
Convex Optimization — Boyd & Vandenberghe

2. Convex sets

• affine and convex sets

• some important examples

• operations that preserve convexity

• generalized inequalities

• separating and supporting hyperplanes

• dual cones and generalized inequalities
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Affine set

line through x1, x2: all points

x = θx1 + (1 − θ)x2 (θ ∈ R)

x1

x2

θ = 1.2
θ = 1

θ = 0.6

θ = 0
θ = −0.2

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations {x | Ax = b}

(conversely, every affine set can be expressed as solution set of system of
linear equations)
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Convex set

line segment between x1 and x2: all points

x = θx1 + (1 − θ)x2

with 0 ≤ θ ≤ 1

convex set: contains line segment between any two points in the set

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1 − θ)x2 ∈ C

examples (one convex, two nonconvex sets)
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Convex combination and convex hull

convex combination of x1,. . . , xk: any point x of the form

x = θ1x1 + θ2x2 + · · · + θkxk

with θ1 + · · · + θk = 1, θi ≥ 0

convex hull conv S: set of all convex combinations of points in S
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Convex cone

conic (nonnegative) combination of x1 and x2: any point of the form

x = θ1x1 + θ2x2

with θ1 ≥ 0, θ2 ≥ 0

0

x1

x2

convex cone: set that contains all conic combinations of points in the set
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Hyperplanes and halfspaces

hyperplane: set of the form {x | aTx = b} (a 6= 0)

a

x

aTx = b

x0

halfspace: set of the form {x | aTx ≤ b} (a 6= 0)

a

aTx ≥ b

aTx ≤ b

x0

• a is the normal vector

• hyperplanes are affine and convex; halfspaces are convex
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Euclidean balls and ellipsoids

(Euclidean) ball with center xc and radius r:

B(xc, r) = {x | ‖x − xc‖2 ≤ r} = {xc + ru | ‖u‖2 ≤ 1}

ellipsoid: set of the form

{x | (x − xc)
TP−1(x − xc) ≤ 1}

with P ∈ Sn
++ (i.e., P symmetric positive definite)

xc

other representation: {xc + Au | ‖u‖2 ≤ 1} with A square and nonsingular
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Norm balls and norm cones

norm: a function ‖ · ‖ that satisfies

• ‖x‖ ≥ 0; ‖x‖ = 0 if and only if x = 0

• ‖tx‖ = |t| ‖x‖ for t ∈ R

• ‖x + y‖ ≤ ‖x‖ + ‖y‖

notation: ‖ · ‖ is general (unspecified) norm; ‖ · ‖symb is particular norm

norm ball with center xc and radius r: {x | ‖x − xc‖ ≤ r}

norm cone: {(x, t) | ‖x‖ ≤ t}

Euclidean norm cone is called second-
order cone

x1
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norm balls and cones are convex
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Polyhedra

solution set of finitely many linear inequalities and equalities

Ax � b, Cx = d

(A ∈ Rm×n, C ∈ Rp×n, � is componentwise inequality)

a1 a2

a3

a4

a5

P

polyhedron is intersection of finite number of halfspaces and hyperplanes
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Positive semidefinite cone

notation:

• Sn is set of symmetric n × n matrices

• Sn
+ = {X ∈ Sn | X � 0}: positive semidefinite n × n matrices

X ∈ Sn
+ ⇐⇒ zTXz ≥ 0 for all z

Sn
+ is a convex cone

• Sn
++ = {X ∈ Sn | X ≻ 0}: positive definite n × n matrices

example:

[

x y
y z
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∈ S2
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Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

x1, x2 ∈ C, 0 ≤ θ ≤ 1 =⇒ θx1 + (1 − θ)x2 ∈ C

2. show that C is obtained from simple convex sets (hyperplanes,
halfspaces, norm balls, . . . ) by operations that preserve convexity

• intersection
• affine functions
• perspective function
• linear-fractional functions
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Intersection

the intersection of (any number of) convex sets is convex

example:
S = {x ∈ Rm | |p(t)| ≤ 1 for |t| ≤ π/3}

where p(t) = x1 cos t + x2 cos 2t + · · · + xm cos mt

for m = 2:

0 π/3 2π/3 π
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Affine function

suppose f : Rn → Rm is affine (f(x) = Ax + b with A ∈ Rm×n, b ∈ Rm)

• the image of a convex set under f is convex

S ⊆ Rn convex =⇒ f(S) = {f(x) | x ∈ S} convex

• the inverse image f−1(C) of a convex set under f is convex

C ⊆ Rm convex =⇒ f−1(C) = {x ∈ Rn | f(x) ∈ C} convex

examples

• scaling, translation, projection

• solution set of linear matrix inequality {x | x1A1 + · · · + xmAm � B}
(with Ai, B ∈ Sp)

• hyperbolic cone {x | xTPx ≤ (cTx)2, cTx ≥ 0} (with P ∈ Sn
+)
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Perspective and linear-fractional function

perspective function P : Rn+1 → Rn:

P (x, t) = x/t, domP = {(x, t) | t > 0}

images and inverse images of convex sets under perspective are convex

linear-fractional function f : Rn → Rm:

f(x) =
Ax + b

cTx + d
, dom f = {x | cTx + d > 0}

images and inverse images of convex sets under linear-fractional functions
are convex

Convex sets 2–14



example of a linear-fractional function

f(x) =
1

x1 + x2 + 1
x

x1

x
2 C

−1 0 1
−1

0

1

x1

x
2

f(C)

−1 0 1
−1

0

1
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Generalized inequalities

a convex cone K ⊆ Rn is a proper cone if

• K is closed (contains its boundary)

• K is solid (has nonempty interior)

• K is pointed (contains no line)

examples

• nonnegative orthant K = Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n}

• positive semidefinite cone K = Sn
+

• nonnegative polynomials on [0, 1]:

K = {x ∈ Rn | x1 + x2t + x3t
2 + · · · + xntn−1 ≥ 0 for t ∈ [0, 1]}
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generalized inequality defined by a proper cone K:

x �K y ⇐⇒ y − x ∈ K, x ≺K y ⇐⇒ y − x ∈ intK

examples

• componentwise inequality (K = Rn
+)

x �Rn
+

y ⇐⇒ xi ≤ yi, i = 1, . . . , n

• matrix inequality (K = Sn
+)

X �Sn
+

Y ⇐⇒ Y − X positive semidefinite

these two types are so common that we drop the subscript in �K

properties: many properties of �K are similar to ≤ on R, e.g.,

x �K y, u �K v =⇒ x + u �K y + v
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Minimum and minimal elements

�K is not in general a linear ordering : we can have x 6�K y and y 6�K x

x ∈ S is the minimum element of S with respect to �K if

y ∈ S =⇒ x �K y

x ∈ S is a minimal element of S with respect to �K if

y ∈ S, y �K x =⇒ y = x

example (K = R2
+)

x1 is the minimum element of S1

x2 is a minimal element of S2 x1

x2S1

S2
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Separating hyperplane theorem

if C and D are disjoint convex sets, then there exists a 6= 0, b such that

aTx ≤ b for x ∈ C, aTx ≥ b for x ∈ D

D

C

a

aTx ≥ b aTx ≤ b

the hyperplane {x | aTx = b} separates C and D

strict separation requires additional assumptions (e.g., C is closed, D is a
singleton)
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Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x0:

{x | aTx = aTx0}

where a 6= 0 and aTx ≤ aTx0 for all x ∈ C

C

a

x0

supporting hyperplane theorem: if C is convex, then there exists a
supporting hyperplane at every boundary point of C
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Dual cones and generalized inequalities

dual cone of a cone K:

K∗ = {y | yTx ≥ 0 for all x ∈ K}

examples

• K = Rn
+: K∗ = Rn

+

• K = Sn
+: K∗ = Sn

+

• K = {(x, t) | ‖x‖2 ≤ t}: K∗ = {(x, t) | ‖x‖2 ≤ t}

• K = {(x, t) | ‖x‖1 ≤ t}: K∗ = {(x, t) | ‖x‖∞ ≤ t}

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

y �K∗ 0 ⇐⇒ yTx ≥ 0 for all x �K 0
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Minimum and minimal elements via dual inequalities

minimum element w.r.t. �K

x is minimum element of S iff for all
λ ≻K∗ 0, x is the unique minimizer
of λTz over S

x

S

minimal element w.r.t. �K

• if x minimizes λTz over S for some λ ≻K∗ 0, then x is minimal

Sx1

x2

λ1

λ2

• if x is a minimal element of a convex set S, then there exists a nonzero
λ �K∗ 0 such that x minimizes λTz over S
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optimal production frontier

• different production methods use different amounts of resources x ∈ Rn

• production set P : resource vectors x for all possible production methods

• efficient (Pareto optimal) methods correspond to resource vectors x
that are minimal w.r.t. Rn

+

example (n = 2)

x1, x2, x3 are efficient; x4, x5 are not

x4x2

x1

x5

x3
λ

P

labor

fuel
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