
EE364a Convex Optimization I Prof. S. Boyd
March 14–15 or March 15–16, 2008.

Final exam

You may use any books, notes, or computer programs (e.g., Matlab, cvx), but you may not
discuss the exam with anyone until March 18, after everyone has taken the exam. The only
exception is that you can ask us for clarification, via the course staff email address. We’ve
tried pretty hard to make the exam unambiguous and clear, so we’re unlikely to say much.

Please make a copy of your exam before handing it in.

Please attach the cover page to the front of your exam. Assemble your solutions in
order (problem 1, problem 2, problem 3, . . . ), starting a new page for each problem. Put
everything associated with each problem (e.g., text, code, plots) together; do not attach code
of plots at the end of the final.

We will deduct points from long needlessly complex solutions, even if they are

correct. Our solutions are not long, so if you find that your solution to a problem goes on
and on for many pages, you should try to figure out a simpler one. We expect neat, legible
exams from everyone, including those enrolled Cr/N.

When a problem involves computation you must give all of the following: a clear discussion
and justification of exactly what you did, the Matlab (or other) source code that produces
the result, and the final numerical results or plots.
To download Matlab files containing problem data, you’ll have to type the whole URL given
in the problem into your browser; there are no links on the course web page pointing to these
files. To get a file called filename.m, for example, you would retrieve

http://www.stanford.edu/class/ee364a/final-data/filename.m

with your browser.

Please respect the honor code. Although we allow you to work on homework assignments in
small groups, you cannot discuss the final with anyone, at least until everyone has taken it.

All problems have equal weight. Some are easier than they might appear at first glance.

Download the most recent version of cvx.

Be sure to check your email often during the exam, just in case we need to send out an
important announcement.
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1. Optimal investment to fund an expense stream. An organization (such as a munic-
ipality) knows its operating expenses over the next T periods, denoted E1, . . . , ET .
(Normally these are positive; but we can have negative Et, which corresponds to in-
come.) These expenses will be funded by a combination of investment income, from a
mixture of bonds purchased at t = 0, and a cash account.

The bonds generate investment income, denoted I1, . . . , IT . The cash balance is de-
noted B0, . . . , BT , where B0 ≥ 0 is the amount of the initial deposit into the cash
account. We can have Bt < 0 for t = 1, . . . , T , which represents borrowing.

After paying for the expenses using investment income and cash, in period t, we are
left with Bt − Et + It in cash. If this amount is positive, it earns interest at the rate
r+ > 0; if it is negative, we must pay interest at rate r−, where r− ≥ r+. Thus the
expenses, investment income, and cash balances are linked as follows:

Bt+1 =

{

(1 + r+)(Bt − Et + It) Bt − Et + It ≥ 0
(1 + r−)(Bt − Et + It) Bt − Et + It < 0,

for t = 1, . . . , T − 1. We take B1 = (1 + r+)B0, and we require that BT −ET + IT = 0,
which means the final cash balance, plus income, exactly covers the final expense.

The initial investment will be a mixture of bonds, labeled 1, . . . , n. Bond i has a price
Pi > 0, a coupon payment Ci > 0, and a maturity Mi ∈ {1, . . . , T}. Bond i generates
an income stream given by

a
(i)
t =











Ci t < Mi

Ci + 1 t = Mi

0 t > Mi,

for t = 1, . . . , T . If xi is the number of units of bond i purchased (at t = 0), the total
investment cash flow is

It = x1a
(1)
t + · · ·+ xna

(n)
t , t = 1, . . . , T.

We will require xi ≥ 0. (The xi can be fractional; they do not need to be integers.)

The total initial investment required to purchase the bonds, and fund the initial cash
balance at t = 0, is x1P1 + · · ·+ xnPn + B0.

(a) Explain how to choose x and B0 to minimize the total initial investment required
to fund the expense stream.

(b) Solve the problem instance given in opt_funding_data.m. Give optimal values
of x and B0. Give the optimal total initial investment, and compare it to the
initial investment required if no bonds were purchased (which would mean that
all the expenses were funded from the cash account). Plot the cash balance (versus
period) with optimal bond investment, and with no bond investment.
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2. Utility versus latency trade-off in a network. We consider a network with m edges,
labeled 1, . . . , m, and n flows, labeled 1, . . . , n. Each flow has an associated nonnegative
flow rate fj; each edge or link has an associated positive capacity ci. Each flow passes
over a fixed set of links (its route); the total traffic ti on link i is the sum of the flow
rates over all flows that pass through link i. The flow routes are described by a routing
matrix R ∈ Rm×n, defined as

Rij =

{

1 flow j passes through link i
0 otherwise.

Thus, the vector of link traffic, t ∈ Rm, is given by t = Rf . The link capacity
constraint can be expressed as Rf � c. The (logarithmic) network utility is defined as
U(f) =

∑n
j=1 log fj.

The (average queuing) delay on link i is given by

di =
1

ci − ti

(multiplied by a constant, that doesn’t matter to us). We take di = ∞ for ti = ci. The
delay or latency for flow j, denoted lj , is the sum of the link delays over all links that
flow j passes through. We define the maximum flow latency as

L = max{l1, . . . , ln}.

We are given R and c; we are to choose f .

(a) How would you find the flow rates that maximize the utility U , ignoring flow
latency? (In particular, we allow L = ∞.) We’ll refer to this maximum achievable
utility as Umax.

(b) How would you find the flow rates that minimize the maximum flow latency L,
ignoring utility? (In particular, we allow U = −∞.) We’ll refer to this minimum
achievable latency as Lmin.

(c) Explain how to find the optimal trade-off between utility U (which we want to
maximize) and latency L (which we want to minimize).

(d) Find Umax, Lmin, and plot the optimal trade-off of utility versus latency for the
network with data given in net_util_data.m, showing Lmin and Umax on the
same plot. Your plot should cover the range from L = 1.1Lmin to L = 11Lmin.
Plot U vertically, on a linear scale, and L horizontally, using a log scale.

Note. For parts (a), (b), and (c), your answer can involve solving one or more convex
optimization problems. But if there is a simpler solution, you should say so.
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3. Optimal design of a tensile structure. A tensile structure is modeled as a set of n masses
in R2, some of which are fixed, connected by a set of N springs. The masses are in
equilibrium, with spring forces, connection forces for the fixed masses, and gravity
balanced. (This equilibrium occurs when the position of the masses minimizes the
total energy, defined below.)

We let (xi, yi) ∈ R2 denote the position of mass i, and mi > 0 its mass value. The first
p masses are fixed, which means that xi = xfixed

i and yi = yfixed
i , for i = 1, . . . , p. The

gravitational potential energy of mass i is gmiyi, where g ≈ 9.8 is the gravitational
acceleration.

Suppose spring j connects masses r and s. Its elastic potential energy is

(1/2)kj

(

(xr − xs)
2 + (yr − ys)

2
)

,

where kj ≥ 0 is the stiffness of spring j.

To describe the topology, i.e., which springs connect which masses, we will use the
incidence matrx A ∈ Rn×N , defined as

Aij =











1 head of spring j connects to mass i
−1 tail of spring j connects to mass i

0 otherwise.

Here we arbitrarily choose a head and tail for each spring, but in fact the springs are
completely symmetric, and the choice can be reversed without any effect. (Hopefully
you will discover why it is convenient to use the incidence matrix A to specify the
topology of the system.)

The total energy is the sum of the gravitational energies, over all the masses, plus the
sum of the elastic energies, over all springs. The equilibrium positions of the masses
is the point that minimizes the total energy, subject to the constraints that the first p
positions are fixed. (In the equilibrium positions, the total force on each mass is zero.)
We let Emin denote the total energy of the system, in its equilibrium position. (We
assume the energy is bounded below; this occurs if and only if each mass is connected,
through some set of springs with positive stiffness, to a fixed mass.)

The total energy Emin is a measure of the stiffness of the structure, with larger Emin

corresponding to stiffer. (We can think of Emin = −∞ as an infinitely unstiff structure;
in this case, at least one mass is not even supported against gravity.)

(a) Suppose we know the fixed positions xfixed
1 , . . . , xfixed

p , yfixed
1 , . . . , yfixed

p , the mass
values m1, . . . , mn, the spring topology A, and the constant g. You are to choose
nonnegative k1, . . . , kN , subject to a budget constraint 1T k = k1 + · · ·+kN = ktot,
where ktot is given. Your goal is to maximize Emin.

Explain how to do this using convex optimization.
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(b) Carry out your method for the problem data given in tens_struct_data.m. This
file defines all the needed data, and also plots the equilibrium configuration when
the stiffness is evenly distributed across the springs (i.e., k = (ktot/N)1).

Report the optimal value of Emin. Plot the optimized equilibrium configuration,
and compare it to the equilibrium configuration with evenly distributed stiffness.
(The code for doing this is in the file tens_struct_data.m, but commented out.)

5



4. Identifying a sparse linear dynamical system. A linear dynamical system has the form

x(t + 1) = Ax(t) + Bu(t) + w(t), t = 1, . . . , T − 1,

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input signal, and w(t) ∈ Rn is the
process noise, at time t. We assume the process noises are IID N (0, W ), where W ≻ 0
is the covariance matrix. The matrix A ∈ Rn×n is called the dynamics matrix or the
state transition matrix, and the matrix B ∈ Rn×m is called the input matrix.

You are given accurate measurements of the state and input signal, i.e., x(1), . . . , x(T ),
u(1), . . . , u(T − 1), and W is known. Your job is to find a state transition matrix Â
and input matrix B̂ from these data, that are plausible, and in addition are sparse,
i.e., have many zero entries. (The sparser the better.)

By doing this, you are effectively estimating the structure of the dynamical system,
i.e., you are determining which components of x(t) and u(t) affect which components
of x(t + 1). In some applications, this structure might be more interesting than the
actual values of the (nonzero) coefficients in Â and B̂.

By plausible, we mean that

T−1
∑

t=1

∥

∥

∥W−1/2
(

x(t + 1) − Âx(t) − B̂u(t)
)∥

∥

∥

2

2
∈ n(T − 1) ± 2

√

2n(T − 1),

where a ± b means the interval [a − b, a + b]. (You can just take this as our definition
of plausible. But to explain this choice, we note that when Â = A and B̂ = B, the
left-hand side is χ2, with n(T − 1) degrees of freedom, and so has mean n(T − 1) and

standard deviation
√

2n(T − 1).)

(a) Describe a method for finding Â and B̂, based on convex optimization.

We are looking for a very simple method, that involves solving one convex opti-
mization problem. (There are many extensions of this basic method, that would
improve the simple method, i.e., yield sparser Â and B̂ that are still plausible.
We’re not asking you to describe or implement any of these.)

(b) Carry out your method on the data found in sparse_lds_data.m. Give the values
of Â and B̂ that you find, and verify that they are plausible.

In the data file, we give you the true values of A and B, so you can evaluate
the performance of your method. (Needless to say, you are not allowed to use
these values when forming Â and B̂.) Using these true values, give the number
of false positives and false negatives in both Â and B̂. A false positive in Â, for
example, is an entry that is nonzero, while the corresponding entry in A is zero.
A false negative is an entry of Â that is zero, while the corresponding entry of A
is nonzero. To judge whether an entry of Â (or B̂) is nonzero, you can use the
test |Âij| ≥ 0.01 (or |B̂ij| ≥ 0.01).
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5. Minimum energy processor speed scheduling. A single processor can adjust its speed
in each of T time periods, labeled 1, . . . , T . Its speed in period t will be denoted st,
t = 1, . . . , T . The speeds must lie between given (positive) minimum and maximum
values, Smin and Smax, respectively, and must satisfy a slew-rate limit, |st+1 − st| ≤ R,
t = 1, . . . , T − 1. (That is, R is the maximum allowed period-to-period change in
speed.) The energy consumed by the processor in period t is given by φ(st), where
φ : R → R is increasing and convex. The total energy consumed over all the periods
is E =

∑T
t=1 φ(st).

The processor must handle n jobs, labeled 1, . . . , n. Each job has an availability time
Ai ∈ {1, . . . , T}, and a deadline Di ∈ {1, . . . , T}, with Di ≥ Ai. The processor cannot
start work on job i until period t = Ai, and must complete the job by the end of period
Di. Job i involves a (nonnegative) total work Wi. You can assume that in each time
period, there is at least one job available, i.e., for each t, there is at least one i with
Ai ≤ t and Di ≥ t.

In period t, the processor allocates its effort across the n jobs as θt, where 1T θt = 1,
θt � 0. Here θti (the ith component of θt) gives the fraction of the processor effort
devoted to job i in period t. Respecting the availability and deadline constraints
requires that θti = 0 for t < Ai or t > Di. To complete the jobs we must have

Di
∑

t=Ai

θtist ≥ Wi, i = 1, . . . , n.

(a) Formulate the problem of choosing the speeds s1, . . . , sT , and the allocations
θ1, . . . , θT , in order to minimize the total energy E, as a convex optimization
problem. The problem data are Smin, Smax, R, φ, and the job data, Ai, Di, Wi,
i = 1, . . . , n. Be sure to justify any change of variables, or introduction of new
variables, that you use in your formulation.

(b) Carry out your method on the problem instance described in proc_sched_data.m,
with quadratic energy function φ(st) = α +βst + γs2

t . (The parameters α, β, and
γ are given in the data file.) Executing this file will also give a plot showing the
availability times and deadlines for the jobs.

Give the energy obtained by your speed profile and allocations. Plot these using
the command bar((s*ones(1,n)).*theta,1,’stacked’), where s is the T × 1
vector of speeds, and θ is the T × n matrix of allocations with components θti.
This will show, at each time period, how much effective speed is allocated to each
job. The top of the plot will show the speed st. (You don’t need to turn in a color
version of this plot; B&W is fine.)
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6. Planning production with uncertain demand. You must order (nonnegative) amounts
rI, . . . , rm of raw materials, which are needed to manufacture (nonnegative) quantities
q1, . . . , qn of n different products. To manufacture one unit of product j requires at
least Aij units of raw material i, so we must have r � Aq. (We will assume that Aij

are nonnegative.) The per-unit cost of the raw materials is given by c ∈ Rm
+ , so the

total raw material cost is cT r.

The (nonnegative) demand for product j is denoted dj ; the number of units of product
j sold is sj = min{qj, dj}. (When qj > dj, qj −dj is the amount of product j produced,
but not sold; when dj > qj , dj − qj is the amount of unmet demand.) The revenue
from selling the products is pT s, where p ∈ Rn

+ is the vector of product prices. The
profit is pT s − cT r. (Both d and q are real vectors; their entries need not be integers.)

You are given A, c, and p. The product demand, however, is not known. Instead, a set
of K possible demand vectors, d(1), . . . , d(K), with associated probabilities π1, . . . , πK ,
is given. (These satisfy 1T π = 1, π � 0.)

You will explore two different optimization problems that arise in choosing r and q
(the variables).

I. Choose r and q ahead of time. You must choose r and q, knowing only the
data listed above. (In other words, you must order the raw materials, and commit to
producing the chosen quantities of products, before you know the product demand.)
The objective is to maximize the expected profit.

II. Choose r ahead of time, and q after d is known. You must choose r, knowing
only the data listed above. Some time after you have chosen r, the demand will become
known to you. This means that you will find out which of the K demand vectors is the
true demand. Once you know this, you must choose the quantities to be manufactured.
(In other words, you must order the raw materials before the product demand is known;
but you can choose the mix of products to manufacture after you have learned the true
product demand.) The objective is to maximize the expected profit.

(a) Explain how to formulate each of these problems as a convex optimization prob-
lem. Clearly state what the variables are in the problem, what the constraints
are, and describe the roles of any auxiliary variables or constraints you introduce.

(b) Carry out the methods from part (a) on the problem instance with numerical
data given in planning_data.m. This file will define A, D, K, c, m, n, p and pi.
The K columns of D are the possible demand vectors. For both of the problems
described above, give the optimal value of r, and the expected profit.
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7. Dual of exponential cone. The exponential cone Kexp ⊆ R3 is defined as

Kexp = {(x, y, z) | y > 0, yex/y ≤ z}.

Express the dual cone in the form

K∗

exp = {(u, v, w) | . . . your conditions here . . .}.

Your conditions must be short (certainly no more than one line) and cannot involve
any variables other than u, v, and w.

We are not worried here about the fine details of what happens on the boundaries of
these cones, so you really needn’t worry about it. But we make some comments here
for those who do care about such things.

The cone Kexp as defined above is not closed. To obtain its closure, we need to add
the points

{(x, y, z) | x ≤ 0, y = 0, z ≥ 0}.

(This makes no difference, since the dual of a cone is equal to the dual of its closure.)
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