Convex optimization examples

- force/moment generation with thrusters
- minimum-time optimal control
- optimal transmitter power allocation
- phased-array antenna beamforming
- optimal receiver location
- power allocation in FDM system
- optimizing structural dynamics

Force/moment generation with thrusters

• rigid body with center of mass at origin $p=0\in {\bf R}^2$

• *n* forces with magnitude u_i , acting at $p_i = (p_{ix}, p_{iy})$, in direction θ_i

- resulting horizontal force: $F_x = \sum_{i=1}^n u_i \cos \theta_i$
- resulting vertical force: $F_y = \sum_{i=1}^n u_i \sin \theta_i$
- resulting torque: $T = \sum_{i=1}^{n} (p_{iy}u_i \cos \theta_i p_{ix}u_i \sin \theta_i)$
- force limits: $0 \le u_i \le 1$ (thrusters)
- fuel usage: $u_1 + \cdots + u_n$

problem: find thruster forces u_i that yield given desired forces and torques F_x^{des} , F_y^{des} , T^{des} , and minimize fuel usage (if feasible)

can be expressed as LP:

minimize
$$\mathbf{1}^T u$$

subject to $Fu = f^{\text{des}}$
 $0 \le u_i \le 1, \ i = 1, \dots, n$

where

$$F = \begin{bmatrix} \cos \theta_1 & \cdots & \cos \theta_n \\ \sin \theta_1 & \cdots & \sin \theta_n \\ p_{1y} \cos \theta_1 - p_{1x} \sin \theta_1 & \cdots & p_{ny} \cos \theta_n - p_{nx} \sin \theta_n \end{bmatrix},$$
$$f^{\mathsf{des}} = (F_x^{\mathsf{des}}, F_y^{\mathsf{des}}, T^{\mathsf{des}}), \quad \mathbf{1} = (1, 1, \dots 1)$$

Convex optimization examples

Extensions of thruster problem

• opposing thruster pairs:

minimize
$$\|u\|_1 = \sum_{i=1}^n |u_i|$$

subject to $Fu = f^{\text{des}}$
 $|u_i| \le 1, i = 1, \dots, n$

can express as LP

• more accurate fuel use model:

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^{n} \phi_i(u_i) \\ \text{subject to} & Fu = f^{\text{des}} \\ & 0 \leq u_i \leq 1, \ i = 1, \dots, n \end{array}$$

 ϕ_i are piecewise linear increasing convex functions can express as LP

minimize maximum force/moment error:

minimize $||Fu - f^{des}||_{\infty}$ subject to $0 \le u_i \le 1, i = 1, \dots, n$

can express as LP

• minimize number of thrusters used:

 $\begin{array}{ll} \mbox{minimize} & \mbox{ $\#$ thrusters on} \\ \mbox{subject to} & Fu = f^{\rm des} \\ & 0 \leq u_i \leq 1, \ i = 1, \dots, n \end{array}$

can't express as LP (but we could check feasibility of each of the 2^n subsets of thrusters)

Minimum-time optimal control

• linear dynamical system:

$$x(t+1) = Ax(t) + Bu(t), \quad t = 0, 1, \dots, K, \qquad x(0) = x_0$$

• inputs limited to range [-1, 1]:

$$||u(t)||_{\infty} \le 1, \quad t = 0, 1, \dots, K$$

• settling time:

$$f(u(0), \dots, u(K)) = \min \{T \mid x(t) = 0 \text{ for } T \le t \le K+1\}$$

settling time f is quasiconvex function of $(u(0), \ldots, u(K))$:

$$f(u(0), u(1), \dots, u(K)) \le T$$

if and only if for all $t = T, \ldots, K+1$

$$x(t) = A^{t}x_{0} + A^{t-1}Bu(0) + \dots + Bu(t-1) = 0$$

i.e., sublevel sets are affine

minimum-time optimal control problem:

minimize
$$f(u(0), u(1), \dots, u(K))$$

subject to $||u(t)||_{\infty} \leq 1, \quad t = 0, \dots, K$

with variables $u(0), \ldots, u(K)$ a quasiconvex problem; can be solved via bisection with LPs

Minimum-time control example

three unit masses, connected by two unit springs with equilibrium length one

 $u(t) \in \mathbf{R}^2$ is force on left & right masses over time interval (0.15t, 0.15(t+1)]

problem: pick $u(0), \ldots, u(K)$ to bring masses to positions (-1, 0, 1) (at rest), as quickly as possible, from initial condition (-3, 0, 2) (at rest)

Optimal transmitter power allocation

- m transmitters, mn receivers all at same frequency
- transmitter i wants to transmit to n receivers labeled $(i,j), \ j=1,\ldots,n$ transmitter k

- A_{ijk} is path gain from transmitter k to receiver (i, j)
- N_{ij} is (self) noise power of receiver (i, j)
- variables: transmitter powers p_k , $k = 1, \ldots, m$

at receiver (i, j):

• signal power:

$$S_{ij} = A_{iji}p_i$$

• noise plus interference power:

$$I_{ij} = \sum_{k \neq i} A_{ijk} p_k + N_{ij}$$

• signal to interference/noise ratio (SINR): S_{ij}/I_{ij} problem: choose p_i to maximize smallest SINR:

maximize
$$\min_{i,j} \frac{A_{iji}p_i}{\sum_{k \neq i} A_{ijk}p_k + N_{ij}}$$

subject to $0 \le p_i \le p_{\max}$

... a (generalized) linear fractional program

Phased-array antenna beamforming

- omnidirectional antenna elements at positions (x_1, y_1) , ..., (x_n, y_n)
- unit plane wave incident from angle θ induces in *i*th element a signal $e^{j(x_i \cos \theta + y_i \sin \theta \omega t)}$

$$(j = \sqrt{-1})$$
, frequency ω , wavelength 2π)

- demodulate to get output $e^{j(x_i \cos \theta + y_i \sin \theta)} \in \mathbf{C}$
- linearly combine with complex weights w_i :

$$y(\theta) = \sum_{i=1}^{n} w_i e^{j(x_i \cos \theta + y_i \sin \theta)}$$

- $y(\theta)$ is (complex) antenna array gain pattern
- $|y(\theta)|$ gives sensitivity of array as function of incident angle θ
- depends on design variables Re w, Im w
 (called antenna array weights or shading coefficients)

design problem: choose w to achieve desired gain pattern

Sidelobe level minimization

make $|y(\theta)|$ small for $|\theta-\theta_{\rm tar}|>\alpha$

(θ_{tar} : target direction; 2α : beamwidth)

via least-squares (discretize angles)

minimize	$\sum_{i} y(\theta_i) ^2$
subject to	$y(\theta_{\rm tar}) = 1$

(sum is over angles outside beam)

least-squares problem with two (real) linear equality constraints

minimize sidelobe level (discretize angles)

 $\begin{array}{ll} \mbox{minimize} & \max_i |y(\theta_i)| \\ \mbox{subject to} & y(\theta_{tar}) = 1 \end{array}$

(max over angles outside beam)

can be cast as SOCP

$$\begin{array}{ll} \mbox{minimize} & t \\ \mbox{subject to} & |y(\theta_i)| \leq t \\ & y(\theta_{tar}) = 1 \end{array}$$

Extensions

convex (& quasiconvex) extensions:

- $y(\theta_0) = 0$ (null in direction θ_0)
- w is real (amplitude only shading)
- $|w_i| \leq 1$ (attenuation only shading)
- minimize $\sigma^2 \sum_{i=1}^n |w_i|^2$ (thermal noise power in y)
- minimize beamwidth given a maximum sidelobe level

nonconvex extension:

• maximize number of zero weights

Optimal receiver location

- N transmitter frequencies $1, \ldots, N$
- transmitters at locations $a_i, b_i \in \mathbf{R}^2$ use frequency i
- transmitters at a_1 , a_2 , ..., a_N are the wanted ones
- transmitters at b_1 , b_2 , . . . , b_N are interfering
- receiver at position $x \in \mathbf{R}^2$

- (signal) receiver power from a_i : $||x a_i||^{-\alpha}$ ($\alpha \approx 2.1$)
- (interfering) receiver power from b_i : $||x b_i||^{-\alpha}$ ($\alpha \approx 2.1$)
- worst signal to interference ratio, over all frequencies, is

$$S/I = \min_{i} \frac{\|x - a_i\|^{-\alpha}}{\|x - b_i\|^{-\alpha}}$$

• what receiver location x maximizes S/I?

 S/I is quasiconcave on $\{x \mid \mathsf{S}/\mathsf{I} \geq 1\}$, *i.e.*, on

$$\{x \mid ||x - a_i|| \le ||x - b_i||, \ i = 1, \dots, N\}$$

can use bisection; every iteration is a convex quadratic feasibility problem

Power allocation in FDM system

frequency division multiplex (FDM) system

- signal u_i modulates carrier frequency f_i with power p_i
- channel is slightly nonlinear
- powers affect signal power, interference power at each y_i
- problem: choose powers to maximize minimum SINR (signal to noise & interference ratio)

- demodulated signal power in y_i proportional to p_i
- noise power in y_i is σ_i^2
- interference power in y_i is sum of crosstalk & intermodulation products from nonlinearity
- crosstalk power c_i is linear in powers:

$$c = Cp, \quad C_{ij} \ge 0$$

C is often tridiagonal, *i.e.*, have crosstalk from adjacent channels only

• intermodulation power: kth order IM products have frequencies

$$\pm f_{i_1} \pm f_{i_2} \pm \dots \pm f_{i_k}$$

with power proportional to $p_{i_1}p_{i_2}\cdots p_{i_k}$ e.g., for frequencies 1, 2, 3:

frequency	IM product	pwr. prop. to
2	1 + 1	p_1^2
3	1 + 2	p_1p_2
1	2 - 1	p_2p_1
1	3 - 2	p_3p_2
2	3 - 1	p_3p_1
3	1 + 1 + 1	p_1^3
1	1 + 1 - 1	p_1^3
2	2 + 1 - 1	$p_2p_1^2$
:	:	:

• total IM power at f_i is (complicated) polynomial of p_1, \ldots, p_n , with nonnegative coefficients

inverse SINR at frequency i

noise + crosstalk + IM power signal power

is posynomial function of p_1, \ldots, p_n

hence, problem such as

 $\begin{array}{ll} \text{maximize} & \min_i \mathsf{SINR}_i \\ \text{subject to} & 0 < p_i \leq P_{\max} \end{array}$

is geometric program

Optimizing structural dynamics

linear elastic structure

dynamics (ignoring damping): $M\ddot{d} + Kd = 0$

- $d(t) \in \mathbf{R}^k$: vector of displacements
- $M = M^T \succ 0$ is mass matrix; $K = K^T \succ 0$ is stiffness matrix

Fundamental frequency

• solutions have form

$$d_i(t) = \sum_{j=1}^k \alpha_{ij} \cos(\omega_j t - \phi_j)$$

where $0 \le \omega_1 \le \omega_2 \le \cdots \le \omega_k$ are the modal frequencies, *i.e.*, positive solutions of det $(\omega^2 M - K) = 0$

• fundamental frequency:

$$\omega_1 = \lambda_{\min}^{1/2}(K, M) = \lambda_{\min}^{1/2}(M^{-1/2}KM^{-1/2})$$

- structure behaves like mass at frequencies below ω_1
- gives stiffness measure (the larger ω_1 , the stiffer the structure)
- $\omega_1 \ge \Omega \iff \Omega^2 M K \preceq 0$ so ω_1 is quasiconcave function of M, K

• design variables: x_i , cross-sectional area of structural member i (geometry of structure fixed)

•
$$M(x) = M_0 + \sum_i x_i M_i$$
, $K(x) = K_0 + \sum_i x_i K_i$

- structure weight $w = w_0 + \sum_i x_i w_i$
- **problem:** minimize weight s.t. $\omega_1 \ge \Omega$, limits on cross-sectional areas

as SDP:

$$\begin{array}{ll} \mbox{minimize} & w_0 + \sum_i x_i w_i \\ \mbox{subject to} & \Omega^2 M(x) - K(x) \preceq 0 \\ & l_i \leq x_i \leq u_i \end{array}$$