Disciplined Convex Programming and CVX

- convex optimization solvers
- modeling systems
- disciplined convex programming
- CVX

Convex optimization solvers

• LP solvers

- lots available (GLPK, Excel, Matlab's linprog, ...)

• cone solvers

- typically handle (combinations of) LP, SOCP, SDP cones
- several available (SDPT3, SeDuMi, CSDP, ...)

• general convex solvers

- some available (CVXOPT, MOSEK, ...)
- plus lots of special purpose or application specific solvers
- could write your own

(we'll study, and write, solvers later in the quarter)

Transforming problems to standard form

- you've seen lots of tricks for transforming a problem into an equivalent one that has a standard form (e.g., LP, SDP)
- these tricks greatly extend the applicability of standard solvers
- writing code to carry out this transformation is often painful
- modeling systems can partly automate this step

Modeling systems

a typical modeling system

- automates most of the transformation to standard form; supports
 - declaring optimization variables
 - describing the objective function
 - describing the constraints
 - choosing (and configuring) the solver
- when given a problem instance, calls the solver
- interprets and returns the solver's status (optimal, infeasible, . . .)
- (when solved) transforms the solution back to original form

Some current modeling systems

- AMPL & GAMS (proprietary)
 - developed in the 1980s, still widely used in traditional OR
 - no support for convex optimization
- YALMIP ('Yet Another LMI Parser')
 - first matlab-based object-oriented modeling system with special support for convex optimization
 - can use many different solvers; can handle some nonconvex problems
- CVXMOD/CVXOPT (in alpha)
 - python based, completely GPLed
 - cone and custom solvers
- CVX
 - matlab based, GPL, uses SDPT3/SeDuMi

Disciplined convex programming

- describe objective and constraints using expressions formed from
 - a set of basic atoms (convex, concave functions)
 - a restricted set of operations or rules (that preserve convexity)
- modeling system keeps track of affine, convex, concave expressions
- rules ensure that
 - expressions recognized as convex (concave) are convex (concave)
 - but, some convex (concave) expressions are not recognized as convex (concave)
- problems described using DCP are convex by construction

CVX

- uses DCP
- runs in Matlab, between the cvx_begin and cvx_end commands
- relies on SDPT3 or SeDuMi (LP/SOCP/SDP) solvers
- refer to user guide, online help for more info
- the CVX example library has more than a hundred examples

Example: Constrained norm minimization

```
A = randn(5, 3);
b = randn(5, 1);
cvx_begin
    variable x(3);
    minimize(norm(A*x - b, 1))
    subject to
        -0.5 <= x;
        x <= 0.3;
cvx_end
```

- between cvx_begin and cvx_end, x is a CVX variable
- statement subject to does nothing, but can be added for readability
- inequalities are intepreted elementwise

What CVX does

after cvx_end, CVX

- transforms problem into an LP
- calls solver SDPT3
- overwrites (object) x with (numeric) optimal value
- assigns problem optimal value to cvx_optval
- assigns problem status (which here is Solved) to cvx_status

(had problem been infeasible, cvx_status would be Infeasible and x would be NaN)

Variables and affine expressions

- declare variables with variable name[(dims)] [attributes]
 - variable x(3);
 - variable C(4,3);
 - variable S(3,3) symmetric;
 - variable D(3,3) diagonal;
 - variables y z;
- form affine expressions
 - A = randn(4, 3); - variables x(3) y(4); - 3*x + 4 - A*x - y - x(2:3) - sum(x)

Some functions

function	meaning	attributes
norm(x, p)	$\ x\ _p$	CVX
square(x)	x^2	CVX
<pre>square_pos(x)</pre>	$(x_{+})^{2}$	cvx, nondecr
pos(x)	x_+	cvx, nondecr
<pre>sum_largest(x,k)</pre>	$x_{[1]} + \dots + x_{[k]}$	cvx, nondecr
sqrt(x)	\sqrt{x} ($x \ge 0$)	ccv, nondecr
<pre>inv_pos(x)</pre>	1/x (x > 0)	cvx, nonincr
max(x)	$\max\{x_1,\ldots,x_n\}$	cvx, nondecr
<pre>quad_over_lin(x,y)</pre>	x^2/y (y > 0)	cvx, nonincr in y
lambda_max(X)	$\lambda_{\max}(X) (X = X^T)$	CVX
huber(x)	$\begin{cases} x^2, & x \le 1\\ 2 x - 1, & x > 1 \end{cases}$	cvx

Composition rules

- can combine atoms using valid composition rules, *e.g.*:
 - a convex function of an affine function is convex
 - the negative of a convex function is concave
 - a convex, nondecreasing function of a convex function is convex
 - a concave, nondecreasing function of a concave function is concave
- for convex h, $h(g_1, \ldots, g_k)$ is recognized as convex if, for each i,
 - g_i is affine, or
 - g_i is convex and h is nondecreasing in its ith arg, or
 - g_i is concave and h is nonincreasing in its ith arg
- for concave h, $h(g_1, \ldots, g_k)$ is recognized as concave if, for each i,
 - g_i is affine, or
 - g_i is convex and h is nonincreasing in $i {\rm th}$ arg, or
 - g_i is concave and h is nondecreasing in *i*th arg

Valid (recognized) examples

u, v, x, y are scalar variables; X is a symmetric 3×3 variable

• convex:

- $\operatorname{norm}(A*x y) + 0.1*\operatorname{norm}(x, 1)$
- quad_over_lin(u v, 1 square(v))
- $lambda_max(2*X 4*eye(3))$
- norm(2*X 3, 'fro')

• concave:

- min(1 + 2*u, 1 - max(2, v))
- sqrt(v) - 4.55*inv_pos(u - v)

Rejected examples

- u, v, x, y are scalar variables
- neither convex nor concave:
 - square(x) square(y)
 - $\operatorname{norm}(A*x y) 0.1*\operatorname{norm}(x, 1)$
- rejected due to limited DCP ruleset:
 - sqrt(sum(square(x))) (is convex; could use norm(x))
 - square(1 + x^2) (is convex; could use square_pos(1 + x^2), or
 - $1 + 2*pow_pos(x, 2) + pow_pos(x, 4))$

- some constraints are more naturally expressed with convex sets
- sets in CVX work by creating unnamed variables constrained to the set
- examples:
 - semidefinite(n)
 - nonnegative(n)
 - simplex(n)
 - lorentz(n)
- semidefinite(n), say, returns an unnamed (symmetric matrix) variable that is constrained to be positive semidefinite

Using the semidefinite cone

variables: X (symmetric matrix), z (vector), t (scalar) constants: A and B (matrices)

- X == semidefinite(n)
 - means $X \in \mathbf{S}^n_+$ (or $X \succeq 0$)
- A*X*A' X == B*semidefinite(n)*B'
 - means $\exists Z \succeq 0$ so that $AXA^T X = BZB^T$
- [X z; z' t] == semidefinite(n+1)

$$- \operatorname{means} \left[\begin{array}{cc} X & z \\ z^T & t \end{array} \right] \succeq 0$$

Objectives and constraints

• **objective** can be

- minimize(convex expression)
- maximize(concave expression)
- omitted (feasibility problem)

• constraints can be

- convex expression <= concave expression</pre>
- concave expression >= convex expression
- affine expression == affine expression
- omitted (unconstrained problem)

More involved example

```
A = randn(5);
A = A'*A;
cvx_begin
    variable X(5, 5) symmetric;
    variable y;
    minimize(norm(X) - 10*sqrt(y))
    subject to
        X - A == semidefinite(5);
        X(2,5) == 2*y;
        X(3,1) >= 0.8;
        y <= 4;
cvx_end
```

Defining new functions

- can make a new function using existing atoms
- example: the convex deadzone function

$$f(x) = \max\{|x| - 1, 0\} = \begin{cases} 0, & |x| \le 1\\ x - 1, & x > 1\\ 1 - x, & x < -1 \end{cases}$$

• create a file deadzone.m with the code

function y = deadzone(x)y = max(abs(x) - 1, 0)

• deadzone makes sense both within and outside of CVX

Defining functions via incompletely specified problems

- suppose f_0, \ldots, f_m are convex in (x, z)
- let $\phi(x)$ be optimal value of convex problem, with variable z and parameter x

minimize
$$f_0(x, z)$$

subject to $f_i(x, z) \le 0$, $i = 1, ..., m$
 $A_1x + A_2z = b$

- ϕ is a convex function
- problem above sometimes called *incompletely specified* since x isn't (yet) given
- an incompletely specified concave maximization problem defines a concave function

CVX functions via incompletely specified problems

```
implement in cvx with
function cvx_optval = phi(x)
cvx_begin
   variable z;
   minimize(f0(x, z))
   subject to
      f1(x, z) <= 0; ...
      A1*x + A2*z == b;
cvx_end</pre>
```

- function phi will work for numeric x (by solving the problem)
- function phi can also be used inside a CVX specification, wherever a convex function can be used

Simple example: Two element max

• create file max2.m containing

```
function cvx_optval = max2(x, y)
cvx_begin
    variable t;
    minimize(t)
    subject to
        x <= t;
        y <= t;
cvx_end</pre>
```

- the constraints define the epigraph of the max function
- could add logic to return max(x,y) when x, y are numeric (otherwise, an LP is solved to evaluate the max of two numbers!)

A more complex example

- $f(x) = x + x^{1.5} + x^{2.5}$, with dom $f = \mathbf{R}_+$, is a convex, monotone increasing function
- its inverse $g = f^{-1}$ is concave, monotone increasing, with $\operatorname{dom} g = \mathbf{R}_+$
- \bullet there is no closed form expression for g
- g(y) is optimal value of problem

maximize tsubject to $t_+ + t_+^{1.5} + t_+^{2.5} \le y$

(for y < 0, this problem is infeasible, so optimal value is $-\infty$)

• implement as

```
function cvx_optval = g(y)
cvx_begin
    variable t;
    maximize(t)
    subject to
        pos(t) + pow_pos(t, 1.5) + pow_pos(t, 2.5) <= y;
cvx_end</pre>
```

• use it as an ordinary function, as in g(14.3), or within CVX as a concave function:

```
cvx_begin
    variables x y;
    minimize(quad_over_lin(x, y) + 4*x + 5*y)
    subject to
       g(x) + 2*g(y) >= 2;
cvx_end
```

Example

- optimal value of LP, $f(c) = \inf\{c^T x \mid Ax \preceq b\}$, is concave function of c
- by duality (assuming feasibility of $Ax \leq b$) we have

$$f(c) = \sup\{-\lambda^T b \mid A^T \lambda + c = 0, \ \lambda \succeq 0\}$$

• define f in CVX as

```
function cvx_optval = lp_opt_val(A,b,c)
cvx_begin
    variable lambda(length(b));
    maximize(-lambda'*b);
    subject to
        A'*lambda + c == 0; lambda >= 0;
cvx_end
```

 in lp_opt_val(A,b,c) A, b must be constant; c can be affine expression

CVX hints/warnings

- watch out for = (assignment) versus == (equality constraint)
- X >= 0, with matrix X, is an elementwise inequality
- X >= semidefinite(n) means: X is elementwise larger than some positive semidefinite matrix (which is likely not what you want)
- writing subject to is unnecessary (but can look nicer)
- make sure you include brackets around objective functions
 - yes: minimize(c'*x)
 - no: minimize c'*x
- double inequalities like 0 <= x <= 1 don't work; use 0 <= x; x <= 1 instead
- log, exp, entropy-type functions not yet implemented in CVX