Convex Optimization — Boyd & Vandenberghe

7. Statistical estimation

- maximum likelihood estimation
- optimal detector design
- experiment design

Parametric distribution estimation

- $\bullet\,$ distribution estimation problem: estimate probability density $p(y)$ of a random variable from observed values
- parametric distribution estimation: choose from ^a family of densities $p_x(y)$, indexed by a parameter x

maximum likelihood estimation

$$
\mathsf{maximize } \left(\mathsf{over } \; x \right) \; \; \log p_x(y)
$$

- $\bullet\,$ y is observed value
- \bullet $l(x) = \log p_x(y)$ is called log-likelihood function
- \bullet can add constraints $x\in C$ explicitly, or define $p_x(y)=0$ for $x\not\in C$
- $\bullet\,$ a convex optimization problem if $\log p_x(y)$ is concave in x for fixed y

Linear measurements with IID noise

linear measurement model

$$
y_i = a_i^T x + v_i, \quad i = 1, \dots, m
$$

- $\bullet\,\,x\in\textsf{R}^n$ is vector of unknown parameters
- $\bullet \;\, v_i$ is IID measurement noise, with density $p(z)$
- $\bullet \ \ y_i$ is measurement: $y \in \mathbf{R}^m$ has density $p_x(y) = \prod_{i=1}^m p_i$ $\sum\limits_{i=1}^m p(y_i-a_i^T)$ $\frac{T}{i}x\big)$

maximum likelihood estimate: any solution x of

$$
\text{maximize} \quad l(x) = \sum_{i=1}^{m} \log p(y_i - a_i^T x)
$$

 $\left(y\right)$ is observed value)

examples

• Gaussian noise $\mathcal{N}(0, \sigma^2)$: $p(z) = (2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)}$,

$$
l(x) = -\frac{m}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{m}(a_i^T x - y_i)^2
$$

ML estimate is LS solution

• \bullet Laplacian noise: $p(z) = (1/(2a))e^{-|z|/a}$,

$$
l(x) = -m \log(2a) - \frac{1}{a} \sum_{i=1}^{m} |a_i^T x - y_i|
$$

ML estimate is ℓ_1 -norm solution

 $\bullet\,$ uniform noise on $[-a,a]$:

$$
l(x) = \begin{cases} -m \log(2a) & |a_i^T x - y_i| \le a, \quad i = 1, \dots, m \\ -\infty & \text{otherwise} \end{cases}
$$

ML estimate is any x with $|a_i^Tx - y_i| \leq a$

Logistic regression

random variable $y \in \{0,1\}$ with distribution

$$
p = prob(y = 1) = \frac{exp(a^T u + b)}{1 + exp(a^T u + b)}
$$

- \bullet $a,$ b are parameters; $u\in\textbf{R}^n$ are (observable) explanatory variables
- \bullet estimation problem: estimate $a,$ b from m observations (u_i, y_i)

log-likelihood function (for $y_1 = \cdots = y_k = 1$, $y_{k+1} = \cdots = y_m = 0$):

$$
l(a,b) = \log \left(\prod_{i=1}^{k} \frac{\exp(a^{T} u_i + b)}{1 + \exp(a^{T} u_i + b)} \prod_{i=k+1}^{m} \frac{1}{1 + \exp(a^{T} u_i + b)} \right)
$$

=
$$
\sum_{i=1}^{k} (a^{T} u_i + b) - \sum_{i=1}^{m} \log(1 + \exp(a^{T} u_i + b))
$$

concave in $a,\,b$

Statistical estimation

example $(n = 1, m = 50$ measurements)

 $\bullet\,$ circles show 50 points (u_i,y_i)

• solid curve is ML estimate of $p = \exp(au + b)/(1 + \exp(au + b))$

(Binary) hypothesis testing

detection (hypothesis testing) problem

given observation of a random variable $X \in \{1,\ldots,n\}$, choose between:

- \bullet hypothesis 1: X was generated by distribution $p=(p_1,\ldots,p_n)$
- \bullet hypothesis 2: X was generated by distribution $q=(q_1,\ldots,q_n)$

randomized detector

- \bullet a nonnegative matrix $T\in{\mathbf R}^2$ $^{\times n}$, with $\mathbf{1}^TT=\mathbf{1}^T$
- $\bullet\,$ if we observe $X=k,$ we choose hypothesis 1 with probability $t_{1k},$ hypothesis 2 with probability t_{2k}
- $\bullet\,$ if all elements of T are 0 or $1,$ it is called a deterministic detector

detection probability matrix:

$$
D = [Tp \quad Tq \] = \left[\begin{array}{cc} 1 - P_{\text{fp}} & P_{\text{fn}} \\ P_{\text{fp}} & 1 - P_{\text{fn}} \end{array} \right]
$$

- P_{fp} is probability of selecting hypothesis 2 if X is generated by distribution ¹ (false positive)
- P_{fn} is probability of selecting hypothesis 1 if X is generated by distribution 2 (folse negative) distribution ² (false negative)

multicriterion formulation of detector design

minimize (w.r.t.
$$
\mathbf{R}_+^2
$$
) $(P_{fp}, P_{fn}) = ((Tp)_2, (Tq)_1)$
subject to $t_{1k} + t_{2k} = 1, k = 1, ..., n$
 $t_{ik} \ge 0, i = 1, 2, k = 1, ..., n$

variable $T \in \mathbf{R}^{2 \times n}$

scalarization (with weight $\lambda > 0)$

minimize
$$
(Tp)_2 + \lambda(Tq)_1
$$

subject to $t_{1k} + t_{2k} = 1$, $t_{ik} \ge 0$, $i = 1, 2$, $k = 1, ..., n$

an LP with ^a simple analytical solution

$$
(t_{1k}, t_{2k}) = \begin{cases} (1,0) & p_k \ge \lambda q_k \\ (0,1) & p_k < \lambda q_k \end{cases}
$$

- ^a deterministic detector, ^given by ^a likelihood ratio test
- if $p_k = \lambda q_k$ for some k, any value $0 \le t_{1k} \le 1$, $t_{1k} = 1 t_{2k}$ is optimal $(i.e.,$ Pareto-optimal detectors include non-deterministic detectors)

minimax detector

minimize
$$
\max\{P_{fp}, P_{fn}\} = \max\{(Tp)_2, (Tq)_1\}
$$

subject to $t_{1k} + t_{2k} = 1$, $t_{ik} \ge 0$, $i = 1, 2$, $k = 1, ..., n$

an LP; solution is usually not deterministic

example

solutions 1, 2, ³ (and endpoints) are deterministic; ⁴ is minimax detector

Experiment design

 $m \$ m linear measurements $y_i = a_i^T x + w_i, \, i=1,\ldots,m$ of unknown $x \in \mathbf{R}^n$

- $\bullet\,$ measurement errors w_i are IID $\mathcal{N}(0,1)$
- ML (least-squares) estimate is

$$
\hat{x} = \left(\sum_{i=1}^{m} a_i a_i^T\right)^{-1} \sum_{i=1}^{m} y_i a_i
$$

• error $e = \hat{x} - x$ has zero mean and covariance

$$
E = \mathbf{E} e e^T = \left(\sum_{i=1}^m a_i a_i^T\right)^{-1}
$$

confidence ellipsoids are given by $\{x \mid (x - \hat{x})^T E^{-1}(x - \hat{x}) \leq \beta\}$

experiment design: choose $a_i \in \{v_1, \ldots, v_p\}$ (a set of possible test
weeken) to make E (small) vectors) to make E 'small' $\,$

Statistical estimation

vector optimization formulation

$$
\begin{array}{ll}\text{minimize (w.r.t. } \mathbf{S}_+^n) & E = \left(\sum_{k=1}^p m_k v_k v_k^T\right)^{-1} \\ \text{subject to} & m_k \ge 0, \quad m_1 + \dots + m_p = m \\ & m_k \in \mathbf{Z} \end{array}
$$

- $\bullet\,$ variables are m_k $_{k}$ $(\#$ vectors a_{i} equal to $v_{k})$
- difficult in general, due to integer constraint

relaxed experiment design

assume $m\gg p$, use $\lambda_k=m_k/m$ as (continuous) real variable

minimize (w.r.t.
$$
\mathbf{S}_{+}^{n}
$$
) $E = (1/m) \left(\sum_{k=1}^{p} \lambda_k v_k v_k^T \right)^{-1}$
subject to $\lambda \succeq 0$, $\mathbf{1}^T \lambda = 1$

- $\bullet\,$ common scalarizations: minimize $\log\det E$, $\mathbf{tr}\, E$, $\lambda_{\max}(E)$, \dots
- $\bullet\,$ can add other convex constraints, $\,e.g.$, bound experiment cost $\,c^{T}$ $T\lambda \leq B$

^D-optimal design

minimize
$$
\log \det \left(\sum_{k=1}^{p} \lambda_k v_k v_k^T \right)^{-1}
$$

subject to $\lambda \succeq 0$, $\mathbf{1}^T \lambda = 1$

interpretation: minimizes volume of confidence ellipsoids

dual problem

$$
\begin{array}{ll}\text{maximize} & \log \det W + n \log n\\ \text{subject to} & v_k^T W v_k \le 1, \quad k = 1, \dots, p \end{array}
$$

interpretation: $\{x\mid x^TWx\leq 1\}$ is minimum volume ellipsoid centered at origin, that includes all test vectors $v_{\bm{k}}$

 $\,$ complementary slackness: for $\lambda,\,W$ primal and dual optimal

$$
\lambda_k(1 - v_k^T W v_k) = 0, \quad k = 1, \dots, p
$$

optimal experiment uses vectors v_k on boundary of ellipsoid defined by W

example $\left(p=20\right)$

design uses two vectors, on boundary of ellipse defined by optimal W

derivation of dual of page 1-13

first reformulate primal problem with new variable $X\!$:

minimize
$$
\log \det X^{-1}
$$

subject to $X = \sum_{k=1}^{p} \lambda_k v_k v_k^T$, $\lambda \ge 0$, $\mathbf{1}^T \lambda = 1$

$$
L(X, \lambda, Z, z, \nu) = \log \det X^{-1} + \text{tr}\left(Z\left(X - \sum_{k=1}^p \lambda_k v_k v_k^T\right)\right) - z^T \lambda + \nu (\mathbf{1}^T \lambda - 1)
$$

- minimize over X by setting gradient to zero: $-X^{-1}+Z=0$
- minimum over λ_k is $-\infty$ unless $-v_k^T Z v_k z_k + \nu = 0$

dual problem

maximize
$$
n + \log \det Z - \nu
$$

subject to $v_k^T Z v_k \le \nu, \quad k = 1, ..., p$

change variable $W=Z/\nu$, and optimize over ν to get dual of page 1–13