10. Unconstrained minimization

- terminology and assumptions
- gradient descent method
- steepest descent method
- Newton's method
- self-concordant functions
- implementation

Unconstrained minimization

minimize $f(x)$

- \bullet f convex, twice continuously differentiable (hence $\mathbf{dom}\,f$ open)
- $\bullet\,$ we assume optimal value $p^\star = \inf_x f(x)$ is attained (and finite)

unconstrained minimization methods

• produce sequence of points $x^{(k)} \in \textbf{dom}\, f$, $k = 0, 1, \ldots$ with

$$
f(x^{(k)}) \to p^\star
$$

• can be interpreted as iterative methods for solving optimality condition

$$
\nabla f(x^*) = 0
$$

Initial point and sublevel set

algorithms in this chapter require a starting point $x^{(0)}$ such that

- $x^{(0)} \in \textbf{dom} f$
- \bullet sublevel set $S = \{x \mid f(x) \leq f(x^{(0)})\}$ is closed

2nd condition is hard to verify, except when all sublevel sets are closed:

- $\bullet\,$ equivalent to condition that $\operatorname{\mathbf{epi}} f$ is closed
- $\bullet\,$ true if ${\rm\bf dom}\, f={\rm\bf R}^n$
- true if $f(x) \to \infty$ as $x \to \mathbf{bd} \,\mathbf{dom}\, f$

examples of differentiable functions with closed sublevel sets:

$$
f(x) = \log(\sum_{i=1}^{m} \exp(a_i^T x + b_i)), \qquad f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)
$$

Strong convexity and implications

 f is strongly convex on S if there exists an $m>0$ such that

 ∇^2 $f^2 f(x) \succeq mI$ for all $x \in S$

implications

• for $x, y \in S$,

$$
f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||x - y||_2^2
$$

hence, S is bounded

 $\bullet \; p^{\star}$ $\star > -\infty$, and for $x \in S$,

$$
f(x) - p^* \le \frac{1}{2m} \|\nabla f(x)\|_2^2
$$

useful as stopping criterion (if you know $m)$

Descent methods

$$
x^{(k+1)} = x^{(k)} + t^{(k)} \Delta x^{(k)}
$$
 with $f(x^{(k+1)}) < f(x^{(k)})$

- other notations: $x^+ = x + t\Delta x$, $x := x + t\Delta x$
- \bullet Δx is the *step*, or *search direction*; t is the *step size*, or *step length*
- •• from convexity, $f(x^+) < f(x)$ implies $\nabla f(x)^T \Delta x < 0$ $(i.e.,$ Δx is a descent direction)

General descent method.

```
given a starting point x \in \textbf{dom}\:f.<br>repeat
```
1. Determine a descent direction $\Delta x.$

2. *Line search.* Choose a step size $t>0.$ 3. Update. $x:=x+t\Delta x$.

 U pdate. $x :=$

3. $Update.$ $x := x + t \Delta x$.
until stopping criterion is satisfied.

Line search types

exact line search: $t = \operatorname{argmin}_{t>0} f(x + t\Delta x)$

backtracking line search (with parameters $\alpha \in (0,1/2)$, $\beta \in (0,1)$)

 $\bullet\,$ starting at $t=1$, repeat $t:=\beta t$ until

$$
f(x + t\Delta x) < f(x) + \alpha t \nabla f(x)^T \Delta x
$$

 $\bullet\,$ graphical interpretation: <code>backtrack</code> until $t\leq t_0$

Gradient descent method

general descent method with $\Delta x=-\nabla f(x)$

given a starting point $x \in \textbf{dom}\, f$. repeat1. $\Delta x := -\nabla f(x)$. 2. *Line search.* Choose step size t via exact or backtracking line search. 3. Update. $x:=x+t\Delta x$. **until** stopping criterion is satisfied.

- stopping criterion usually of the form $\|\nabla f(x)\|_2\leq\epsilon$
- $\bullet\,$ convergence result: for strongly convex f ,

$$
f(x^{(k)}) - p^* \le c^k (f(x^{(0)}) - p^*)
$$

 $c\in(0,1)$ depends on $m,~x^{(0)},$ line search type

• very simple, but often very slow; rarely used in practice

quadratic problem in \mathbb{R}^2

$$
f(x) = (1/2)(x_1^2 + \gamma x_2^2) \qquad (\gamma > 0)
$$

with exact line search, starting at $x^{(0)}=(\gamma,1)$:

$$
x_1^{(k)} = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^{(k)} = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k
$$

• very slow if
$$
\gamma \gg 1
$$
 or $\gamma \ll 1$

 $\bullet\,$ example for $\gamma=10$:

nonquadratic example

$$
f(x_1, x_2) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}
$$

backtracking line search exact line search

 (0)

 $\mathbf{1}$

a problem in R^{100}

'linear' convergence, $i.e.,$ a straight line on a semilog plot

Steepest descent method

normalized steepest descent direction (at x , for norm $\|\cdot\|$):

$$
\Delta x_{\text{nsd}} = \operatorname{argmin} \{ \nabla f(x)^T v \mid ||v|| = 1 \}
$$

interpretation: for small v , $f(x+v)\approx f(x)+\nabla f(x)^T$ \sim \sim \sim \sim \sim ممرحاء direction Δx_nsd is unit-norm step with most negative directional derivative $\cdot v;$

(unnormalized) steepest descent direction

$$
\Delta x_{\rm sd} = \|\nabla f(x)\|_{*} \Delta x_{\rm nsd}
$$

satisfies $\nabla f(x)^T$ ${}^{T}\Delta_{\text{sd}} = -\|\nabla f(x)\|_{*}^{2}$ ∗

steepest descent method

- \bullet general descent method with $\Delta x = \Delta x_{\rm sd}$
- convergence properties similar to gradient descent

examples

- Euclidean norm: $\Delta x_{\rm sd} = -\nabla f(x)$
- quadratic norm $||x||_P = (x^T P x)^{1/2}$ $(P \in \mathbf{S}_{++}^n)$: $\Delta x_{\text{sd}} = -P^{-1} \nabla f(x)$
- ℓ_1 -norm: $\Delta x_{\rm sd}=-(\partial f(x)/\partial x_i)e_i$, where $|\partial f(x)/\partial x_i|=\|\nabla f(x)\|_\infty$

unit balls and normalized steepest descent directions for ^a quadratic normand the ℓ_1 -norm:

choice of norm for steepest descent

- steepest descent with backtracking line search for two quadratic norms
- ellipses show $\{x \mid ||x x^{(k)}||_P = 1\}$
- equivalent interpretation of steepest descent with quadratic norm $\|\cdot\|_F$ $P²$ gradient descent after change of variables $\bar{x}=P^1$ $\frac{1}{\sqrt{2}}$ 2 $-x$

shows choice of P has strong effect on speed of convergence

Newton step

$$
\Delta x_{\rm nt} = -\nabla^2 f(x)^{-1} \nabla f(x)
$$

interpretations

 \bullet $x + \Delta x_{\text{nt}}$ minimizes second order approximation

$$
\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + \frac{1}{2} v^T \nabla^2 f(x) v
$$

 $\bullet \ \ x + \Delta x_{\text{nt}}$ solves linearized optimality condition

$$
\nabla f(x+v) \approx \nabla \widehat{f}(x+v) = \nabla f(x) + \nabla^2 f(x)v = 0
$$

Unconstrained minimization

 \bullet \bullet Δx_{nt} is steepest descent direction at x in local Hessian norm

$$
||u||_{\nabla^2 f(x)} = (u^T \nabla^2 f(x) u)^{1/2}
$$

dashed lines are contour lines of f ; ellipse is $\{x+v \mid v^T \nabla^2 f(x)v=1\}$ arrow shows $-\nabla f(x)$

Newton decrement

$$
\lambda(x) = \left(\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x)\right)^{1/2}
$$

a measure of the proximity of x to x^{\star}

properties

 $\bullet\,$ gives an estimate of $f(x)-p^{\star}.$ using quadratic approximation \widehat{f} : :

$$
f(x) - \inf_{y} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2
$$

• equal to the norm of the Newton step in the quadratic Hessian norm

$$
\lambda(x) = \left(\Delta x_{\rm nt} \nabla^2 f(x) \Delta x_{\rm nt}\right)^{1/2}
$$

- • \bullet directional derivative in the Newton direction: $\nabla f(x)^T\Delta x_{\rm nt} = -\lambda(x)^2$
- \bullet affine invariant (unlike $\|\nabla f(x)\|_2)$

Newton's method

given a starting point $x \in \textbf{dom}\:f$, tolerance $\epsilon > 0$.
repeat 1. Compute the Newton step and decrement. $\Delta x_{\text{nt}}:=$ $\Delta x_{\rm nt} := -\nabla^2 f(x)^{-1}\nabla f(x); \quad \lambda^2 := \nabla f(x)^T\nabla^2 f(x)^{-1}\nabla f(x).$
2. Stopping criterion, **quit** if $\lambda^2/2 \leq \epsilon$. . Stopping criterion. ${\mathsf q}$ uit if $\lambda^2/2 \leq$ 2. Stopping criterion. \mathbf{q} uit it $\lambda^{-}/Z \leq \epsilon$.
3. *Line search.* Choose step size t by backtracking line search. 4. Update. $x := x + t\Delta x_{\text{nt}}$.

affine invariant, $i.e.,$ independent of linear changes of coordinates:

Newton iterates for $\tilde{f}(y) = f(Ty)$ with starting point $y^{(0)} = T^{-1}x^{(0)}$ are

$$
y^{(k)} = T^{-1}x^{(k)}
$$

Classical convergence analysis

assumptions

- \bullet f strongly convex on S with constant m
- $\bullet \nabla^2$ 2f is Lipschitz continuous on S , with constant $L>0\mathrm{D}$

$$
\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \le L\|x - y\|_2
$$

 $(L$ measures how well f can be approximated by a quadratic function)

 $\textbf{outline:} \text{ there exist constants } \eta\in(0,m^2/L) \text{, } \gamma>0 \text{ such that }$

- if $\|\nabla f(x)\|_2 \geq \eta$, then $f(x^{(k+1)})$ $f(x^{(k)}) \leq -\gamma$
- if $\|\nabla f(x)\|_2 < \eta$, then

$$
\frac{L}{2m^2} \|\nabla f(x^{(k+1)})\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^{(k)})\|_2\right)^2
$$

damped Newton phase $(\|\nabla f(x)\|_2 \geq \eta)$

- most iterations require backtracking steps
- $\bullet\,$ function value decreases by at least γ
- if $p^\star > -\infty$, this phase ends after at most $(f(x^{(0)}) p^\star)/\gamma$ iterations

quadratically convergent phase $(\|\nabla f(x)\|_2 < \eta)$

- $\bullet\,$ all iterations use step size $t=1$
- • $\|\nabla f(x)\|_2$ converges to zero quadratically: if $\|\nabla f(x^{(k)})\|_2 < \eta$, then

$$
\frac{L}{2m^2} \|\nabla f(x^l)\|_2 \le \left(\frac{L}{2m^2} \|\nabla f(x^k)\|_2\right)^{2^{l-k}} \le \left(\frac{1}{2}\right)^{2^{l-k}}, \qquad l \ge k
$$

 $\boldsymbol{\mathsf{conclusion:}}\>$ number of iterations until $f(x)$ $$ $p^{\star} \leq \epsilon$ is bounded above by

$$
\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(\epsilon_0/\epsilon)
$$

- $\bullet\,$ $\gamma,\,\epsilon_{0}$ are constants that depend on $m,\,L,\,x^{(0)}$
- $\bullet\,$ second term is small (of the order of $6)$ and almost constant for practical purposes
- $\bullet\,$ in practice, constants $m,\,L$ (hence $\gamma,\,\epsilon_{0})$ are usually unknown
- $\bullet\,$ provides qualitative insight in convergence properties $(i.e.,$ explains two algorithm phases)

Examples

example in \mathbb{R}^2 (page 1–9)

- $\bullet\,$ backtracking parameters $\alpha=0.1,\,\beta=0.7$
- converges in only ⁵ steps
- quadratic local convergence

example in R^{100} (page 1-10)

 $\bullet\,$ backtracking parameters $\alpha=0.01,\,\beta=0.5$

- \bullet backtracking line search almost as fast as exact l.s. (and much simpler)
- clearly shows two phases in algorithm

 $\boldsymbol{\mathsf{example}}$ in $\boldsymbol{\mathsf{R}}^{10000}$ (with sparse $a_i)$

- $\bullet\,$ backtracking parameters $\alpha=0.01,\ \beta=0.5.$
- performance similar as for small examples

Self-concordance

shortcomings of classical convergence analysis

- $\bullet\,$ depends on unknown constants $(m,\,L,\,\dots\,)$
- bound is not affinely invariant, although Newton's method is

convergence analysis via self-concordance (Nesterov and Nemirovski)

- does not depend on any unknown constants
- ^gives affine-invariant bound
- applies to special class of convex functions ('self-concordant' functions)
- developed to analyze polynomial-time interior-point methods for convex optimization

Self-concordant functions

definition

- convex $f: \mathbf{R} \to \mathbf{R}$ is self-concordant if $|f'''(x)| \leq 2f''(x)^3$ $x \in \textbf{dom} f$ $3/$ 2 for all
- \bullet $f : \mathbf{R}^n$. all $x \in \textbf{dom}\, f$, $v \in \mathbb{R}^n$ $\mathbf{F}^n \rightarrow \mathbf{R}$ is self-concordant if $g(t) = f(x + tv)$ is self-concordant for

examples on ^R

- linear and quadratic functions
- $\bullet\,$ negative logarithm $f(x) =$ − $-\log x$
- \bullet negative entropy plus negative logarithm: $f(x) = x \log x x$ $-\log x$

affine invariance: if $f : \mathbf{R} \to \mathbf{R}$ is s.c., then $\tilde{f}(y) = f(ay + b)$ is s.c.:

$$
\tilde{f}'''(y) = a^3 f'''(ay + b), \qquad \tilde{f}''(y) = a^2 f''(ay + b)
$$

Self-concordant calculus

properties

- $\bullet\,$ preserved under positive scaling $\alpha\geq 1$, and sum
- preserved under composition with affine function
- if g is convex with $\operatorname{\mathbf{dom}} g = \mathbf{R}_{++}$ and $|g'''(x)| \leq 3 g''(x)/x$ then

$$
f(x) = \log(-g(x)) - \log x
$$

is self-concordant

examples: properties can be used to show that the following are s.c.

 $\bullet\;f(x) = % \begin{cases} f(x) \geq f(x) \leq f(x$ − $\sum_{i=1}^m$ $i{=}1$ $\log(b_i - a_i^T)$ $\binom{T}{i}$ on $\{x \mid a_i^T\}$ $i x < b_i, i = 1, ..., m$

•
$$
f(X) = -\log \det X
$$
 on \mathbf{S}_{++}^n

 \bullet $f(x) =$ − $-\log(y^2)$ $^{2}-x^{T}$ $T(x, y) \mid ||x||_2 < y$

Unconstrained minimization

Convergence analysis for self-concordant functions

summary: there exist constants $\eta\in(0,1/4]$, $\gamma>0$ such that

• if $\lambda(x) > \eta$, then

$$
f(x^{(k+1)}) - f(x^{(k)}) \le -\gamma
$$

• if $\lambda(x) \leq \eta$, then

$$
2\lambda(x^{(k+1)}) \le \left(2\lambda(x^{(k)})\right)^2
$$

 $(\eta$ and γ only depend on backtracking parameters α , $\beta)$

complexity bound: number of Newton iterations bounded by

$$
\frac{f(x^{(0)}) - p^{\star}}{\gamma} + \log_2 \log_2(1/\epsilon)
$$

for $\alpha=0.1, \, \beta=0.8, \, \epsilon=10^{-10},$ bound evaluates to $375(f(x^{(0)})$ $-p^{\star}$) + 6 **numerical example:** 150 randomly generated instances of

minimize
$$
f(x) = -\sum_{i=1}^{m} \log(b_i - a_i^T x)
$$

\n
$$
\sum_{\substack{0 \le x \le 0 \\ 0 \le x \le 0 \\ 0 \le x \le 0 \\ 0 \le x \le 0 \\ 0}} 25
$$
\n
$$
\sum_{\substack{0 \le x \le 0 \\ 0 \le x \le
$$

- number of iterations much smaller than $375(f(x^{(0)}) p^*) + 6$
- bound of the form $c(f(x^{(0)}) p^*) + 6$ with smaller c (empirically) valid

Implementation

main effort in each iteration: evaluate derivatives and solve Newton system

$$
H\Delta x = g
$$

where $H = \nabla^2 f(x)$, $g = -\nabla f(x)$

via Cholesky factorization

$$
H = LL^T, \qquad \Delta x_{\rm nt} = L^{-T} L^{-1} g, \qquad \lambda(x) = \|L^{-1} g\|_2
$$

- $\bullet\,$ cost $(1/3)n^3$ flops for unstructured system
- $\textsf{cost} \ll (1/3) n^3$ if H sparse, banded

example of dense Newton system with structure

$$
f(x) = \sum_{i=1}^{n} \psi_i(x_i) + \psi_0(Ax + b), \qquad H = D + A^T H_0 A
$$

- \bullet assume $A \in \mathbf{R}^p$ $^{\times n}$, dense, with $p\ll n$
- \bullet D diagonal with diagonal elements $\psi_i''(x_i); \, H_0 = \nabla^2$ $^{2}\psi_{0}(Ax+b)$

method 1: form H , solve via dense Cholesky factorization: (cost $(1/3)n^3$ $^3)$ **method 2** (page 9–15): factor $H_0=L_0L_0^T$ $\frac{T}{0}$; write Newton system as

$$
D\Delta x + A^T L_0 w = -g, \qquad L_0^T A \Delta x - w = 0
$$

eliminate Δx from first equation; compute w and Δx from

$$
(I + L_0^T A D^{-1} A^T L_0) w = -L_0^T A D^{-1} g, \qquad D\Delta x = -g - A^T L_0 w
$$

cost: $2p^2$ 2n (dominated by computation of L_0^T $_{0}^{T}AD^{-1}$ $^1A^T$ ${}^{T}L_0)$

Unconstrained minimization