
EE364a Review

Disciplined Convex Programming and CVX

• convex optimization solvers

• modeling systems

• disciplined convex programming

• CVX

1

Convex optimization solvers

• LP solvers

– lots available (GLPK, Excel, Matlab’s linprog, . . .)

• cone solvers

– typically handle (combinations of) LP, SOCP, SDP cones
– several available (SDPT3, SeDuMi, CSDP, . . .)

• general convex solvers

– some available (CVXOPT, MOSEK, . . .)

• plus lots of special purpose or application specific solvers

• could write your own

(we’ll study, and write, solvers later in the quarter)

Disciplined Convex Programming and CVX 2

Transforming problems to standard form

• you’ve seen lots of tricks for transforming a problem into an equivalent
one that has a standard form (e.g., LP, SDP)

• these tricks greatly extend the applicability of standard solvers

• writing code to carry out this transformation is often painful

• modeling systems can partly automate this step

Disciplined Convex Programming and CVX 3

Modeling systems

a typical modeling system

• automates most of the transformation to standard form; supports

– declaring optimization variables
– describing the objective function
– describing the constraints
– choosing (and configuring) the solver

• when given a problem instance, calls the solver

• interprets and returns the solver’s status (optimal, infeasible, . . .)

• (when solved) transforms the solution back to original form

Disciplined Convex Programming and CVX 4

Some current modeling systems

• AMPL & GAMS (proprietary)

– developed in the 1980s, still widely used in traditional OR
– no support for convex optimization

• YALMIP (‘Yet Another LMI Parser’)

– first matlab-based object-oriented modeling system with special
support for convex optimization

– can use many different solvers; can handle some nonconvex problems

• CVXMOD/CVXOPT (in alpha)

– python based, completely GPLed
– cone and custom solvers

• CVX

– matlab based, GPL, uses SDPT3/SeDuMi

Disciplined Convex Programming and CVX 5

Disciplined convex programming

• describe objective and constraints using expressions formed from

– a set of basic atoms (convex, concave functions)
– a restricted set of operations or rules (that preserve convexity)

• modeling system keeps track of affine, convex, concave expressions

• rules ensure that

– expressions recognized as convex (concave) are convex (concave)
– but, some convex (concave) expressions are not recognized as convex

(concave)

• problems described using DCP are convex by construction

Disciplined Convex Programming and CVX 6

CVX

• uses DCP

• runs in Matlab, between the cvx_begin and cvx_end commands

• relies on SDPT3 or SeDuMi (LP/SOCP/SDP) solvers

• refer to user guide, online help for more info

• the CVX example library has more than a hundred examples

Disciplined Convex Programming and CVX 7

Example: Constrained norm minimization

A = randn(5, 3);

b = randn(5, 1);

cvx_begin

variable x(3);

minimize(norm(A*x - b, 1))

subject to

-0.5 <= x;

x <= 0.3;

cvx_end

• between cvx_begin and cvx_end, x is a CVX variable

• statement subject to does nothing, but can be added for readability

• inequalities are intepreted elementwise

Disciplined Convex Programming and CVX 8

What CVX does

after cvx_end, CVX

• transforms problem into an LP

• calls solver SDPT3

• overwrites (object) x with (numeric) optimal value

• assigns problem optimal value to cvx_optval

• assigns problem status (which here is Solved) to cvx_status

(had problem been infeasible, cvx_status would be Infeasible and x

would be NaN)

Disciplined Convex Programming and CVX 9

Variables and affine expressions

• declare variables with variable name[(dims)] [attributes]

– variable x(3);

– variable C(4,3);

– variable S(3,3) symmetric;

– variable D(3,3) diagonal;

– variables y z;

• form affine expressions

– A = randn(4, 3);

– variables x(3) y(4);

– 3*x + 4

– A*x - y

– x(2:3)

– sum(x)

Disciplined Convex Programming and CVX 10

Some functions

function meaning attributes

norm(x, p) ‖x‖p cvx

square(x) x2 cvx

square_pos(x) (x+)2 cvx, nondecr

pos(x) x+ cvx, nondecr

sum_largest(x,k) x[1] + · · · + x[k] cvx, nondecr

sqrt(x)
√

x (x ≥ 0) ccv, nondecr

inv_pos(x) 1/x (x > 0) cvx, nonincr

max(x) max{x1, . . . , xn} cvx, nondecr

quad_over_lin(x,y) x2/y (y > 0) cvx, nonincr in y

lambda_max(X) λmax(X) (X = XT) cvx

huber(x)

{

x2, |x| ≤ 1

2|x| − 1, |x| > 1
cvx

Disciplined Convex Programming and CVX 11

Composition rules

• can combine atoms using valid composition rules, e.g.:

– a convex function of an affine function is convex
– the negative of a convex function is concave
– a convex, nondecreasing function of a convex function is convex
– a concave, nondecreasing function of a concave function is concave

• for convex h, h(g1, . . . , gk) is recognized as convex if, for each i,

– gi is affine, or
– gi is convex and h is nondecreasing in its ith arg, or
– gi is concave and h is nonincreasing in its ith arg

• for concave h, h(g1, . . . , gk) is recognized as concave if, for each i,

– gi is affine, or
– gi is convex and h is nonincreasing in ith arg, or
– gi is concave and h is nondecreasing in ith arg

Disciplined Convex Programming and CVX 12

Valid (recognized) examples

u, v, x, y are scalar variables; X is a symmetric 3 × 3 variable

• convex:

– norm(A*x - y) + 0.1*norm(x, 1)

– quad_over_lin(u - v, 1 - square(v))

– lambda_max(2*X - 4*eye(3))

– norm(2*X - 3, ’fro’)

• concave:

– min(1 + 2*u, 1 - max(2, v))

– sqrt(v) - 4.55*inv_pos(u - v)

Disciplined Convex Programming and CVX 13

Rejected examples

u, v, x, y are scalar variables

• neither convex nor concave:

– square(x) - square(y)

– norm(A*x - y) - 0.1*norm(x, 1)

• rejected due to limited DCP ruleset:

– sqrt(sum(square(x))) (is convex; could use norm(x))

– square(1 + x^2) (is convex; could use square_pos(1 + x^2), or
1 + 2*pow_pos(x, 2) + pow_pos(x, 4))

Disciplined Convex Programming and CVX 14

Sets

• some constraints are more naturally expressed with convex sets

• sets in CVX work by creating unnamed variables constrained to the set

• examples:

– semidefinite(n)

– nonnegative(n)

– simplex(n)

– lorentz(n)

• semidefinite(n), say, returns an unnamed (symmetric matrix)
variable that is constrained to be positive semidefinite

Disciplined Convex Programming and CVX 15

Using the semidefinite cone

variables: X (symmetric matrix), z (vector), t (scalar)
constants: A and B (matrices)

• X == semidefinite(n)

– means X ∈ Sn
+ (or X � 0)

• A*X*A’ - X == B*semidefinite(n)*B’

– means ∃ Z � 0 so that AXAT − X = BZBT

• [X z; z’ t] == semidefinite(n+1)

– means

[

X z

zT t

]

� 0

Disciplined Convex Programming and CVX 16

Objectives and constraints

• objective can be

– minimize(convex expression)

– maximize(concave expression)

– omitted (feasibility problem)

• constraints can be

– convex expression <= concave expression

– concave expression >= convex expression

– affine expression == affine expression

– omitted (unconstrained problem)

Disciplined Convex Programming and CVX 17

More involved example

A = randn(5);

A = A’*A;

cvx_begin

variable X(5, 5) symmetric;

variable y;

minimize(norm(X) - 10*sqrt(y))

subject to

X - A == semidefinite(5);

X(2,5) == 2*y;

X(3,1) >= 0.8;

y <= 4;

cvx_end

Disciplined Convex Programming and CVX 18

Defining new functions

• can make a new function using existing atoms

• example: the convex deadzone function

f(x) = max{|x| − 1, 0} =

0, |x| ≤ 1

x − 1, x > 1

1 − x, x < −1

• create a file deadzone.m with the code

function y = deadzone(x)

y = max(abs(x) - 1, 0)

• deadzone makes sense both within and outside of CVX

Disciplined Convex Programming and CVX 19

Defining functions via incompletely specified problems

• suppose f0, . . . , fm are convex in (x, z)

• let φ(x) be optimal value of convex problem, with variable z and
parameter x

minimize f0(x, z)

subject to fi(x, z) ≤ 0, i = 1, . . . , m

A1x + A2z = b

• φ is a convex function

• problem above sometimes called incompletely specified since x isn’t
(yet) given

• an incompletely specified concave maximization problem defines a
concave function

Disciplined Convex Programming and CVX 20

CVX functions via incompletely specified problems

implement in cvx with

function cvx_optval = phi(x)

cvx_begin

variable z;

minimize(f0(x, z))

subject to

f1(x, z) <= 0; ...

A1*x + A2*z == b;

cvx_end

• function phi will work for numeric x (by solving the problem)

• function phi can also be used inside a CVX specification, wherever a
convex function can be used

Disciplined Convex Programming and CVX 21

Simple example: Two element max

• create file max2.m containing

function cvx_optval = max2(x, y)

cvx_begin

variable t;

minimize(t)

subject to

x <= t;

y <= t;

cvx_end

• the constraints define the epigraph of the max function

• could add logic to return max(x,y) when x, y are numeric
(otherwise, an LP is solved to evaluate the max of two numbers!)

Disciplined Convex Programming and CVX 22

A more complex example

• f(x) = x + x1.5 + x2.5, with dom f = R+, is a convex, monotone
increasing function

• its inverse g = f−1 is concave, monotone increasing, with dom g = R+

• there is no closed form expression for g

• g(y) is optimal value of problem

maximize t

subject to t+ + t1.5
+ + t2.5

+ ≤ y

(for y < 0, this problem is infeasible, so optimal value is −∞)

Disciplined Convex Programming and CVX 23

• implement as

function cvx_optval = g(y)

cvx_begin

variable t;

maximize(t)

subject to

pos(t) + pow_pos(t, 1.5) + pow_pos(t, 2.5) <= y;

cvx_end

• use it as an ordinary function, as in g(14.3), or within CVX as a
concave function:

cvx_begin

variables x y;

minimize(quad_over_lin(x, y) + 4*x + 5*y)

subject to

g(x) + 2*g(y) >= 2;

cvx_end

Disciplined Convex Programming and CVX 24

Example

• optimal value of LP, f(c) = inf{cTx | Ax � b}, is concave function of c

• by duality (assuming feasibility of Ax � b) we have

f(c) = sup{−λT b | ATλ + c = 0, λ � 0}

• define f in CVX as

function cvx_optval = lp_opt_val(A,b,c)

cvx_begin

variable lambda(length(b));

maximize(-lambda’*b);

subject to

A’*lambda + c == 0; lambda >= 0;

cvx_end

• in lp opt val(A,b,c) A, b must be constant; c can be affine
expression

Disciplined Convex Programming and CVX 25

CVX hints/warnings

• watch out for = (assignment) versus == (equality constraint)

• X >= 0, with matrix X, is an elementwise inequality

• X >= semidefinite(n) means: X is elementwise larger than some
positive semidefinite matrix (which is likely not what you want)

• writing subject to is unnecessary (but can look nicer)

• make sure you include brackets around objective functions

– yes: minimize(c’*x)

– no: minimize c’*x

• double inequalities like 0 <= x <= 1 don’t work;
use 0 <= x; x <= 1 instead

• log, exp, entropy-type functions not yet implemented in CVX

Disciplined Convex Programming and CVX 26

