Filter design

- FIR filters
- Chebychev design
- linear phase filter design
- equalizer design
- filter magnitude specifications

FIR filters

finite impulse response (FIR) filter:

$$
y(t) = \sum_{\tau=0}^{n-1} h_{\tau} u(t-\tau), \quad t \in \mathbf{Z}
$$

- (sequence) $u: \mathsf{Z} \to \mathsf{R}$ is *input signal*
- (sequence) $y: \mathsf{Z} \to \mathsf{R}$ is *output signal*
- \bullet h_i are called filter coefficients
- $\bullet\hspace{1mm} n$ is filter *order* or *length*

filter frequency response: $H : \mathsf{R} \to \mathsf{C}$

$$
H(\omega) = h_0 + h_1 e^{-j\omega} + \dots + h_{n-1} e^{-j(n-1)\omega}
$$

=
$$
\sum_{t=0}^{n-1} h_t \cos t\omega + j \sum_{t=0}^{n-1} h_t \sin t\omega
$$

- \bullet j means $\sqrt{-1}$ here (EE tradition)
- H is periodic and conjugate symmetric, so only need to know/specify for $0 \leq \omega \leq \pi$

FIR filter design problem: choose h so it and H satisfy/optimize specs

example: (lowpass) FIR filter, order $n=21$

impulse response $h\mathrm{:}$

frequency response magnitude $(i.e.,\ |H(\omega)|)$:

frequency response phase $(i.e.,\,\, \angle H(\omega))$:

Filter design

Chebychev design

minimize $\max\limits_{\omega\in[0,\pi]}|H(\omega)-H_{\rm des}(\omega)|$

- $\bullet\hskip 2pt h$ is optimization variable
- $H_{\text{des}}: \mathbf{R} \to \mathbf{C}$ is (given) desired transfer function
- convex problem
- \bullet can add constraints, $e.g.,\ |h_i|\leq 1$

sample (discretize) frequency:

$$
\text{minimize}_{k=1,\dots,m} |H(\omega_k) - H_{\text{des}}(\omega_k)|
$$

- \bullet sample points $0 \leq \omega_1 < \cdots < \omega_m \leq \pi$ are fixed $(e.g.,\ \omega_k = k\pi/m)$
- $m \gg n$ (common rule-of-thumb: $m = 15n$)
- ^yields approximation (relaxation) of problem above

Chebychev design via SOCP:

$$
\begin{array}{ll}\text{minimize} & t\\ \text{subject to} & \left\| A^{(k)} h - b^{(k)} \right\| \le t, \quad k = 1, \dots, m \end{array}
$$

where

$$
A^{(k)} = \begin{bmatrix} 1 & \cos \omega_k & \cdots & \cos(n-1)\omega_k \\ 0 & -\sin \omega_k & \cdots & -\sin(n-1)\omega_k \end{bmatrix}
$$

$$
b^{(k)} = \begin{bmatrix} \Re H_{\text{des}}(\omega_k) \\ \Im H_{\text{des}}(\omega_k) \end{bmatrix}
$$

$$
h = \begin{bmatrix} h_0 \\ \cdots \\ h_{n-1} \end{bmatrix}
$$

Linear phase filters

suppose

- $n = 2N + 1$ is odd
- impulse response is symmetric about midpoint:

$$
h_t = h_{n-1-t}, \quad t = 0, \ldots, n-1
$$

then

$$
H(\omega) = h_0 + h_1 e^{-j\omega} + \dots + h_{n-1} e^{-j(n-1)\omega}
$$

= $e^{-jN\omega} (2h_0 \cos N\omega + 2h_1 \cos(N-1)\omega + \dots + h_N)$
 $\stackrel{\Delta}{=} e^{-jN\omega} \widetilde{H}(\omega)$

- term $e^{-jN\omega}$ represents N -sample delay
- \bullet $\widetilde{H}(\omega)$ is real
- $|H(\omega)| = |\widetilde{H}(\omega)|$
- $\bullet\,$ called linear phase filter $(\angle H(\omega)$ is linear except for jumps of $\pm\pi)$

Lowpass filter specifications

idea:

- $\bullet\,$ pass frequencies in ${\it passband}\,\left[0,\omega_{\rm p}\right]$
- $\bullet\,$ block frequencies in stopband $[\omega_{\rm s},\pi]$

specifications:

• maximum *passband ripple* $(\pm 20\log_{10}\delta_1$ in dB):

$$
1/\delta_1 \le |H(\omega)| \le \delta_1, \quad 0 \le \omega \le \omega_{\rm p}
$$

• minimum *stopband attenuation* $(-20\log_{10}\delta_2$ in dB):

$$
|H(\omega)| \leq \delta_2, \quad \omega_{\rm s} \leq \omega \leq \pi
$$

Linear phase lowpass filter design

- sample frequency
- $\bullet\,$ can assume wlog $\widetilde{H}(0)>0,$ so ripple spec is

$$
1/\delta_1 \le \widetilde{H}(\omega_k) \le \delta_1
$$

design for maximum stopband attenuation:

minimize
$$
\delta_2
$$

\nsubject to $1/\delta_1 \leq \widetilde{H}(\omega_k) \leq \delta_1$, $0 \leq \omega_k \leq \omega_p$
\n $-\delta_2 \leq \widetilde{H}(\omega_k) \leq \delta_2$, $\omega_s \leq \omega_k \leq \pi$

- $\bullet\,$ passband ripple δ_1 is given
- $\bullet\,$ an LP in variables $h,\,\delta_2$
- known (and used) since 1960's
- $\bullet\,$ can add other constraints, $\,e.g.,\,|h_i|\leq \alpha$

variations and extensions:

- $\bullet\,$ fix δ_2 , minimize δ_1 (convex, but not LP)
- $\bullet\,$ fix δ_1 and δ_2 , minimize $\omega_{\rm s}$ (quasiconvex)
- $\bullet\,$ fix δ_1 and δ_2 , minimize order n (quasiconvex)

example

- $\bullet\,$ linear phase filter, $n=21$
- $\bullet\,$ passband $[0,0.12\pi];$ stopband $[0.24\pi,\pi]$
- $\bullet\,$ max ripple $\delta_1 = 1.012\ (\pm0.1$ dB)
- design for maximum stopband attenuation

impulse response $h\mathrm{:}$

frequency response magnitude $(i.e.,\ |H(\omega)|)$:

frequency response phase $(i.e.,\,\, \angle H(\omega))$:

Filter design

Equalizer design

equalization: given

- \bullet $\,G$ (unequalized frequency response)
- \bullet $\,G_{\text{des}}$ (desired frequency response)

design (FIR equalizer) H so that $\widetilde{G}\overset{\Delta}{=}$ $\stackrel{\triangle}{=} GH \approx G_{\text{des}}$

- common choice: $G_{\text{des}}(\omega) = e^{-jD\omega}$ (delay) $i.e.,$ equalization is deconvolution (up to delay)
- $\bullet\,$ can add constraints on H , $\it e.g.$, limits on $|h_i|$ or $\max_{\omega}|H(\omega)|$

Chebychev equalizer design:

$$
\mathop{\hbox{minimize}}\limits_{\omega \in [0,\pi]} \left|\widetilde{G}(\omega) - G_{\rm des}(\omega)\right|
$$

convex; SOCP after sampling frequency

 $\tt time-domain\ equalization:$ optimize impulse response \tilde{g} of equalized system*e.g.*, with $G_{\text{des}}(\omega) = e^{-jD\omega}$,

$$
g_{\text{des}}(t) = \begin{cases} 1 & t = D \\ 0 & t \neq D \end{cases}
$$

sample design:

minimize $\max_{t\neq D} |\tilde{g}(t)|$ subject to $\tilde{g}(D) = 1$

- an LP
- $\bullet\,$ can use $\sum_{t\neq D} \tilde g(t)^2$ or $\sum_{t\neq D} |\tilde g(t)|$

extensions:

- can impose (convex) constraints
- can mix time- and frequency-domain specifications
- $\bullet\,$ can equalize multiple systems, $\it{i.e.},$ choose H so

$$
G^{(k)}H \approx G_{\text{des}}, \quad k = 1, \dots, K
$$

- can equalize multi-input multi-output systems $(i.e.,\ G$ and H are matrices)
- \bullet extends to multidimensional systems, $\emph{e.g.},$ image processing

Equalizer design example

unequalized system G is 10 th order FIR:

design 30 th order FIR equalizer with \widetilde{G} $G(\omega) \approx e^{-j10\omega}$

Filter design

Chebychev equalizer design:

$$
\text{minimize } \max_{\omega} \left| \tilde{G}(\omega) - e^{-j10\omega} \right|
$$

time-domain equalizer design:

minimize $\max_{t\neq 10}$ $|\tilde{g} ($ t $|t)|$

Filter magnitude specifications

transfer function *magnitude spec* has form

$$
L(\omega) \le |H(\omega)| \le U(\omega), \quad \omega \in [0, \pi]
$$

where $L, U : \mathbf{R} \to \mathbf{R}_+$ $_+$ are given

- $\bullet\,$ lower bound is $\mathop{\mathsf{not}}\nolimits$ convex in filter coefficients h
- \bullet arises in many applications, $\emph{e.g.}$, audio, spectrum shaping
- can change variables to solve via convex optimization

Autocorrelation coefficients

autocorrelation coefficients associated with impulse response $h=(h_0,\ldots,h_{n-1})\in{\mathbf R}^n$ are

$$
r_t = \sum_{\tau} h_{\tau} h_{\tau + t}
$$

(we take $h_k = 0$ for $k < 0$ or $k \geq n$)

- $r_t = r_{-t}$; $r_t = 0$ for $|t| \geq n$
- \bullet hence suffices to specify $r=(r_0,\ldots,r_{n-1})\in \mathbf{R}^n$

Fourier transform of autocorrelation coefficients is

$$
R(\omega) = \sum_{\tau} e^{-j\omega\tau} r_{\tau} = r_0 + \sum_{t=1}^{n-1} 2r_t \cos \omega t = |H(\omega)|^2
$$

 $\bullet\,$ always have $R(\omega)\geq 0$ for all ω

• can express magnitude specification as

$$
L(\omega)^2 \le R(\omega) \le U(\omega)^2, \quad \omega \in [0, \pi]
$$

. . . ${\bf convex}$ in r

Spectral factorization

question: when is $r \in \mathbf{R}^n$ the autocorrelation coefficients of some $h \in \mathbf{R}^n$? **answer:** (*spectral factorization theorem*) if and only if $R(\omega) \ge 0$ for all ω

- $\bullet\,$ spectral factorization condition is convex in r
- many algorithms for spectral factorization, $i.e.,$ finding an h s.t. $R(\omega) = |H(\omega)|^2$

magnitude design via autocorrelation coefficients:

- $\bullet\,$ use r as variable (instead of $h)$
- \bullet add spec. fact. condition $R(\omega) \geq 0$ for all ω
- $\bullet\,$ optimize over r
- $\bullet\,$ use spectral factorization to recover h

log-Chebychev magnitude design

choose h to minimize

$$
\max_{\omega} |20\log_{10}|H(\omega)| - 20\log_{10}D(\omega)|
$$

- D is desired transfer function magnitude $\left(D(\omega)>0\right.$ for all $\omega)$
- find minimax logarithmic (dB) fit

reformulate as

minimize $\quad t$ subject to $D(\omega)^2/t \le R(\omega) \le tD(\omega)^2$ ², $0 \leq \omega \leq \pi$

- \bullet convex in variables r , t
- constraint includes spectral factorization condition

example: $1/f$ (pink noise) filter $(i.e.,\ D(\omega)=1/\sqrt{\omega}),\ n=50,$ log-Chebychev design over $0.01\pi \leq \omega \leq \pi$

optimal fit: [±]0.5dB