
Convex optimization examples

• force/moment generation with thrusters

• minimum-time optimal control

• optimal transmitter power allocation

• phased-array antenna beamforming

• optimal receiver location

• power allocation in FDM system

• optimizing structural dynamics
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Force/moment generation with thrusters

• rigid body with center of mass at origin p = 0 ∈ R2

• n forces with magnitude ui, acting at pi = (pix, piy), in direction θi

ui

(pix, piy)

θi
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• resulting horizontal force: Fx =
∑n

i=1 ui cos θi

• resulting vertical force: Fy =
∑n

i=1 ui sin θi

• resulting torque: T =
∑n

i=1 (piyui cos θi − pixui sin θi)

• force limits: 0 ≤ ui ≤ 1 (thrusters)

• fuel usage: u1 + · · · + un

problem: find thruster forces ui that yield given desired forces and torques
F des

x , F des
y , T des, and minimize fuel usage (if feasible)
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can be expressed as LP:

minimize 1
Tu

subject to Fu = fdes

0 ≤ ui ≤ 1, i = 1, . . . , n

where

F =





cos θ1 · · · cos θn

sin θ1 · · · sin θn

p1y cos θ1 − p1x sin θ1 · · · pny cos θn − pnx sin θn



 ,

fdes = (F des
x , F des

y , T des), 1 = ( 1, 1, · · · 1 )
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Extensions of thruster problem

• opposing thruster pairs:

minimize ‖u‖1 =
∑n

i=1 |ui|
subject to Fu = fdes

|ui| ≤ 1, i = 1, . . . , n

can express as LP

• more accurate fuel use model:

minimize
∑n

i=1 φi(ui)
subject to Fu = fdes

0 ≤ ui ≤ 1, i = 1, . . . , n

φi are piecewise linear increasing convex functions
can express as LP
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• minimize maximum force/moment error:

minimize ‖Fu − fdes‖∞
subject to 0 ≤ ui ≤ 1, i = 1, . . . , n

can express as LP

• minimize number of thrusters used:

minimize # thrusters on
subject to Fu = fdes

0 ≤ ui ≤ 1, i = 1, . . . , n

can’t express as LP
(but we could check feasibility of each of the 2n subsets of thrusters)
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Minimum-time optimal control

• linear dynamical system:

x(t + 1) = Ax(t) + Bu(t), t = 0, 1, . . . , K, x(0) = x0

• inputs limited to range [−1, 1]:

‖u(t)‖∞ ≤ 1, t = 0, 1, . . . , K

• settling time:

f(u(0), . . . , u(K)) = min {T | x(t) = 0 for T ≤ t ≤ K + 1}
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settling time f is quasiconvex function of (u(0), . . . , u(K)):

f(u(0), u(1), . . . , u(K)) ≤ T

if and only if for all t = T, . . . , K + 1

x(t) = Atx0 + At−1Bu(0) + · · · + Bu(t − 1) = 0

i.e., sublevel sets are affine

minimum-time optimal control problem:

minimize f(u(0), u(1), . . . , u(K))

subject to ‖u(t)‖∞ ≤ 1, t = 0, . . . ,K

with variables u(0), . . . , u(K)

a quasiconvex problem; can be solved via bisection with LPs
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Minimum-time control example

three unit masses, connected by two unit springs with equilibrium length
one

u(t) ∈ R2 is force on left & right masses over time interval
(0.15t, 0.15(t + 1)]

u1(t) u2(t)

problem: pick u(0), . . . , u(K) to bring masses to positions (−1, 0, 1) (at
rest), as quickly as possible, from initial condition (−3, 0, 2) (at rest)
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optimal solution:
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Optimal transmitter power allocation

• m transmitters, mn receivers all at same frequency

• transmitter i wants to transmit to n receivers labeled (i, j), j = 1, . . . , n

transmitter i

transmitter k

receiver (i, j)

• Aijk is path gain from transmitter k to receiver (i, j)

• Nij is (self) noise power of receiver (i, j)

• variables: transmitter powers pk, k = 1, . . . ,m
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at receiver (i, j):

• signal power:
Sij = Aijipi

• noise plus interference power:

Iij =
∑

k 6=i

Aijkpk + Nij

• signal to interference/noise ratio (SINR): Sij/Iij

problem: choose pi to maximize smallest SINR:

maximize min
i,j

Aijipi
∑

k 6=i Aijkpk + Nij

subject to 0 ≤ pi ≤ pmax

. . . a (generalized) linear fractional program
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Phased-array antenna beamforming

(xi, yi)

θ

• omnidirectional antenna elements at positions (x1, y1), . . . , (xn, yn)

• unit plane wave incident from angle θ induces in ith element a signal
ej(xi cos θ+yi sin θ−ωt)

(j =
√
−1, frequency ω, wavelength 2π)
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• demodulate to get output ej(xi cos θ+yi sin θ) ∈ C

• linearly combine with complex weights wi:

y(θ) =

n
∑

i=1

wie
j(xi cos θ+yi sin θ)

• y(θ) is (complex) antenna array gain pattern

• |y(θ)| gives sensitivity of array as function of incident angle θ

• depends on design variables Re w, Im w
(called antenna array weights or shading coefficients)

design problem: choose w to achieve desired gain pattern
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Sidelobe level minimization

make |y(θ)| small for |θ − θtar| > α

(θtar: target direction; 2α: beamwidth)

via least-squares (discretize angles)

minimize
∑

i |y(θi)|2
subject to y(θtar) = 1

(sum is over angles outside beam)

least-squares problem with two (real) linear equality constraints
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minimize sidelobe level (discretize angles)

minimize maxi |y(θi)|
subject to y(θtar) = 1

(max over angles outside beam)

can be cast as SOCP

minimize t
subject to |y(θi)| ≤ t

y(θtar) = 1
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Extensions

convex (& quasiconvex) extensions:

• y(θ0) = 0 (null in direction θ0)

• w is real (amplitude only shading)

• |wi| ≤ 1 (attenuation only shading)

• minimize σ2
∑n

i=1 |wi|2 (thermal noise power in y)

• minimize beamwidth given a maximum sidelobe level

nonconvex extension:

• maximize number of zero weights
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Optimal receiver location

• N transmitter frequencies 1, . . . , N

• transmitters at locations ai, bi ∈ R2 use frequency i

• transmitters at a1, a2, . . . , aN are the wanted ones

• transmitters at b1, b2, . . . , bN are interfering

• receiver at position x ∈ R2

x

q

b1

q

b2

q

b3

a

a1

a

a2

a

a3
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• (signal) receiver power from ai: ‖x − ai‖−α (α ≈ 2.1)

• (interfering) receiver power from bi: ‖x − bi‖−α (α ≈ 2.1)

• worst signal to interference ratio, over all frequencies, is

S/I = min
i

‖x − ai‖−α

‖x − bi‖−α

• what receiver location x maximizes S/I?
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S/I is quasiconcave on {x | S/I ≥ 1}, i.e., on

{x | ‖x − ai‖ ≤ ‖x − bi‖, i = 1, . . . , N}

q

b1

q

b2

q

b3

a

a1

a

a2

a

a3

can use bisection; every iteration is a convex quadratic feasibility problem
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Power allocation in FDM system

frequency division multiplex (FDM) system

u

u1

u2

un

y

y1

y2

yn

mod. demod.channel

• signal ui modulates carrier frequency fi with power pi

• channel is slightly nonlinear

• powers affect signal power, interference power at each yi

• problem: choose powers to maximize minimum SINR
(signal to noise & interference ratio)
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• demodulated signal power in yi proportional to pi

• noise power in yi is σ2
i

• interference power in yi is sum of crosstalk & intermodulation products
from nonlinearity

• crosstalk power ci is linear in powers:

c = Cp, Cij ≥ 0

C is often tridiagonal, i.e., have crosstalk from adjacent channels only
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• intermodulation power: kth order IM products have frequencies

±fi1 ± fi2 ± · · · ± fik

with power proportional to pi1pi2 · · · pik

e.g., for frequencies 1, 2, 3:

frequency IM product pwr. prop. to

2 1 + 1 p2
1

3 1 + 2 p1p2

1 2 − 1 p2p1

1 3 − 2 p3p2

2 3 − 1 p3p1

3 1 + 1 + 1 p3
1

1 1 + 1 − 1 p3
1

2 2 + 1 − 1 p2p
2
1

... ... ...

• total IM power at fi is (complicated) polynomial of p1, . . . , pn, with
nonnegative coefficients
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inverse SINR at frequency i

noise + crosstalk + IM power

signal power

is posynomial function of p1, . . . , pn

hence, problem such as

maximize mini SINRi

subject to 0 < pi ≤ Pmax

is geometric program
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Optimizing structural dynamics

linear elastic structure

dynamics (ignoring damping): Md̈ + Kd = 0

• d(t) ∈ Rk: vector of displacements

• M = MT ≻ 0 is mass matrix; K = KT ≻ 0 is stiffness matrix
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Fundamental frequency

• solutions have form

di(t) =

k
∑

j=1

αij cos(ωjt − φj)

where 0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωk are the modal frequencies, i.e., positive
solutions of det(ω2M − K) = 0

• fundamental frequency:

ω1 = λ
1/2
min(K,M) = λ

1/2
min(M

−1/2KM−1/2)

– structure behaves like mass at frequencies below ω1

– gives stiffness measure (the larger ω1, the stiffer the structure)

• ω1 ≥ Ω ⇐⇒ Ω2M − K � 0 so ω1 is quasiconcave function of M , K
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• design variables: xi, cross-sectional area of structural member i
(geometry of structure fixed)

• M(x) = M0 +
∑

i xiMi, K(x) = K0 +
∑

i xiKi

• structure weight w = w0 +
∑

i xiwi

• problem: minimize weight s.t. ω1 ≥ Ω, limits on cross-sectional areas

as SDP:
minimize w0 +

∑

i xiwi

subject to Ω2M(x) − K(x) � 0
li ≤ xi ≤ ui
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