

for which we can guarantee x ∈ B. We want the smallest possible such bounding box.
(Although it doesn’t matter, we can use volume to judge ‘smallest’ among boxes.)

Now we describe the cameras. The object at location x ∈ R3 creates an image on
image plane of camera i at location

vi =
1

cT
i x + di

(Aix + bi) ∈ R2.

The matrices Ai ∈ R2×3, vectors bi ∈ R2 and ci ∈ R3, and real numbers di ∈ R

are known, and depend on the camera positions and orientations. We assume that
cT
i x + di > 0. The 3× 4 matrix

Pi =

[
Ai bi

cT
i di

]

is called the camera matrix (for camera i). It is often (but not always) the case the
that the first 3 columns of Pi (i.e., Ai stacked above cT

i) form an orthogonal matrix,
in which case the camera is called orthographic.

We do not have direct access to the image point vi; we only know the (square) pixel
that it lies in. In other words, the camera gives us a measurement v̂i (the center of the
pixel that the image point lies in); we are guaranteed that

‖vi − v̂i‖∞ ≤ ρi/2,

where ρi is the pixel width (and height) of camera i. (We know nothing else about vi;
it could be any point in this pixel.)

Given the data Ai, bi, ci, di, v̂i, ρi, we are to find the smallest box B (i.e., find the
vectors l and u) that is guaranteed to contain x. In other words, find the smallest box
in R3 that contains all points consistent with the observations from the camera.

(a) Explain how to solve this using convex or quasiconvex optimization. You must
explain any transformations you use, any new variables you introduce, etc. If the
convexity or quasiconvexity of any function in your formulation isn’t obvious, be
sure justify it.

(b) Solve the specific problem instance given in the file camera_data.m. Be sure that
your final numerical answer (i.e., l and u) stands out.

10

7.
1.5 optimization. Optimization and approximation methods that use both an
2-norm
(or its square) and an
1-norm are currently very popular in statistics, machine learn-
ing, and signal and image processing. Examples include Huber estimation, LASSO,
basis pursuit, SVM, various
1-regularized classification methods, total variation de-
noising, etc. Very roughly, an
2-norm corresponds to Euclidean distance (squared), or
the negative log-likelihood function for a Gaussian; in contrast the
1-norm gives ‘ro-
bust’ approximation, i.e., reduced sensitivity to outliers, and also tends to yield sparse
solutions (of whatever the argument of the norm is). (All of this is just background;
you don’t need to know any of this to solve the problem.)

In this problem we study a natural method for blending the two norms, by using the

1.5-norm, defined as

‖z‖1.5 =

(
k∑

i=1

|zi|
3/2

)2/3

for z ∈ Rk. We will consider the simplest approximation or regression problem:

minimize ‖Ax− b‖1.5,

with variable x ∈ Rn, and problem data A ∈ Rm×n and b ∈ Rm. We will assume that
m > n and the A is full rank (i.e., rank n). The hope is that this
1.5-optimal approx-
imation problem should share some of the good features of
2 and
1 approximation.

(a) Give optimality conditions for this problem. Try to make these as simple as
possible. Your solution should have the form ‘x is optimal for the
1.5-norm
approximation problem if and only if . . . ’.

(b) Explain how to formulate the
1.5-norm approximation problem as an SDP. (Your
SDP can include linear equality and inequality constraints.)

(c) Solve the specific numerical instance generated by the following code:

randn(’state’,0);

A=randn(100,30);

b=randn(100,1);

Numerically verify the optimality conditions. Give a histogram of the residuals,
and repeat for the
2-norm and
1-norm approximations. You can use any method
you like to solve the problem (but of course you must explain how you did it); in
particular, you do not need to use the SDP formulation found in part (b).

11

8. Three-way linear classification. We are given data

x(1), . . . , x(N), y(1), . . . , y(M), z(1), . . . , z(P),

three nonempty sets of vectors in Rn. We wish to find three affine functions on Rn,

fi(z) = aT
i z − bi, i = 1, 2, 3,

that satisfy the following properties:

f1(x
(j)) > max{f2(x

(j)), f3(x
(j))}, j = 1, . . . , N,

f2(y
(j)) > max{f1(y

(j)), f3(y
(j))}, j = 1, . . . ,M,

f3(z
(j)) > max{f1(z

(j)), f2(z
(j))}, j = 1, . . . , P.

In words: f1 is the largest of the three functions on the x data points, f2 is the largest
of the three functions on the y data points, f3 is the largest of the three functions on
the z data points. We can give a simple geometric interpretation: The functions f1,
f2, and f3 partition Rn into three regions,

R1 = {z | f1(z) > max{f2(z), f3(z)}},

R2 = {z | f2(z) > max{f1(z), f3(z)}},

R3 = {z | f3(z) > max{f1(z), f2(z)}},

defined by where each function is the largest of the three. Our goal is to find functions
with x(j) ∈ R1, y(j) ∈ R2, and z(j) ∈ R3.

Pose this as a convex optimization problem. You may not use strict inequalities in
your formulation.

12

