
EE364a Convex Optimization I Prof. S. Boyd
March 14–15 or March 15–16, 2008.

Final exam solutions

You may use any books, notes, or computer programs (e.g., Matlab, cvx), but you may not
discuss the exam with anyone until March 18, after everyone has taken the exam. The only
exception is that you can ask us for clarification, via the course staff email address. We’ve
tried pretty hard to make the exam unambiguous and clear, so we’re unlikely to say much.

Please make a copy of your exam before handing it in.

Please attach the cover page to the front of your exam. Assemble your solutions in
order (problem 1, problem 2, problem 3, . . .), starting a new page for each problem. Put
everything associated with each problem (e.g., text, code, plots) together; do not attach code
of plots at the end of the final.

We will deduct points from long needlessly complex solutions, even if they are

correct. Our solutions are not long, so if you find that your solution to a problem goes on
and on for many pages, you should try to figure out a simpler one. We expect neat, legible
exams from everyone, including those enrolled Cr/N.

When a problem involves computation you must give all of the following: a clear discussion
and justification of exactly what you did, the Matlab (or other) source code that produces
the result, and the final numerical results or plots.
To download Matlab files containing problem data, you’ll have to type the whole URL given
in the problem into your browser; there are no links on the course web page pointing to these
files. To get a file called filename.m, for example, you would retrieve

http://www.stanford.edu/class/ee364a/final-data/filename.m

with your browser.

Please respect the honor code. Although we allow you to work on homework assignments in
small groups, you cannot discuss the final with anyone, at least until everyone has taken it.

All problems have equal weight. Some are easier than they might appear at first glance.

Download the most recent version of cvx.

Be sure to check your email often during the exam, just in case we need to send out an
important announcement.

1

1. Optimal investment to fund an expense stream. An organization (such as a munic-
ipality) knows its operating expenses over the next T periods, denoted E1, . . . , ET .
(Normally these are positive; but we can have negative Et, which corresponds to in-
come.) These expenses will be funded by a combination of investment income, from a
mixture of bonds purchased at t = 0, and a cash account.

The bonds generate investment income, denoted I1, . . . , IT . The cash balance is de-
noted B0, . . . , BT , where B0 ≥ 0 is the amount of the initial deposit into the cash
account. We can have Bt < 0 for t = 1, . . . , T , which represents borrowing.

After paying for the expenses using investment income and cash, in period t, we are
left with Bt − Et + It in cash. If this amount is positive, it earns interest at the rate
r+ > 0; if it is negative, we must pay interest at rate r−, where r− ≥ r+. Thus the
expenses, investment income, and cash balances are linked as follows:

Bt+1 =

{

(1 + r+)(Bt − Et + It) Bt − Et + It ≥ 0
(1 + r−)(Bt − Et + It) Bt − Et + It < 0,

for t = 1, . . . , T − 1. We take B1 = (1 + r+)B0, and we require that BT −ET + IT = 0,
which means the final cash balance, plus income, exactly covers the final expense.

The initial investment will be a mixture of bonds, labeled 1, . . . , n. Bond i has a price
Pi > 0, a coupon payment Ci > 0, and a maturity Mi ∈ {1, . . . , T}. Bond i generates
an income stream given by

a
(i)
t =











Ci t < Mi

Ci + 1 t = Mi

0 t > Mi,

for t = 1, . . . , T . If xi is the number of units of bond i purchased (at t = 0), the total
investment cash flow is

It = x1a
(1)
t + · · ·+ xna

(n)
t , t = 1, . . . , T.

We will require xi ≥ 0. (The xi can be fractional; they do not need to be integers.)

The total initial investment required to purchase the bonds, and fund the initial cash
balance at t = 0, is x1P1 + · · ·+ xnPn + B0.

(a) Explain how to choose x and B0 to minimize the total initial investment required
to fund the expense stream.

(b) Solve the problem instance given in opt_funding_data.m. Give optimal values
of x and B0. Give the optimal total initial investment, and compare it to the
initial investment required if no bonds were purchased (which would mean that
all the expenses were funded from the cash account). Plot the cash balance (versus
period) with optimal bond investment, and with no bond investment.

Solution.

(a) We will give several solutions (which are close, but not the same).

2

Method 1. The cash balance propagation equations,

Bt+1 =

{

(1 + r+)(Bt − Et + It) Bt − Et + It ≥ 0
(1 + r−)(Bt − Et + It) Bt − Et + It < 0,

which can be expressed as

Bt+1 = min {(1 + r+)(Bt − Et + It), (1 + r−)(Bt − Et + It)} ,

are clearly not convex when Bt are considered as variables. We will describe two
ways to handle them.

In the first method, we relax the propagation equations to the convex inequalities

Bt+1 ≤ min {(1 + r+)(Bt − Et + It), (1 + r−)(Bt − Et + It)} .

With this relaxation, the problem can be expressed as:

minimize B0 +
∑n

i=1 Pixi

subject to
∑n

i=1 a
(i)
t xi = It, t = 1, . . . , T

x � 0, B0 ≥ 0
B1 = (1 + r+)B0

Bt+1 ≤ min {(1 + r+)(Bt − Et + It), (1 + r−)(Bt − Et + It)} , t = 1, . . . , T − 1
BT − ET + IT = 0,

with variables B0, . . . , BT , I1, . . . , IT , x1, . . . , xn. (We could treat It as an affine
expression, instead of a variable; it makes no difference.)

We will now argue that any solution of this problem must satisfy

Bt+1 = min {(1 + r+)(Bt − Et + It), (1 + r−)(Bt − Et + It)} , t = 1, . . . , T − 1,

which means that by solving the LP above, we are also solving the original prob-
lem. Suppose this is not the case; suppose, for example, that τ is the first period
for which

Bτ+1 < min {(1 + r+)(Bτ − Eτ + Iτ), (1 + r−)(Bτ − Eτ + Iτ)} .

Of course, this is kind of silly: it means we have elected to throw away some cash
between periods τ and τ +1. To give a formal argument that this cannot happen,
we first note that Bt+1 is monotonically nondecreasing in Bt for all t, since each
term within the mininimization is monotonically increasing in Bt. Thus, we can
decrease Bτ until Bτ+1 = min {(1 + r+)(Bτ − Eτ + Iτ), (1 + r−)(Bτ − Eτ + Iτ)},
and still maintain feasibility of the cash stream. By induction, we can decrease
Bτ−1, Bτ−2, . . . , B0 and still have a feasible solution. This new stream is feasible,
and reduces B0, which shows that the original point was not optimal.

3

Method 2. The second method carries out a different relaxation. In this
method we do not consider B1, . . . , BT as variables; instead we think of them
as functions of x and B0, defined by a recursion. We will show that BT (B0, x) is
a concave function of B0 and x. B1(B0, x) = (1 + r+)B0 is an concave (affine)
function. If Bt(B0, x) is a concave function, then

Bt+1(B0, x) = min {(1 + r+)(Bt(B0, x) − Et + It(x)),

(1 + r−)(Bt(B0, x) − Et + It(x))} , t = 1, . . . , T − 1

is also a concave function because it is the pointwise minimum of two concave
functions. Therefore, we can conclude that BT (B0, x) is a concave function.

The final cash balance constraint BT (B0, x)−ET +IT (x) = 0 is clearly not convex
because BT (B0, x) is a concave function. To handle this equation, we relax it to
the convex inequality

BT (B0, x) − ET + IT (x) ≥ 0.

With this relaxation, the problem can be expressed as:

minimize B0 +
∑n

i=1 Pixi

subject to x � 0, B0 ≥ 0
BT (B0, x) − ET + IT (x) ≥ 0,

with variables B0 and x1, . . . , xn. Here BT (B0, x) and IT (x) are defined by the
following recursive definitions:

B1(B0, x) = (1 + r+)B0

Bt+1(B0, x) = min {(1 + r+)(Bt(B0, x) − Et + It(x)),

(1 + r−)(Bt(B0, x) − Et + It(x))} , t = 1, . . . , T − 1

It(x) =
n

∑

i=1

a
(i)
t xi, t = 1, . . . , T.

We can argue that any solution of this problem must satisfy

BT (B0, x) − ET + IT (x) = 0,

which is very similar to the argument given above (for the inequality relaxation).

Method 3. Here is yet another solution to this problem. The cash balance
propagation equations,

Bt+1 =

{

(1 + r+)(Bt − Et + It) Bt − Et + It ≥ 0
(1 + r−)(Bt − Et + It) Bt − Et + It < 0,

4

are equivalent to LP constraints

Bt+1 = (1 + r+)S+
t − (1 + r−)S−

t ,

Bt − Et + It = S+
t − S−

t ,

S+
t ≥ 0,

S−

t ≥ 0.

The equivalence can be shown easily: Suppose Bt − Et + It is positive, then
S+

t = Bt −Et + It and S−

t = 0, so, Bt+1 = (1+ r+)(Bt −Et + It). If Bt −Et + It is
negative, then S+

t = 0 and S−

t = Bt − Et + It, so, Bt+1 = (1 + r−)(Bt − Et + It).

Therefore, the problem can be expressed as a LP:

minimize B0 +
∑n

i=1 Pixi

subject to
∑n

i=1 a
(i)
t xi = It, t = 1, . . . , T

x � 0, B0 ≥ 0
B1 = (1 + r+)B0

BT − ET + IT = 0,
Bt+1 = (1 + r+)S+

t − (1 + r−)S−

t , t = 1, . . . , T − 1
Bt − Et + It = S+

t − S−

t , t = 1, . . . , T − 1
S+

t ≥ 0, t = 1, . . . , T − 1
S−

t ≥ 0 t = 1, . . . , T − 1,

with variables B0, . . . , BT , I1, . . . , IT , x1, . . . , xn, S+
1 , . . . , S+

T−1 and S+
1 , . . . , S−

T−1.
With this approach, we have to argue that for any t, we will either have S+

t or
S−

t zero. (This is easily seen.)

(b) % Optimal investment to fund an expense stream

clear all; close all;

opt_funding_data;

cvx_begin

variables x(n) B0 B(T) I(T)

minimize(P’*x+B0)

subject to

I == A*x

x >= 0 % use x == 0 for no bond purchase

B0 >= 0

B(1) == (1+rp)*B0

for t = 1:T-1

B(t+1) <= min((1+rp)*(B(t)-E(t)+I(t)), (1+rn)*(B(t)-E(t)+I(t)))

end

B(T)-E(T)+I(T) == 0

cvx_end

5

% optimal total initial investment

cvx_optval

% associated optimal cash balance plot

bar(0:T,[B0;B]);

ylabel(’cash balance’); xlabel(’t’);

The code (cvx part) with recursive definition of Bt(B0, x) is given below.

cvx_begin

variables x(n) B0

minimize(P’*x+B0)

subject to

x >= 0 % use x == 0 for no bond purchase

B0 >= 0

B(1) = (1+rp)*B0

for t = 1:T-1

B(t+1)=min((1+rp)*(B(t)-E(t)+A(t,:)*x),(1+rn)*(B(t)-E(t)+A(t,:)*x));

end

B(T)-E(T)+A(T,:)*x >= 0

cvx_end

The code (cvx part) with LP formulation is given below.

cvx_begin

variables x(n) B0 B(T) I(T) Sp(T-1) Sn(T-1)

minimize(P’*x+B0)

subject to

I == A*x

x >= 0 % use x == 0 for no bond purchase

B0 >= 0

B(1) == (1+rp)*B0

Sp >= 0

Sn >= 0

for t = 1:T-1

B(t)-E(t)+I(t) == Sp(t) - Sn(t);

B(t+1) == (1+rp)*Sp(t)-(1+rn)*Sn(t)

end

B(T)-E(T)+I(T) == 0

cvx_end

The optimal bond investment is

x = (0.0000, 18.9326, 0.0000, 0.0000, 13.8493, 8.9228),

and the optimal initial deposit to the cash account is B0 = 0. The optimal total
initial investment is 40.7495.

6

0 1 2 3 4 5 6 7 8 9 10 11 12
−10

−8

−6

−4

−2

0

2

4

6

8

10

ca
sh

b
al

an
ce

t

Figure 1: Cash balance with optimal bond purchase.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25

30

35

40

45

ca
sh

b
al

an
ce

t

Figure 2: Cash balance with no bond purchase.

7

With no bond investment (i.e., x = 0), an initial deposit of B0 = 41.7902 is cash
is required, around 2.5% more than when we invest in bonds.

8

2. Utility versus latency trade-off in a network. We consider a network with m edges,
labeled 1, . . . , m, and n flows, labeled 1, . . . , n. Each flow has an associated nonnegative
flow rate fj; each edge or link has an associated positive capacity ci. Each flow passes
over a fixed set of links (its route); the total traffic ti on link i is the sum of the flow
rates over all flows that pass through link i. The flow routes are described by a routing
matrix R ∈ Rm×n, defined as

Rij =

{

1 flow j passes through link i
0 otherwise.

Thus, the vector of link traffic, t ∈ Rm, is given by t = Rf . The link capacity
constraint can be expressed as Rf � c. The (logarithmic) network utility is defined as
U(f) =

∑n
j=1 log fj.

The (average queuing) delay on link i is given by

di =
1

ci − ti

(multiplied by a constant, that doesn’t matter to us). We take di = ∞ for ti = ci. The
delay or latency for flow j, denoted lj , is the sum of the link delays over all links that
flow j passes through. We define the maximum flow latency as

L = max{l1, . . . , ln}.

We are given R and c; we are to choose f .

(a) How would you find the flow rates that maximize the utility U , ignoring flow
latency? (In particular, we allow L = ∞.) We’ll refer to this maximum achievable
utility as Umax.

(b) How would you find the flow rates that minimize the maximum flow latency L,
ignoring utility? (In particular, we allow U = −∞.) We’ll refer to this minimum
achievable latency as Lmin.

(c) Explain how to find the optimal trade-off between utility U (which we want to
maximize) and latency L (which we want to minimize).

(d) Find Umax, Lmin, and plot the optimal trade-off of utility versus latency for the
network with data given in net_util_data.m, showing Lmin and Umax on the
same plot. Your plot should cover the range from L = 1.1Lmin to L = 11Lmin.
Plot U vertically, on a linear scale, and L horizontally, using a log scale.

Note. For parts (a), (b), and (c), your answer can involve solving one or more convex
optimization problems. But if there is a simpler solution, you should say so.

Solution.

9

(a) To maximize utility we solve the convex problem

maximize
∑n

j=1 log fj

subject to Rf � c.

with variable f , and the implicit constraint f � 0.

(b) Link delay is monotonically increasing in traffic, so it is minimized with zero
traffic. Since flow latency is the sum of link delays, it is also minimized by
the choice f = 0. So zero flow minimizes each flow latency. With f = 0 we
have di = 1/ci. To sum these delays over the routes, we multiply by RT to get
l = RT (1/c1, . . . , 1/cm), where l is the vector of flow latencies. Thus we have

Lmin = max
(

RT (1/c1, . . . , 1/cm)
)

,

where the max is the maximum over the entries of the vector RT (1/c1, . . . , 1/cm).

(c) Let bT
1 , . . . , bT

m denote the rows of R. To find the optimal trade-off between U and
L, we solve the problem

maximize
∑n

j=1 log fj

subject to Rf � c,
m

∑

i=1

Rij

ci − bT
i f

≤ L, j = 1, . . . , n,

for a range of values of L. The variable here is f , and there is an implicit constraint
f � 0. Evidently, if Rf � c we must have ci − bT

i f ≥ 0, so the constraints

m
∑

i=1

Rij

ci − bT
i f

≤ L, j = 1, . . . , n,

are convex. This is therefore a convex optimization problem.

(d) The following code computes the utility versus latency trade-off.

% solution for network utility problem

clear all;

net_util_data;

% let’s find max utility with no delay constraint

cvx_begin

variable f(n)

maximize geomean(f)

R*f <= c

f >= 0; % not needed; enforced by geomean domain

cvx_end

Umax=sum(log(f));

10

% let’s find min latency with no utility constraint

% can be done analytically: just take f=0

Lmin = max(R’*(1./c));

% now let’s do pareto curve

N = 20;

ds = 1.10*Lmin*logspace(0,1,N); % go from 10% above L

Uopt = [];

for d = ds

cvx_begin

variable f(n)

maximize geomean(f);

R’*inv_pos(c-R*f) <= d*ones(n,1)

f >= 0; % not needed; enforced by geomean domain

R*f <= c; % not needed; enforced by inv_pos domain

cvx_end

Uopt = [Uopt n*log(cvx_optval)];

end

semilogx(ds,Uopt,’k-’,[Lmin,ds],[Umax,ones(1,N)*Umax],...

’k--’,[1,1]*Lmin,[Uopt(1),Umax],’k--’)

% axis([ds(1), ds(N), -480, -340]);

xlabel(’L’); ylabel(’U’);

The trade-off curve is shown in figure 3.

11

10
1

10
2

10
3

−480

−460

−440

−420

−400

−380

−360

−340

L

U

Figure 3: Utility versus maximum latency trade-off. Solid: trade-off curve, dashed:
Lmin and Umax

12

3. Optimal design of a tensile structure. A tensile structure is modeled as a set of n masses
in R2, some of which are fixed, connected by a set of N springs. The masses are in
equilibrium, with spring forces, connection forces for the fixed masses, and gravity
balanced. (This equilibrium occurs when the position of the masses minimizes the
total energy, defined below.)

We let (xi, yi) ∈ R2 denote the position of mass i, and mi > 0 its mass value. The first
p masses are fixed, which means that xi = xfixed

i and yi = yfixed
i , for i = 1, . . . , p. The

gravitational potential energy of mass i is gmiyi, where g ≈ 9.8 is the gravitational
acceleration.

Suppose spring j connects masses r and s. Its elastic potential energy is

(1/2)kj

(

(xr − xs)
2 + (yr − ys)

2
)

,

where kj ≥ 0 is the stiffness of spring j.

To describe the topology, i.e., which springs connect which masses, we will use the
incidence matrx A ∈ Rn×N , defined as

Aij =











1 head of spring j connects to mass i
−1 tail of spring j connects to mass i

0 otherwise.

Here we arbitrarily choose a head and tail for each spring, but in fact the springs are
completely symmetric, and the choice can be reversed without any effect. (Hopefully
you will discover why it is convenient to use the incidence matrix A to specify the
topology of the system.)

The total energy is the sum of the gravitational energies, over all the masses, plus the
sum of the elastic energies, over all springs. The equilibrium positions of the masses
is the point that minimizes the total energy, subject to the constraints that the first p
positions are fixed. (In the equilibrium positions, the total force on each mass is zero.)
We let Emin denote the total energy of the system, in its equilibrium position. (We
assume the energy is bounded below; this occurs if and only if each mass is connected,
through some set of springs with positive stiffness, to a fixed mass.)

The total energy Emin is a measure of the stiffness of the structure, with larger Emin

corresponding to stiffer. (We can think of Emin = −∞ as an infinitely unstiff structure;
in this case, at least one mass is not even supported against gravity.)

(a) Suppose we know the fixed positions xfixed
1 , . . . , xfixed

p , yfixed
1 , . . . , yfixed

p , the mass
values m1, . . . , mn, the spring topology A, and the constant g. You are to choose
nonnegative k1, . . . , kN , subject to a budget constraint 1T k = k1 + · · ·+kN = ktot,
where ktot is given. Your goal is to maximize Emin.

Explain how to do this using convex optimization.

13

(b) Carry out your method for the problem data given in tens_struct_data.m. This
file defines all the needed data, and also plots the equilibrium configuration when
the stiffness is evenly distributed across the springs (i.e., k = (ktot/N)1).

Report the optimal value of Emin. Plot the optimized equilibrium configuration,
and compare it to the equilibrium configuration with evenly distributed stiffness.
(The code for doing this is in the file tens_struct_data.m, but commented out.)

Solution:

(a) AT x gives a vector of the x-displacements of the springs, and AT y gives a vector
of the y-displacements of the springs.

The energy as a function of x, y, and k is given by

E(x, y, k) = (1/2)xT Adiag(k)AT x + (1/2)yTAdiag(k)AT y + cT y,

where ci = gmi. This is an affine function of k. Thus the minimum energy is the
minimum of this function, over all x and y that satisfy the fixed constraints. It
follows immediately that Emin is a concave function of k. That’s good, since we
want to maximize it.

We’ll need an explicit formula for Emin. To do this we partition A into A1 and
A2, where A1 ∈ Rp×N is made up of the first p rows of A, while A2 ∈ R(n−p)×N is
made up of the last n − p rows of A.

Let x̄, ȳ, c̄ ∈ Rn−p denote the last n − p (i.e., free) elements of x, y and c respec-
tively. The minimum energy can be written as

Emin(k) = min
x̄,ȳ

(

(1/2)zT
x diag(k)zx + (1/2)zT

y diag(k)zy + c̄T ȳ + C
)

,

where C =
∑p

i=1 gmiy
fixed
i and

zx = AT
2 x̄ + bx

zy = AT
2 ȳ + by

bx = AT
1 xfixed

by = AT
1 yfixed.

Thus to evaluate Emin we need to evaluate the minimum of an unconstrained
quadratic in x̄ and ȳ. This gives us

Emin(k) = (1/2)(bT
x Dbx − vT

x Q−1vx) + (1/2)(bT
y Dby − vT

y Q−1vy) + C,

where

D = diag(k)

Q = A2DAT
2

vx = A2Dbx

vy = A2Dby + c̄.

14

Note that all these terms are affine in k.

We can therefore write down the problem of re-allocating stiffness as

maximize bT
x Dbx − vT

x Q−1vx + bT
y Dby − vT

y Q−1vy

subject to 1T k = ktot, k � 0.

This is a convex optimization problem. The constraints are obviously convex in
k. The objective has two terms which are affine (and therefore concave) in k and
two terms which are the negatives of matrix fractionals of affine terms in k (and
thus also concave). Thus the objective is concave in k.

Here is another solution to this problem. The stiffness allocation problem is

maximize Emin(k)
subject to 1T k = ktot, k � 0.

Let (x⋆, y⋆) be the equilibrium mass coordinates for stiffness k and let µ be the
Lagrange multiplier associated with the equality constraint of k. Then the La-
grangian of the stiffness allocation problem is

L(k, µ) = (1/2)(x⋆T Adiag(k)AT x⋆ + y⋆T Adiag(k)AT y⋆) + cT y⋆ + µ(1Tk − ktot)

=
∑

j

kj((1/2)(x⋆T aja
T
j x⋆ + y⋆Taja

T
j y⋆) + µ) + cT y⋆ − µktot,

where aj is the jth column of A. However, this is the same as the Lagrangian of
the following optimization problem

minimize cT y − µktot

subject to (1/2)xTaja
T
j x + (1/2)yTaja

T
j y + µ ≤ 0, j = 1, . . . , N

xi = xfixed
i , i = 1, . . . , p

yi = yfixed
i , i = 1, . . . , p.

The value of this optimization problem is equal to the optimal Emin. The optimal
spring stiffness k⋆ is equal to the optimal Lagrange multipliers corresponding to
the inequality constraints.

Here is something that doesn’t work (but was proposed by a large number of
people): alternating between minimizing over x and y and maximizing over k.
Some people argued that this would converge to a local optimum of the problem,
thus a global optimum since the problem is convex. However, this is not true.

(b) The following code solves the stiffness re-allocation problem.

tens_struct_data;

c = g*m;

% Optimum stiffness allocation problem

A1 = A(1:p,:); A2 = A(p+1:n,:); cbar = c(p+1:n);

15

cvx_begin

variable k(N)

D = diag(k);

bx = A1’*x_fixed;

by = A1’*y_fixed;

vx = A2*D*bx;

vy = A2*D*by+cbar;

maximize(bx’*D*bx-matrix_frac(vx,A2*D*A2’)+...

by’*D*by-matrix_frac(vy,A2*D*A2’))

subject to

k >= 0; sum(k) == k_tot;

cvx_end

% Compute Emin

Eunif = 0.5*x_unif’*A*diag(k_unif)*A’*x_unif;

Eunif = Eunif + 0.5*y_unif’*A*diag(k_unif)*A’*y_unif;

Eunif = Eunif + c’*y_unif

Emin = 0.5*cvx_optval+c(1:p)’*y_fixed

% Form x and y

xmin = -(A2*D*A2’)\(A2*D*A1’*x_fixed);

ymin = -(A2*D*A2’)\(A2*D*A1’*y_fixed+cbar);

xopt = zeros(n,1);

xopt(1:p) = x_fixed;

xopt(p+1:n) = xmin;

yopt = zeros(n,1);

yopt(1:p) = y_fixed;

yopt(p+1:n) = ymin;

% Plot optimized structure and structure with uniform stiffness

figure

ind_ex = find(k_unif < 1e-2); %do not show springs with k < 1e-2

Aadj = A(:,setdiff(1:N,ind_ex));

Aadj2 = double(Aadj*Aadj’-diag(diag(Aadj*Aadj’)) ~= 0);

gplot(Aadj2,[x_unif y_unif],’o-’);

hold on

plot(x_fixed,y_fixed,’ro’);

xlabel(’x’); ylabel(’y’);

axis([0.1 0.8 -1.5 1])

16

figure

ind_ex = find(k < 1e-2); %do not show springs with k < 1e-2

Aadj = A(:,setdiff(1:N,ind_ex));

Aadj2 = double(Aadj*Aadj’-diag(diag(Aadj*Aadj’)) ~= 0);

gplot(Aadj2,[xopt yopt],’o-’);

hold on

plot(x_fixed,y_fixed,’ro’);

xlabel(’x’); ylabel(’y’);

axis([0.1 0.8 -1.5 1])

hold off

The optimal energy is Emin(k
⋆) = 57.84. On the other hand the minimum energy

is 18.37 when stiffness is uniformly allocated. The mass configurations for both
uniform and optimal stiffness allocations are shown in figure 4. Springs with
stiffness less than 10−2 are not shown.

17

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1.5

−1

−0.5

0

0.5

1

x

y

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−1.5

−1

−0.5

0

0.5

1

x

y

Figure 4: Mass configuration for uniform (top) and optimal (bottom) stiffness
allocation.

18

4. Identifying a sparse linear dynamical system. A linear dynamical system has the form

x(t + 1) = Ax(t) + Bu(t) + w(t), t = 1, . . . , T − 1,

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input signal, and w(t) ∈ Rn is the
process noise, at time t. We assume the process noises are IID N (0, W), where W ≻ 0
is the covariance matrix. The matrix A ∈ Rn×n is called the dynamics matrix or the
state transition matrix, and the matrix B ∈ Rn×m is called the input matrix.

You are given accurate measurements of the state and input signal, i.e., x(1), . . . , x(T),
u(1), . . . , u(T − 1), and W is known. Your job is to find a state transition matrix Â
and input matrix B̂ from these data, that are plausible, and in addition are sparse,
i.e., have many zero entries. (The sparser the better.)

By doing this, you are effectively estimating the structure of the dynamical system,
i.e., you are determining which components of x(t) and u(t) affect which components
of x(t + 1). In some applications, this structure might be more interesting than the
actual values of the (nonzero) coefficients in Â and B̂.

By plausible, we mean that

T−1
∑

t=1

∥

∥

∥W−1/2
(

x(t + 1) − Âx(t) − B̂u(t)
)∥

∥

∥

2

2
∈ n(T − 1) ± 2

√

2n(T − 1),

where a ± b means the interval [a − b, a + b]. (You can just take this as our definition
of plausible. But to explain this choice, we note that when Â = A and B̂ = B, the
left-hand side is χ2, with n(T − 1) degrees of freedom, and so has mean n(T − 1) and

standard deviation
√

2n(T − 1).)

(a) Describe a method for finding Â and B̂, based on convex optimization.

We are looking for a very simple method, that involves solving one convex opti-
mization problem. (There are many extensions of this basic method, that would
improve the simple method, i.e., yield sparser Â and B̂ that are still plausible.
We’re not asking you to describe or implement any of these.)

(b) Carry out your method on the data found in sparse_lds_data.m. Give the values
of Â and B̂ that you find, and verify that they are plausible.

In the data file, we give you the true values of A and B, so you can evaluate
the performance of your method. (Needless to say, you are not allowed to use
these values when forming Â and B̂.) Using these true values, give the number
of false positives and false negatives in both Â and B̂. A false positive in Â, for
example, is an entry that is nonzero, while the corresponding entry in A is zero.
A false negative is an entry of Â that is zero, while the corresponding entry of A
is nonzero. To judge whether an entry of Â (or B̂) is nonzero, you can use the
test |Âij| ≥ 0.01 (or |B̂ij| ≥ 0.01).

19

Solution. The problem can be expressed as

minimize card(Â) + card(B̂)

subject to
∑T−1

t=1

∥

∥

∥W−1/2
(

x(t + 1) − Âx(t) − B̂u(t)
)∥

∥

∥

2

2
∈ n(T − 1) ± 2

√

2n(T − 1),

where card(X) is the cardinality (the number of nonzero entries) of matrix X.

However, there are two problems with this: the objective is non-convex, and the lower

bound
∑T−1

t=1

∥

∥

∥W−1/2
(

x(t + 1) − Âx(t) − B̂u(t)
)∥

∥

∥

2

2
≥ n(T − 1) − 2

√

2n(T − 1) is not

a convex constraint. The second problem is dealt with by noting that we can always
increase the magnitudes of the implied errors by (for example) multiplying candidate
Â and B̂ by a constant. Hence the lower bound can be neglected, without loss of
generality.

Unfortunately the card function is less comprehensively dealt with. However, we can
use the (standard) heuristic of instead minimizing the ℓ1 norm of the entries of Â and
B̂. This gives the convex optimization problem

minimize ‖vec(Â)‖1 + ‖vec(B̂)‖1

subject to
∑T−1

t=1

∥

∥

∥W−1/2
(

x(t + 1) − Âx(t) − B̂u(t)
)
∥

∥

∥

2

2
≤ n(T − 1) + 2

√

2n(T − 1),

where vec(X) represents the columns of X concatenated to make a single column
vector. Roughly speaking, note that the constraint will always be tight: relaxing the
requirement on the implied errors allows more freedom to reduce the ℓ1 norm of Â and
B̂. Thus, in reality, we never need to worry about the lower bound from above as it
will be always satisfied.

This problem is easily solved in CVX using the following code

% Load problem data.

sparse_lds_data;

fit_tol = sqrt(n*(T-1) + 2*sqrt(2*n*(T-1))); % fit tolerance.

cvx_begin

variables Ahat(n,n) Bhat(n,m);

minimize(sum(norms(Ahat, 1)) + sum(norms(Bhat, 1)))

norm(inv(Whalf)*(xs(:,2:T) - Ahat*xs(:,1:T-1) ...

- Bhat*us), ’fro’) <= fit_tol;

cvx_end

disp(cvx_status)

% Check lower bound.

fit_tol_m = sqrt(n*(T-1) - 2*sqrt(2*n*(T-1)));

disp(norm(inv(Whalf)*(xs(:,2:T) ...

- Ahat*xs(:,1:T-1) - Bhat*us), ’fro’) >= fit_tol_m);

20

% Round near-zero elements to zero.

Ahat = Ahat .* (abs(Ahat) >= 0.01)

Bhat = Bhat .* (abs(Bhat) >= 0.01)

% Display results.

disp([’false positives, Ahat: ’ num2str(nnz((Ahat ~= 0) & (A == 0)))])

disp([’false negatives, Ahat: ’ num2str(nnz((Ahat == 0) & (A ~= 0)))])

disp([’false positives, Bhat: ’ num2str(nnz((Bhat ~= 0) & (B == 0)))])

disp([’false negatives, Bhat: ’ num2str(nnz((Bhat == 0) & (B ~= 0)))])

With the given problem data, we get 1 false positive and 2 false negatives for Â, and
no false positives and 1 false negative for B̂. The matrix estimates are

Â =































0 0 0 0 0 0 0 0
0 0 1.1483 −0.0899 0.1375 −0.0108 0 0
0 0 0 0.9329 0 0 0.2868 0
0 0.2055 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −0.0190 0.9461 0 0.8697
0 0 0 0 0.2066 0 0 0
0 0 0 0 0 0 0 0































,

and

B̂ =































−1.4717 0 0 0
0 0 0 −0.2832
0 0 0 0
0 0 0 0

1.6363 −0.0456 0 0
0 1.4117 0 0

−0.0936 0 0 −0.7755
0 −0.5705 0 0































.

Finally, there are lots of methods that will do better than this, usually by taking this as
a starting point and ‘polishing’ the result after that. Several of these have been shown
to give fairly reliable, if modest, improvements. You were not required to implement
any of these methods.

21

5. Minimum energy processor speed scheduling. A single processor can adjust its speed
in each of T time periods, labeled 1, . . . , T . Its speed in period t will be denoted st,
t = 1, . . . , T . The speeds must lie between given (positive) minimum and maximum
values, Smin and Smax, respectively, and must satisfy a slew-rate limit, |st+1 − st| ≤ R,
t = 1, . . . , T − 1. (That is, R is the maximum allowed period-to-period change in
speed.) The energy consumed by the processor in period t is given by φ(st), where
φ : R → R is increasing and convex. The total energy consumed over all the periods
is E =

∑T
t=1 φ(st).

The processor must handle n jobs, labeled 1, . . . , n. Each job has an availability time
Ai ∈ {1, . . . , T}, and a deadline Di ∈ {1, . . . , T}, with Di ≥ Ai. The processor cannot
start work on job i until period t = Ai, and must complete the job by the end of period
Di. Job i involves a (nonnegative) total work Wi. You can assume that in each time
period, there is at least one job available, i.e., for each t, there is at least one i with
Ai ≤ t and Di ≥ t.

In period t, the processor allocates its effort across the n jobs as θt, where 1T θt = 1,
θt � 0. Here θti (the ith component of θt) gives the fraction of the processor effort
devoted to job i in period t. Respecting the availability and deadline constraints
requires that θti = 0 for t < Ai or t > Di. To complete the jobs we must have

Di
∑

t=Ai

θtist ≥ Wi, i = 1, . . . , n.

(a) Formulate the problem of choosing the speeds s1, . . . , sT , and the allocations
θ1, . . . , θT , in order to minimize the total energy E, as a convex optimization
problem. The problem data are Smin, Smax, R, φ, and the job data, Ai, Di, Wi,
i = 1, . . . , n. Be sure to justify any change of variables, or introduction of new
variables, that you use in your formulation.

(b) Carry out your method on the problem instance described in proc_sched_data.m,
with quadratic energy function φ(st) = α +βst + γs2

t . (The parameters α, β, and
γ are given in the data file.) Executing this file will also give a plot showing the
availability times and deadlines for the jobs.

Give the energy obtained by your speed profile and allocations. Plot these using
the command bar((s*ones(1,n)).*theta,1,’stacked’), where s is the T × 1
vector of speeds, and θ is the T × n matrix of allocations with components θti.
This will show, at each time period, how much effective speed is allocated to each
job. The top of the plot will show the speed st. (You don’t need to turn in a color
version of this plot; B&W is fine.)

Solution. The trick is to work with the variables xti = θtist, which must be nonneg-
ative. Let X ∈ RT×n denote the matrix with components xti. The job completion
constraint can be expressed as XT1 � W . The availability and deadline constraints
can be expressed as xti = 0 for t < Ai or t > Di, which are linear constraints. The

22

speed can be expressed as s = X1, a linear function of our variable X. The objective
E is clearly a convex function of s (and so, also of X).

Our convex optimization problem is

minimize E =
∑T

t=1 φ(st)
subject to Smin � s � Smax, s = X1, XT1 � W, X � 0

|st+1 − st| ≤ R, t = 1, . . . , T − 1
Xti = 0, t = 1, . . . , Ai − 1, i = 1, . . . , n
Xti = 0, t = Di + 1, . . . , T, i = 1, . . . , n

with variables s ∈ RT and X ∈ RT×n. All generalized inequalities here, including
X � 0, are elementwise nonnegativity. Evidently this is a convex problem.

Once we find an optimal X⋆ and s⋆, we can recover θ⋆
t as

θ⋆
ti = (1/s⋆

t)x
⋆
ti, t = 1, . . . , T, i = 1, . . . , n.

For our data, the availability and deadlines of jobs are plotted in figure 5. The job
duration lines show a start time at the beginning of the available time period and a
termination time at the very end of the deadline time period. Thus, the length of the
line shows the actual duration within which the job is allowed to be completed.

The code that solves the problem is as follows.

clear all;

close all;

proc_sched_data;

cvx_begin

variable X(T,n)

X >= 0;

s = sum(X’)’;

minimize(sum(alpha+beta*s+gamma*square(s)))

s >= Smin;

s <= Smax;

abs(s(2:end)-s(1:end-1))<=R; % slew rate constraint

% start/stop constraints

for i=1:n

for t=1:A(i)-1

X(t,i)==0;

end

for t=D(i)+1:T

23

0 2 4 6 8 10 12 14 16 18
0

2

4

6

8

10

12

time t

jo
b

i

Figure 5: Job availability diagram. Stars indicate the time in which each job
becomes available. Open circles indicate the required end of the job, which is at the
end of the deadline time period.

X(t,i)==0;

end

end

sum(X)>=W’;

cvx_end

theta = X./(s*ones(1,n));

figure;

bar((s*ones(1,n)).*theta,1,’stacked’);

xlabel(’t’);

ylabel(’s_t’);

The optimal total energy is E = 162.125, which is obtained by allocating speeds
according to the plot shown in figure 6.

24

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

time t

sp
ee

d
s t

Figure 6: Optimal speed allocation profile. The top of the plot gives the processor
speed. The colored regions indicate the portion of the speed allocated to a particular
job at each time.

25

6. Planning production with uncertain demand. You must order (nonnegative) amounts
rI, . . . , rm of raw materials, which are needed to manufacture (nonnegative) quantities
q1, . . . , qn of n different products. To manufacture one unit of product j requires at
least Aij units of raw material i, so we must have r � Aq. (We will assume that Aij

are nonnegative.) The per-unit cost of the raw materials is given by c ∈ Rm
+ , so the

total raw material cost is cT r.

The (nonnegative) demand for product j is denoted dj ; the number of units of product
j sold is sj = min{qj, dj}. (When qj > dj, qj −dj is the amount of product j produced,
but not sold; when dj > qj , dj − qj is the amount of unmet demand.) The revenue
from selling the products is pT s, where p ∈ Rn

+ is the vector of product prices. The
profit is pT s − cT r. (Both d and q are real vectors; their entries need not be integers.)

You are given A, c, and p. The product demand, however, is not known. Instead, a set
of K possible demand vectors, d(1), . . . , d(K), with associated probabilities π1, . . . , πK ,
is given. (These satisfy 1T π = 1, π � 0.)

You will explore two different optimization problems that arise in choosing r and q
(the variables).

I. Choose r and q ahead of time. You must choose r and q, knowing only the
data listed above. (In other words, you must order the raw materials, and commit to
producing the chosen quantities of products, before you know the product demand.)
The objective is to maximize the expected profit.

II. Choose r ahead of time, and q after d is known. You must choose r, knowing
only the data listed above. Some time after you have chosen r, the demand will become
known to you. This means that you will find out which of the K demand vectors is the
true demand. Once you know this, you must choose the quantities to be manufactured.
(In other words, you must order the raw materials before the product demand is known;
but you can choose the mix of products to manufacture after you have learned the true
product demand.) The objective is to maximize the expected profit.

(a) Explain how to formulate each of these problems as a convex optimization prob-
lem. Clearly state what the variables are in the problem, what the constraints
are, and describe the roles of any auxiliary variables or constraints you introduce.

(b) Carry out the methods from part (a) on the problem instance with numerical
data given in planning_data.m. This file will define A, D, K, c, m, n, p and pi.
The K columns of D are the possible demand vectors. For both of the problems
described above, give the optimal value of r, and the expected profit.

Solution. We first consider the case when r and q must be decided before the demand
is known. The variables are r ∈ Rm and q ∈ Rn. The cost of the resources is

26

deterministic; it’s just cT r. The revenue from product sales is a random variable, with
values

pT min{q, d(k)}, k = 1, . . . , K,

(where min{q, d(k)} is meant elementwise), with associated probabilities π1, . . . , πK .
The expected profit is therefore

−cT r +
K

∑

k=1

πkp
T min{q, d(k)}.

Our problem is thus

maximize −cT r +
∑K

k=1 πkp
T min{q, d(k)}

subject to q � 0, r � 0, r � Aq,

with variables r and q. The objective is concave (and piecewise-linear), and the con-
straints are all linear inequalities, so this is a convex optimization problem.

Now we turn to the case when we must commit to the resource order, but can choose
the product mix after we know the demand. In this case we need to have a separate
product quantity vector for each possible demand vector. Thus we have variables
r ∈ Rm

+ and

q(1), . . . , q(K) ∈ Rn
+.

Here q(k) is the product mix we produce if d(k) turns out to be the actual product
demand. Our problem can be formulated as

maximize −cT r +
∑K

k=1 πkp
T min{q(k), d(k)}

subject to r � 0
q(k) � 0, r � Aq(k), k = 1, . . . , K.

Note that the variables r and q(1), . . . , q(K) must be decided at the same time, taking
all of them into account; we cannot optimize them separately. Nor can we decide on
r first, without taking the different q(k)’s into account. (However, provided we have
solved the problem above to get the right r, we can then optimize over q, once we
know which demand vector is the true one. But there is no need for this, since we have
already worked out the optimal q for each possible demand vector.)

We can simplify this a bit. In this case, we will not produce any excess product,
because this wastes resources, and we know the demand before we decide how much
to manufacture. So we will have q � d, and we can write the problem as

maximize −cT r +
∑K

k=1 πkp
T q(k)

subject to r � 0
d(k) � q(k) � 0, r � Aq(k), k = 1, . . . , K.

27

With the values from planning_data.m, the optimal values of r for the two problems,
respectively, are

rI = (45.5, 65.8, 44.6, 76.7, 72.0, 77.8, 59.3, 61.9, 83.2, 73.1)

rII = (65.7, 59.6, 55.2, 70.8, 69.7, 68.4, 55.3, 57.4, 63.8, 66.2)

These yield expected profits, respectively, of 114.3 and 133.0.

The cvx code that solves this problem is listed below.

planning_data;

disp(’Problem I.’)

cvx_begin

variable r(m); % amount of each raw material to buy.

variable q(n); % amount of each product to manufacture.

r >= 0;

q >= 0;

r >= A*q;

S = min(q*ones(1,K),D);

maximize(p’*S*pi - c’*r)

cvx_end

rI = r; disp(r); disp(cvx_optval);

profitI = p’*S - c’*r; % save for graphing.

disp(’Problem II.’)

cvx_begin

variable r(m); % amount of each raw material to buy.

variable q(n, K); % product to manufacture, for each demand.

q >= 0;

r >= 0;

r*ones(1,K) >= A*q;

S = min(q, D);

maximize(p’*S*pi - c’*r)

cvx_end

rII = r; disp(rII); disp(cvx_optval);

profitII = p’*S - c’*r; % save for graphing.

We mention two other optimization problems, that we didn’t ask you to explore. First,
suppose we committed to buy rI resources under the first plan, but later learned the
demand (before production started). The question then is: how suboptimal is the
expected profit when using the rI from the first problem instead of rII? For the given
numerical instance, our expected profit drops from 133.0 to 128.7.

28

Finally, it’s also interesting to look at performance when we know the demand before
buying the resources. This is the full prescience, or full information case—we know
everything beforehand. In this case we can optimize the choice of r and q for each
possible demand vector separately. This obviously gives an upper bound on the profit
available when we have less information. In this case, the expected profit with full
prescience is 161.4.

The code that solves these two additional problems is listed below.

disp(’Problem II but with rI.’)

r = rI;

cvx_begin

variable q(n, K); % product to manufacture, for each demand.

q >= 0;

r*ones(1,K) >= A*q;

S = min(q, D);

maximize(p’*S*pi - c’*r)

cvx_end

disp(p’*S*pi - c’*r);

profitIII = p’*S - c’*r; % save for graphing.

disp(’Full prescience.’)

cvx_begin

variable r(m, K); % amount of each raw material to buy, for each demand..

variable q(n, K); % product to manufacture, for each demand.

q >= 0;

r >= 0;

r >= A*q;

S = min(q, D);

maximize((p’*S - c’*r)*pi)

cvx_end

disp((p’*S - c’*r)*pi);

profitIV = p’*S - c’*r; % save for graphing.

Histograms showing profits with the different possible outcomes are shown below.

29

0 50 100 150 200 250 300 350 400
0

5

10

15

0 50 100 150 200 250 300 350 400
0

5

10

15

0 50 100 150 200 250 300 350 400
0

5

10

15

0 50 100 150 200 250 300 350 400
0

5

10

15

30

7. Dual of exponential cone. The exponential cone Kexp ⊆ R3 is defined as

Kexp = {(x, y, z) | y > 0, yex/y ≤ z}.

Express the dual cone in the form

K∗

exp = {(u, v, w) | . . . your conditions here . . .}.

Your conditions must be short (certainly no more than one line) and cannot involve
any variables other than u, v, and w.

We are not worried here about the fine details of what happens on the boundaries of
these cones, so you really needn’t worry about it. But we make some comments here
for those who do care about such things.

The cone Kexp as defined above is not closed. To obtain its closure, we need to add
the points

{(x, y, z) | x ≤ 0, y = 0, z ≥ 0}.

(This makes no difference, since the dual of a cone is equal to the dual of its closure.)

Solution. The dual cone can be expressed as

K∗

exp = cl{(u, v, w) | u < 0, −uev/u ≤ ew}

= {(u, v, w) | u < 0, −uev/u ≤ ew} ∪ {(0, v, w) | v ≥ 0, w ≥ 0},

where cl means closure. We didn’t expect people to add the points on the boundary,
i.e., to work out the second set in the second line.

The dual cone can be expressed several other ways as well. The conditions u < 0,
−uev/u ≤ ew can be expressed as

(u/w) log(−u/w) + v/w − u/w ≥ 0,

or
u log(−u/w) + v − u ≥ 0,

or
log(−u/w) ≤ 1 − (v/u).

Now let’s derive the result. For (u, v, w) to be in K∗

exp, we need to have ux+vy+wz ≥ 0

whenever y > 0 and yex/y ≤ z. Thus, we must have w ≥ 0; otherwise we can make
ux+vy +wz negative by choosing a large enough z. Now let’s see what happens when
w = 0. In this case we need ux + vy ≥ 0 for all y > 0. This happens only if u = 0 and
v ≥ 0. So points with

u = 0, v ≥ 0, w = 0

are in K∗

exp.

31

Let’s now consider the case w > 0. We’ll minimize ux + vy + wz over all x, y and z
that satisfy y > 0 and yex/y ≤ z. Since w > 0, we minimize over z by taking z = yex/y,
which yields

ux + vy + wyex/y.

Now we will minimize over x. If u > 0, this is unbounded below as x → −∞. If u = 0,
the minimum is not achieved, but occurs as x → −∞; the minimum value is then vy.
This has a nonnegative minimum value over all y > 0 only when v ≥ 0. Thus we find
that points satisfying

u = 0, v ≥ 0, w > 0

are in K∗

exp.

If u < 0, the minimum of ux + vy + wyex/y occurs when its derivative with respect to
x vanishes. This leads to u + wex/y = 0, i.e., x = y log(−u/w). For this value of x the
expression above becomes

y(u log(−u/w) + v − u).

Now we minimize over y > 0. We get −∞ if u log(−u/w) + v − u < 0; we get 0 if
u log(−u/w) + v − u ≥ 0.

So finally, we have our condition:

u log(−u/w) + v − u ≥ 0, u < 0, w > 0.

Dividing by u and taking the exponential, we can write this as

−uev/u ≤ ew, u < 0.

(The condition w > 0 is implied by these two conditions.)

Finally, then, we have

K∗

exp = {(u, v, w) | u < 0, −uev/u ≤ ew} ∪ {(0, v, w) | v ≥ 0, w ≥ 0}.

32

