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FIR filters

finite impulse response (FIR) filter:

n—1
y(t) =Y heu(t—7), teZ
7=0

e (sequence) u: Z — R is input signal
e (sequence) y : Z — R is output signal
e h; are called filter coefficients

e n is filter order or length
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filter frequency response: H : R — C

H(w) = h() + hle_jw + - hn_le—j(n—l)w
n—1 n—1
— Z hicostw + j Z hy sin tw
t=0 t=0

e j means v/—1 here (EE tradition)

e H is periodic and conjugate symmetric, so only need to know/specify
for0<w<m

FIR filter design problem: choose h so it and H satisfy/optimize specs
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example: (lowpass) FIR filter, order n = 21

Impulse response h;:
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frequency response magnitude (i.e., |H(w)]):
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Chebychev design

minimize m[ax] |H(w) — Hges(w)]
we |0,

e h is optimization variable
e Hy.s: R— Cis (given) desired transfer function

e convex problem

e can add constraints, e.g., |h;| <1

sample (discretize) frequency:

minimize max |H(wy) — Hges(wk)]
k=1,....m

e sample points 0 < w;y < -+ < wy, < 7 are fixed (e.g., wp = kw/m)
e m > n (common rule-of-thumb: m = 15n)

e yields approximation (relaxation) of problem above
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Chebychev design via SOCP:

minimize ¢
subject to HA(k)h — b("“)H <t, k=1,....,m

where
ne 1 coswp - cos(n—1)wy
| 0 —sinwg -+ —sin(n—1)wy
(k) _ N H ges(wr)
%Hdes(wk)
oy
-
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Linear phase filters

suppose

e n=2N +1is odd

e impulse response is symmetric about midpoint:

ht:hn—l—ta t:(),,n—l

then

H(w) = ho + hie ™ 1 - 4 hyqe 3D

2 e N H (w)
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o term e 7V represents N-sample delay

~

e H(w) is real

~

o |H(w)| = |H(w)

e called linear phase filter (/ H(w) is linear except for jumps of +7)
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Lowpass filter specifications

W L L
V77

1/61

Idea:

e pass frequencies in passband [0, wy)

e block frequencies in stopband |wg, 7]
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specifications:

e maximum passband ripple (£201log,d1 in dB):

1/01 < |Hw)| <61, 0<w < wp

e minimum stopband attenuation (—20log;, 2 in dB):
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Linear phase lowpass filter design

e sample frequency

e can assume wlog f[(()) > 0, so ripple spec is

1/61 < H(wg) < 6

design for maximum stopband attenuation:
minimize  do

subject to 1/4; < f[(wk) <01, 0<wi<uw,
—0y < H(wg) < b2, ws<wp <

Filter design
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e passband ripple 07 is given
e an LP in variables h, 09

e known (and used) since 1960's

e can add other constraints, e.g., |h;| < «

variations and extensions:

e fix d2, minimize §; (convex, but not LP)
e fix §; and &3, minimize wy (quasiconvex)

e fix 91 and J2, minimize order n (quasiconvex)
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example

e linear phase filter, n = 21

e passband [0,0.127]; stopband [0.247, 7]
e max ripple 61 = 1.012 (£0.1dB)

e design for maximum stopband attenuation

impulse response h:

0.27 o ) o
o o
0.1f 0 o
o
VS
- oF © : ,
N 0 009 O 0. .0 0
Ny
-0.1
-0.2
|
0 2 4 6 8 10 12

Filter design



frequency response magnitude (i.e., |H(w)]):
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Equalizer design

— H(w) > G(w) >

equalization: given
e (G (unequalized frequency response)

o (G4es (desired frequency response)

design (FIR equalizer) H so that G 2 GH ~ Ges

e common choice: Gqes(w) = e 7P (delay)
i.e., equalization is deconvolution (up to delay)

e can add constraints on H, e.g., limits on |h;| or max,, |H(w)|
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Chebychev equalizer design:

minimize max |G(w)
we|[0,]

convex; SOCP after sampling frequency
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time-domain equalization: optimize impulse response g of equalized
system
e.g., with Gges(w) = e 7P,

sample design:
minimize  max;xp |§(?)]

subject to g(D) =1
e an LP

e canuse >, g(t)* or >, 1g(t)]
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extensions:

e can impose (convex) constraints
e can mix time- and frequency-domain specifications

e can equalize multiple systems, i.e., choose H so

GMH ~Gues, k=1,....K

e can equalize multi-input multi-output systems
(i.e., G and H are matrices)

e extends to multidimensional systems, e.g., image processing
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Equalizer design example

unequalized system G is 10th order FIR:
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|G (w)]
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design 30th order FIR equalizer with é(w) ~ ¢ J10w
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Chebychev equalizer design:

minimize max |G(w) — e
w

—710w

equalized system impulse response g
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equalized frequency response magnitude |é!
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time-domain equalizer design:

. "
minimize gai%cm( )|

equalized system impulse response g
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equalized frequency response magnitude |é!
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Filter magnitude specifications

transfer function magnitude spec has form

Lw)<|Hw)|<U(Ww), welo,n]

where L, U : R — R are given
e lower bound is not convex in filter coefficients h
e arises in many applications, e.qg., audio, spectrum shaping

e can change variables to solve via convex optimization
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Autocorrelation coefficients

autocorrelation coefficients associated with impulse response
h=(hg,...,hn1) € R" are

rt = Z At

(we take hy =0 for k <0 or k > n)

o ry=1_4; 7 =0for [t| >n

e hence suffices to specify » = (rg,...,7,1) € R”
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Fourier transform of autocorrelation coefficients is

n—1

R(w) = Ze‘jwn =70+ Z 2r, coswt = |H (w)]|?

T t=1

e always have R(w) > 0 for all w

e can express magnitude specification as
L(w)* < R(w) < U(w)?

...convexinr

Filter design
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Spectral factorization

question: when is » € R" the autocorrelation coefficients of some h € R"?
answer: (spectral factorization theorem) if and only if R(w) > 0 for all w
e spectral factorization condition is convex in 7

e many algorithms for spectral factorization, i.e., finding an h s.t.
R(w) = [H(w)]*

magnitude design via autocorrelation coefficients:
e use r as variable (instead of h)

e add spec. fact. condition R(w) > 0 for all w

e optimize over r

e use spectral factorization to recover h
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log-Chebychev magnitude design

choose h to minimize

max |20logy, |[H (w)| — 201log,y D(w)|

e D is desired transfer function magnitude
(D(w) > 0 for all w)

e find minimax logarithmic (dB) fit
reformulate as

minimize t
subject to D(w)?/t < R(w) <tD(w)?, 0<w<m

e convex in variables r, ¢

e constraint includes spectral factorization condition
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example: 1/f (pink noise) filter (i.e., D(w) = 1/y/w), n = 50,
log-Chebychev design over 0.01l7 < w <7

10 10

optimal fit: £0.5dB
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