
Convex Optimization — Boyd & Vandenberghe

8. Geometric problems

• extremal volume ellipsoids

• centering

• classification

• placement and facility location
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Minimum volume ellipsoid around a set

Löwner-John ellipsoid of a set C: minimum volume ellipsoid E s.t. C ⊆ E

• parametrize E as E = {v | ‖Av + b‖2 ≤ 1}; w.l.o.g. assume A ∈ Sn
++

• vol E is proportional to det A−1; to compute minimum volume ellipsoid,

minimize (over A, b) log det A−1

subject to supv∈C ‖Av + b‖2 ≤ 1

convex, but evaluating the constraint can be hard (for general C)

finite set C = {x1, . . . , xm}:

minimize (over A, b) log det A−1

subject to ‖Axi + b‖2 ≤ 1, i = 1, . . . , m

also gives Löwner-John ellipsoid for polyhedron conv{x1, . . . , xm}
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Maximum volume inscribed ellipsoid

maximum volume ellipsoid E inside a convex set C ⊆ Rn

• parametrize E as E = {Bu + d | ‖u‖2 ≤ 1}; w.l.o.g. assume B ∈ Sn
++

• vol E is proportional to det B; can compute E by solving

maximize log det B
subject to sup‖u‖2≤1 IC(Bu + d) ≤ 0

(where IC(x) = 0 for x ∈ C and IC(x) = ∞ for x 6∈ C)

convex, but evaluating the constraint can be hard (for general C)

polyhedron {x | aT
i x ≤ bi, i = 1, . . . ,m}:

maximize log det B
subject to ‖Bai‖2 + aT

i d ≤ bi, i = 1, . . . ,m

(constraint follows from sup‖u‖2≤1 aT
i (Bu + d) = ‖Bai‖2 + aT

i d)
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Efficiency of ellipsoidal approximations

C ⊆ Rn convex, bounded, with nonempty interior

• Löwner-John ellipsoid, shrunk by a factor n, lies inside C

• maximum volume inscribed ellipsoid, expanded by a factor n, covers C

example (for two polyhedra in R2)

factor n can be improved to
√

n if C is symmetric
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Centering

some possible definitions of ‘center’ of a convex set C:

• center of largest inscribed ball (’Chebyshev center’)

for polyhedron, can be computed via linear programming (page 4–19)

• center of maximum volume inscribed ellipsoid (page 1–3)

xchebxcheb xmve

MVE center is invariant under affine coordinate transformations
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Analytic center of a set of inequalities

the analytic center of set of convex inequalities and linear equations

fi(x) ≤ 0, i = 1, . . . , m, Fx = g

is defined as the optimal point of

minimize −
∑m

i=1 log(−fi(x))
subject to Fx = g

• more easily computed than MVE or Chebyshev center (see later)

• not just a property of the feasible set: two sets of inequalities can
describe the same set, but have different analytic centers
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analytic center of linear inequalities aT
i x ≤ bi, i = 1, . . . ,m

xac is minimizer of

φ(x) = −
m

∑

i=1

log(bi − aT
i x)

xac

inner and outer ellipsoids from analytic center:

Einner ⊆ {x | aT
i x ≤ bi, i = 1, . . . ,m} ⊆ Eouter

where

Einner = {x | (x − xac)
T∇2φ(xac)(x − xac) ≤ 1}

Eouter = {x | (x − xac)
T∇2φ(xac)(x − xac) ≤ m(m − 1)}
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Linear discrimination

separate two sets of points {x1, . . . , xN}, {y1, . . . , yM} by a hyperplane:

aTxi + b > 0, i = 1, . . . , N, aTyi + b < 0, i = 1, . . . ,M

homogeneous in a, b, hence equivalent to

aTxi + b ≥ 1, i = 1, . . . , N, aTyi + b ≤ −1, i = 1, . . . ,M

a set of linear inequalities in a, b
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Robust linear discrimination

(Euclidean) distance between hyperplanes

H1 = {z | aTz + b = 1}
H2 = {z | aTz + b = −1}

is dist(H1,H2) = 2/‖a‖2

to separate two sets of points by maximum margin,

minimize (1/2)‖a‖2

subject to aTxi + b ≥ 1, i = 1, . . . , N
aTyi + b ≤ −1, i = 1, . . . , M

(1)

(after squaring objective) a QP in a, b
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Lagrange dual of maximum margin separation problem (1)

maximize 1
Tλ + 1

Tµ

subject to 2
∥

∥

∥

∑N

i=1 λixi −
∑M

i=1 µiyi

∥

∥

∥

2
≤ 1

1
Tλ = 1

Tµ, λ � 0, µ � 0

(2)

from duality, optimal value is inverse of maximum margin of separation

interpretation

• change variables to θi = λi/1
Tλ, γi = µi/1

Tµ, t = 1/(1Tλ + 1
Tµ)

• invert objective to minimize 1/(1Tλ + 1
Tµ) = t

minimize t

subject to
∥

∥

∥

∑N

i=1 θixi −
∑M

i=1 γiyi

∥

∥

∥

2
≤ t

θ � 0, 1
Tθ = 1, γ � 0, 1

Tγ = 1

optimal value is distance between convex hulls
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Approximate linear separation of non-separable sets

minimize 1
Tu + 1

Tv
subject to aTxi + b ≥ 1 − ui, i = 1, . . . , N

aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

• an LP in a, b, u, v

• at optimum, ui = max{0, 1 − aTxi − b}, vi = max{0, 1 + aTyi + b}
• can be interpreted as a heuristic for minimizing #misclassified points
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Support vector classifier

minimize ‖a‖2 + γ(1Tu + 1
Tv)

subject to aTxi + b ≥ 1 − ui, i = 1, . . . , N
aTyi + b ≤ −1 + vi, i = 1, . . . ,M
u � 0, v � 0

produces point on trade-off curve between inverse of margin 2/‖a‖2 and
classification error, measured by total slack 1

Tu + 1
Tv

same example as previous page,
with γ = 0.1:
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Nonlinear discrimination

separate two sets of points by a nonlinear function:

f(xi) > 0, i = 1, . . . , N, f(yi) < 0, i = 1, . . . , M

• choose a linearly parametrized family of functions

f(z) = θTF (z)

F = (F1, . . . , Fk) : Rn → Rk are basis functions

• solve a set of linear inequalities in θ:

θTF (xi) ≥ 1, i = 1, . . . , N, θTF (yi) ≤ −1, i = 1, . . . ,M
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quadratic discrimination: f(z) = zTPz + qTz + r

xT
i Pxi + qTxi + r ≥ 1, yT

i Pyi + qTyi + r ≤ −1

can add additional constraints (e.g., P � −I to separate by an ellipsoid)

polynomial discrimination: F (z) are all monomials up to a given degree

separation by ellipsoid separation by 4th degree polynomial
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Placement and facility location

• N points with coordinates xi ∈ R2 (or R3)

• some positions xi are given; the other xi’s are variables

• for each pair of points, a cost function fij(xi, xj)

placement problem

minimize
∑

i 6=j fij(xi, xj)

variables are positions of free points

interpretations

• points represent plants or warehouses; fij is transportation cost between
facilities i and j

• points represent cells on an IC; fij represents wirelength
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example: minimize
∑

(i,j)∈A h(‖xi − xj‖2), with 6 free points, 27 links

optimal placement for h(z) = z, h(z) = z2, h(z) = z4
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