
MachineLearning-Lecture20  

Instructor (Andrew Ng):Okay. Good morning. Just one quick announcement before I 
start. Poster session, next Wednesday, 8:30 as you already know, and poster boards will 
be made available soon, so the poster boards we have are 20 inches by 30 inches in case 
you want to start designing your posters. That’s 20 inches by 30 inches. And they will be 
available this Friday, and you can pick them up from Nicki Salgudo who’s in Gates 187, 
so starting this Friday. I’ll send out this information by e-mail as well, in case you don’t 
want to write it down. 

For those you that are SCPD students, if you want to show up here only on Wednesday 
for the poster session itself, we’ll also have blank posters there, or you’re also welcome 
to buy your own poster boards. If you do take poster boards from us then please treat 
them well. For the sake of the environment, we do ask you to give them back at the end 
of the poster session. We’ll recycle them from year to year. So if you do take one from 
us, please don’t cut holes in it or anything. So welcome to the last lecture of this course. 
What I want to do today is tell you about one final class of reinforcement learning 
algorithms. I just want to say a little bit about POMDPs, the partially observable MDPs, 
and then the main technical topic for today will be policy search algorithms. I’ll talk 
about two specific algorithms, essentially called reinforced and called Pegasus, and then 
we’ll wrap up the class. So if you recall from the last lecture, I actually started to talk 
about one specific example of a POMDP, which was this sort of linear dynamical system. 
This is sort of LQR, linear quadratic revelation problem, but I changed it and said what if 
we only have observations YT. And what if we couldn’t observe the state of the system 
directly, but had to choose an action only based on some noisy observations that maybe 
some function of the state? 

So our strategy last time was that we said that in the fully observable case, we could 
choose actions – AT equals two, that matrix LT times ST. So LT was this matrix of 
parameters that [inaudible] describe the dynamic programming algorithm for finite 
horizon MDPs in the LQR problem. And so we said if only we knew what the state was, 
we choose actions according to some matrix LT times the state. And then I said in the 
partially observable case, we would compute these estimates. I wrote them as S of T 
given T, which were our best estimate for what the state is given all the observations. 
And in particular, I’m gonna talk about a Kalman filter which we worked out that our 
posterior distribution of what the state is given all the observations up to a certain time 
that was this.  

So this is from last time. So that given the observations Y one through YT, our posterior 
distribution of the current state ST was Gaussian would mean ST given T sigma T given 
T. So I said we use a Kalman filter to compute this thing, this ST given T, which is going 
to be our best guess for what the state is currently. And then we choose actions using our 
estimate for what the state is, rather than using the true state because we don’t know the 
true state anymore in this POMDP. So it turns out that this specific strategy actually 
allows you to choose optimal actions, allows you to choose actions as well as you 
possibly can given that this is a POMDP, and given there are these noisy observations. It 



turns out that in general finding optimal policies with POMDPs – finding optimal policies 
for these sorts of partially observable MDPs is an NP-hard problem. Just to be concrete 
about the formalism of the POMDP – I should just write it here – a POMDP formally is a 
tuple like that where the changes are the set Y is the set of possible observations, and this 
O subscript S are the observation distributions. And so at each step, we observe – at each 
step in the POMDP, if we’re in some state ST, we observe some observation YT drawn 
from the observation distribution O subscript ST, that there’s an index by what the 
current state is. And it turns out that computing the optimal policy in a POMDP is an NP-
hard problem. For the specific case of linear dynamical systems with the Kalman filter 
model, we have this strategy of computing the optimal policy assuming full observability 
and then estimating the states from the observations, and then plugging the two together.  

That turns out to be optimal essentially for only that special case of a POMDP. In the 
more general case, that strategy of designing a controller assuming full observability and 
then just estimating the state and plugging the two together, for general POMDPs that 
same strategy is often a very reasonable strategy but is not always guaranteed to be 
optimal. Solving these problems in general, NP-hard. So what I want to do today is 
actually talk about a different class of reinforcement learning algorithms. These are called 
policy search algorithms. In particular, policy search algorithms can be applied equally 
well to MDPs, to fully observed Markov decision processes, or to these POMDPs, or to 
these partially observable MPDs. What I want to do now, I’ll actually just describe policy 
search algorithms applied to MDPs, applied to the fully observable case. And in the end, I 
just briefly describe how you can take policy search algorithms and apply them to 
POMDPs. In the latter case, when you apply a policy search algorithm to a POMDP, it’s 
going to be hard to guarantee that you get the globally optimal policy because solving 
POMDPs in general is NP-hard, but nonetheless policy search algorithms – it turns out to 
be I think one of the most effective classes of reinforcement learning algorithms, as well 
both for MDPs and for POMDPs. 

So here’s what we’re going to do. In policy search, we’re going to define of some set 
which I denote capital pi of policies, and our strategy is to search for a good policy lower 
pi into set capital pi. Just by analogy, I want to say – in the same way, back when we 
were talking about supervised learning, the way we defined the set capital pi of policies 
in the search for policy in this set capital pi is analogous to supervised learning where we 
defined a set script H of hypotheses and search – and would search for a good hypothesis 
in this policy script H. Policy search is sometimes also called direct policy search. To 
contrast this with the source of algorithms we’ve been talking about so far, in all the 
algorithms we’ve been talking about so far, we would try to find V star. We would try to 
find the optimal value function. And then we’d use V star – we’d use the optimal value 
function to then try to compute or try to approximate pi star. So all the approaches we 
talked about previously are strategy for finding a good policy. Once we compute the 
value function, then we go from that to policy. In contrast, in policy search algorithms 
and something that’s called direct policy search algorithms, the idea is that we’re going to 
quote “directly” try to approximate a good policy without going through the intermediate 
stage of trying to find the value function. Let’s see. And also as I develop policy search – 
just one step that’s sometimes slightly confusing. Making an analogy to supervised 



learning again, when we talked about logistic regression, I said we have input features X 
and some labels Y, and I sort of said let’s approximate Y using the logistic function of the 
inputs X. And at least initially, the logistic function was sort of pulled out of the air.  

In the same way, as I define policy search algorithms, there’ll sort of be a step where I 
say, “Well, let’s try to compute the actions. Let’s try to approximate what a good action 
is using a logistic function of the state.” So again, I’ll sort of pull a function out of the air. 
I’ll say, “Let’s just choose a function, and that’ll be our choice of the policy cost,” and 
I’ll say, “Let’s take this input the state, and then we’ll map it through logistic function, 
and then hopefully, we’ll approximate what is a good function – excuse me, we’ll 
approximate what is a good action using a logistic function of the state.” So there’s that 
sort of – the function of the choice of policy cost that’s again a little bit arbitrary, but it’s 
arbitrary as it was when we were talking about supervised learning. So to develop our 
first policy search algorithm, I’m actually gonna need the new definition. So our first 
policy search algorithm, we’ll actually need to work with stochastic policies. What I 
mean by stochastic policy is there’s going to be a function that maps from the space of 
states across actions. They’re real numbers where pi of S comma A will be interpreted as 
the probability of taking this action A in sum state S. And so we have to add sum over A 
– In other words, for every state a stochastic policy specifies a probability distribution 
over the actions. So concretely, suppose you are executing some policy pi. Say I have 
some stochastic policy pi. I wanna execute the policy pi. What that means is that – in this 
example let’s say I have three actions.  

What that means is that suppose I’m in some state S. I would then compute pi of S 
comma A1, pi of S comma A2, pi of S comma A3, if I have a three action MDP. These 
will be three numbers that sum up to one, and then my chance of taking action A1 will be 
equal to this. My chance of taking action A2 will be equal to pi of S comma A2. My 
chance of taking action A3 will be equal to this number. So that’s what it means to 
execute a stochastic policy. So as a concrete example, just let me make this – the concept 
of why you wanna use stochastic policy is maybe a little bit hard to understand. So let me 
just go ahead and give one specific example of what a stochastic policy may look like. 
For this example, I’m gonna use the inverted pendulum as my motivating example. It’s 
that problem of balancing a pole. We have an inverted pendulum that swings freely, and 
you want to move the cart left and right to keep the pole vertical. Let’s say my actions – 
for today’s example, I’m gonna use that angle to denote the angle of the pole phi. I have 
two actions where A1 is to accelerate left and A2 is to accelerate right. Actually, let me 
just write that the other way around. A1 is to accelerate right. A2 is to accelerate left. So 
let’s see. Choose a reward function that penalizes the pole falling over whatever. And 
now let’s come up with a stochastic policy for this problem. To come up with a class of 
stochastic policies really means coming up with some class of functions to approximate 
what action you want to take as a function of the state.  

So here’s my somewhat arbitrary choice. I’m gonna say that the probability of action A1, 
so pi of S comma A1, I’m gonna write as – okay? And I just chose the logistic function 
because it’s a convenient function we’ve used a lot. So I’m gonna say that my policy is 
parameterized by a set of parameters theta, and for any given set of parameters theta, that 



gives me a stochastic policy. And if I’m executing that policy with parameters theta, that 
means that the chance of my choosing to a set of [inaudible] is given by this number. 
Because my chances of executing actions A1 or A2 must sum to one, this gives me pi of 
S A2. So just [inaudible], this means that when I’m in sum state S, I’m going to compute 
this number, compute one over one plus E to the minus state of transpose S. And then 
with this probability, I will execute the accelerate right action, and with one minus this 
probability, I’ll execute the accelerate left action. And again, just to give you a sense of 
why this might be a reasonable thing to do, let’s say my state vector is – this is 
[inaudible] state, and I added an extra one as an interceptor, just to give my logistic 
function an extra feature. If I choose my parameters and my policy to be say this, then 
that means that at any state, the probability of my taking action A1 – the probability of 
my taking the accelerate right action is this one over one plus E to the minus state of 
transpose S, which taking the inner product of theta and S, this just gives you phi, equals 
one over one plus E to the minus phi.  

And so if I choose my parameters theta as follows, what that means is that just depending 
on the angle phi of my inverted pendulum, the chance of my accelerating to the right is 
just this function of the angle of my inverted pendulum. And so this means for example 
that if my inverted pendulum is leaning far over to the right, then I’m very likely to 
accelerate to the right to try to catch it. I hope the physics of this inverted pendulum thing 
make sense. If my pole’s leaning over to the right, then I wanna accelerate to the right to 
catch it. And conversely if phi is negative, it’s leaning over to the left, and I’ll accelerate 
to the left to try to catch it. So this is one example for one specific choice of parameters 
theta. Obviously, this isn’t a great policy because it ignores the rest of the features. 
Maybe if the cart is further to the right, you want it to be less likely to accelerate to the 
right, and you can capture that by changing one of these coefficients to take into account 
the actual position of the cart. And then depending on the velocity of the cart and the 
angle of velocity, you might want to change theta to take into account these other effects 
as well. Maybe if the pole’s leaning far to the right, but is actually on its way to swinging 
back, it’s specified to the angle of velocity, then you might be less worried about having 
to accelerate hard to the right. And so these are the sorts of behavior you can get by 
varying the parameters theta. 

And so our goal is to tune the parameters theta – our goal in policy search is to tune the 
parameters theta so that when we execute the policy pi subscript theta, the pole stays up 
as long as possible. In other words, our goal is to maximize as a function of theta – our 
goal is to maximize the expected value of the payoff for when we execute the policy pi 
theta. We want to choose parameters theta to maximize that. Are there questions about 
the problem set up, and policy search and policy classes or anything? Yeah.  

Student:In a case where we have more than two actions, would we use a different theta 
for each of the distributions, or still have the same parameters?  

Instructor (Andrew Ng):Oh, yeah. Right. So what if we have more than two actions. It 
turns out you can choose almost anything you want for the policy class, but you have say 
a fixed number of discrete actions, I would sometimes use like a softmax 



parameterization. Similar to softmax regression that we saw earlier in the class, you may 
say that – [inaudible] out of space. You may have a set of parameters theta 1 through 
theta D if you have D actions and – pi equals E to the theta I transpose S over – so that 
would be an example of a softmax parameterization for multiple actions. It turns out that 
if you have continuous actions, you can actually make this be a density over the actions A 
and parameterized by other things as well. 

But the choice of policy class is somewhat up to you, in the same way that the choice of 
whether we chose to use a linear function or linear function with quadratic features or 
whatever in supervised learning that was sort of up to us. Anything else? Yeah.  

Student:[Inaudible] stochastic?  

Instructor (Andrew Ng):Yes.  

Student:So is it possible to [inaudible] a stochastic policy using numbers [inaudible]?  

Instructor (Andrew Ng):I see. Given that MDP has stochastic transition probabilities, is 
it possible to use [inaudible] policies and [inaudible] the stochasticity of the state 
transition probabilities. The answer is yes, but for the purposes of what I want to show 
later, that won’t be useful. But formally, it is possible. If you already have a fixed – if you 
have a fixed policy, then you’d be able to do that. Anything else? Yeah. No, I guess even 
a [inaudible] class of policy can do that, but for the derivation later, I actually need to 
keep it separate. Actually, could you just – I know the concept of policy search is 
sometimes a little confusing. Could you just raise your hand if this makes sense? Okay. 
Thanks. So let’s talk about an algorithm. What I’m gonna talk about – the first algorithm 
I’m going to present is sometimes called the reinforce algorithm. What I’m going to 
present it turns out isn’t exactly the reinforce algorithm as it was originally presented by 
the author Ron Williams, but it sort of captures its essence. 

Here’s the idea. In the sequel – in what I’m about to do, I’m going to assume that S0 is 
some fixed initial state. Or it turns out if S0 is drawn from some fixed initial state 
distribution then everything else [inaudible], but let’s just say S0 is some fixed initial 
state. So my goal is to maximize this expected sum [inaudible]. Given the policy and 
whatever else, drop that. So the random variables in this expectation is a sequence of 
states and actions: S0, A0, S1, A1, and so on, up to ST, AT are the random variables. So 
let me write out this expectation explicitly as a sum over all possible state and action 
sequences of that – so that’s what an expectation is. It’s the probability of the random 
variables times that. Let me just expand out this probability. So the probability of seeing 
this exact sequence of states and actions is the probability of the MDP starting in that 
state. If this is a deterministic initial state, then all the probability mass would be on one 
state. Otherwise, there’s some distribution over initial states. Then times the probability 
that you chose action A0 from that state as zero, and then times the probability that the 
MDP’s transition probabilities happen to transition you to state S1 where you chose 
action A0 to state S0, times the probability that you chose that and so on. The last term 
here is that, and then times that. 



So what I did was just take this probability of seeing this sequence of states and actions, 
and then just [inaudible] explicitly or expanded explicitly like this. It turns out later on 
I’m going to need to write this sum of rewards a lot, so I’m just gonna call this the payoff 
from now. So whenever later in this lecture I write the word payoff, I just mean this sum. 
So our goal is to maximize the expected payoff, so our goal is to maximize this sum. Let 
me actually just skip ahead. I’m going to write down what the final answer is, and then 
I’ll come back and justify the algorithm. So here’s the algorithm. This is how we’re going 
to update the parameters of the algorithm. We’re going to sample a state action sequence. 
The way you do this is you just take your current stochastic policy, and you execute it in 
the MDP. So just go ahead and start from some initial state, take a stochastic action 
according to your current stochastic policy, see where the state transition probably takes 
you, and so you just do that for T times steps, and that’s how you sample the state 
sequence. Then you compute the payoff, and then you perform this update. 

So let’s go back and figure out what this algorithm is doing. Notice that this algorithm 
performs stochastic updates because on every step it updates data according to this thing 
on the right hand side. This thing on the right hand side depends very much on your 
payoff and on the state action sequence you saw. Your state action sequence is random, 
so what I want to do is figure out – so on every step, I’ll sort of take a step that’s chosen 
randomly because it depends on this random state action sequence. So what I want to do 
is figure out on average how does it change the parameters theta. In particular, I want to 
know what is the expected value of the change to the parameters. So I want to know what 
is the expected value of this change to my parameters theta. Our goal is to maximize the 
sum [inaudible] – our goal is to maximize the value of the payoff. So long as the updates 
on expectation are on average taking us uphill on the expected payoff, then we’re happy. 
It turns out that this algorithm is a form of stochastic gradient ascent in which – 
remember when I talked about stochastic gradient descent for least squares regression, I 
said that you have some parameters – maybe you’re trying to minimize a quadratic 
function. Then you may have parameters that will wander around randomly until it gets 
close to the optimum of the [inaudible] quadratic surface. It turns out that the reinforce 
algorithm will be very much like that. It will be a stochastic gradient ascent algorithm in 
which on every step – the step we take is a little bit random. It’s determined by the 
random state action sequence, but on expectation this turns out to be essentially gradient 
ascent algorithm. And so we’ll do something like this. It’ll wander around randomly, but 
on average take you towards the optimum. 

So let me go ahead and prove that now. Let’s see. What I’m going to do is I’m going to 
derive a gradient ascent update rule for maximizing the expected payoff. Then I’ll 
hopefully show that by deriving a gradient ascent update rule, I’ll end up with this thing 
on expectation. So before I do the derivation, let me just remind you of the chain rule – 
the product rule for differentiation in which if I have a product of functions, then the 
derivative of the product is given by taking of the derivatives of these things one at a 
time. So first I differentiate with respect to F prime, leaving the other two fixed. Then I 
differentiate with respect to G, leaving the other two fixed. Then I differentiate with 
respect to H, so I get H prime leaving the other two fixed. So that’s the product rule for 
derivatives. If you refer back to this equation where earlier we wrote out that the expected 



payoff by this equation, this sum over all the states of the probability times the payoff. So 
what I’m going to do is take the derivative of this expression with respect to the 
parameters theta because I want to do gradient ascent on this function. So I’m going to 
take the derivative of this function with respect to theta, and then try to go uphill on this 
function. 

So using the product rule, when I take the derivative of this function with respect to theta 
what I get is – we’ll end up with the sum of terms right there. There are a lot of terms 
here that depend on theta, and so what I’ll end up with is I’ll end up having a sum – 
having one term that corresponds to the derivative of this keeping everything else fixed, 
to have one term from the derivative of this keeping everything else fixed, and I’ll have 
one term from the derivative of that last thing keeping everything else fixed. So just apply 
the product rule to this. 

Let’s write that down. So I have that – the derivative with respect to theta of the expected 
value of the payoff is – it turns out I can actually do this entire derivation in exactly four 
steps, but each of the steps requires a huge amount of writing, so I’ll just start writing and 
see how that goes, but this is a four step derivation. So there’s the sum over the state 
action sequences as we saw before. Close the bracket, and then times the payoff. So that 
huge amount of writing, that was just taking my previous formula and differentiating 
these terms that depend on theta one at a time. This was the term with the derivative of 
the first pi of theta S0 A0. So there’s the first derivative term. There’s the second one. 
Then you have plus dot, dot, dot, like in terms of [inaudible]. That’s my last term. So that 
was step one of four. And so by algebra – let me just write this down and convince us all 
that it’s true. This is the second of four steps in which it just convinced itself that if I 
expand out – take the sum and multiply it by that big product in front, then I get back that 
sum of terms I get. It’s essentially – for example, when I multiply out, this product on top 
of this ratio, of this first fraction, then pi subscript theta S0 A0, that would cancel out this 
pi subscript theta S0 A0 and replace it with the derivative with respect to theta of pi theta 
S0 A0. So [inaudible] algebra was the second. 

But that term on top is just what I worked out previously – was the joint probability of the 
state action sequence, and now I have that times that times the payoff. And so by the 
definition of expectation, this is just equal to that thing times the payoff. So this thing 
inside the expectation, this is exactly the step that we were taking in the inner group of 
our reinforce algorithm, roughly the reinforce algorithm. This proves that the expected 
value of our change to theta is exactly in the direction of the gradient of our expected 
payoff. That’s how I started this whole derivation. I said let’s look at our expected payoff 
and take the derivative of that with respect to theta. What we’ve proved is that on 
expectation, the step direction I’ll take reinforce is exactly the gradient of the thing I’m 
trying to optimize. This shows that this algorithm is a stochastic gradient ascent 
algorithm. 

I wrote a lot. Why don’t you take a minute to look at the equations and [inaudible] check 
if everything makes sense. I’ll erase a couple of boards and then check if you have 
questions after that. Questions? Could you raise your hand if this makes sense? Great. 



Some of the comments – we talked about those value function approximation approaches 
where you approximate V star, then you go from V star to pi star. Then here was also 
policy search approaches, where you try to approximate the policy directly. So let’s talk 
briefly about when either one may be preferable. 

It turns out that policy search algorithms are especially effective when you can choose a 
simple policy class pi. So the question really is for your problem does there exist a simple 
function like a linear function or a logistic function that maps from features of the state to 
the action that works pretty well. So the problem with the inverted pendulum – this is 
quite likely to be true. Going through all the different choices of parameters, you can say 
things like if the pole’s leaning towards the right, then accelerate towards the right to try 
to catch it. Thanks to the inverted pendulum, this is probably true. For lots of what’s 
called low level control tasks, things like driving a car, the low level reflexes of do you 
steer your car left to avoid another car, do you steer your car left to follow the car road, 
flying a helicopter, again very short time scale types of decisions – I like to think of these 
as decisions like trained operator for like a trained driver or a trained pilot. It would 
almost be a reflex, these sorts of very quick instinctive things where you map very 
directly from the inputs, data, and action. These are problems for which you can probably 
choose a reasonable policy class like a logistic function or something, and it will often 
work well. In contrast, if you have problems that require long multistep reasoning, so 
things like a game of chess where you have to reason carefully about if I do this, then 
they’ll do that, then they’ll do this, then they’ll do that. Those I think of as less 
instinctual, very high level decision making. For problems like that, I would sometimes 
use a value function approximation approaches instead. 

Let me say more about this later. The last thing I want to do is actually tell you about – I 
guess just as a side comment, it turns out also that if you have POMDP, if you have a 
partially observable MDP – I don’t want to say too much about this – it turns out that if 
you only have an approximation – let’s call it S hat of the true state, and so this could be 
S hat equals S of T given T from Kalman filter – then you can still use these sorts of 
policy search algorithms where you can say pi theta of S hat comma A – There are 
various other ways you can use policy search algorithms for POMDPs, but this is one of 
them where if you only have estimates of the state, you can then choose a policy class 
that only looks at your estimate of the state to choose the action. By using the same way 
of estimating the states in both training and testing, this will usually do some – so these 
sorts of policy search algorithms can be applied often reasonably effectively to POMDPs 
as well. There’s one more algorithm I wanna talk about, but some final words on the 
reinforce algorithm. It turns out the reinforce algorithm often works well but is often 
extremely slow. So it [inaudible] works, but one thing to watch out for is that because 
you’re taking these gradient ascent steps that are very noisy, you’re sampling a state 
action sequence, and then you’re sort of taking a gradient ascent step in essentially a sort 
of random direction that only on expectation is correct.  

The gradient ascent direction for reinforce can sometimes be a bit noisy, and so it’s not 
that uncommon to need like a million iterations of gradient ascent, or ten million, or 100 
million iterations of gradient ascent for reinforce [inaudible], so that’s just something to 



watch out for. One consequence of that is in the reinforce algorithm – I shouldn’t really 
call it reinforce. In what’s essentially the reinforce algorithm, there’s this step where you 
need to sample a state action sequence. So in principle you could do this on your own 
robot. If there were a robot you were trying to control, you can actually physically 
initialize in some state, pick an action and so on, and go from there to sample a state 
action sequence. But if you need to do this ten million times, you probably don’t want to 
[inaudible] your robot ten million times. I personally have seen many more applications 
of reinforce in simulation. You can easily run ten thousand simulations or ten million 
simulations of your robot in simulation maybe, but you might not want to do that – have 
your robot physically repeat some action ten million times. So I personally have seen 
many more applications of reinforce to learn using a simulator than to actually do this on 
a physical device. 

The last thing I wanted to do is tell you about one other algorithm, one final policy search 
algorithm. [Inaudible] the laptop display please. It’s a policy search algorithm called 
Pegasus that’s actually what we use on our autonomous helicopter flight things for many 
years. There are some other things we do now. So here’s the idea. There’s a reminder 
slide on RL formalism. There’s nothing here that you don’t know, but I just want to 
pictorially describe the RL formalism because I’ll use that later. I’m gonna draw the 
reinforcement learning picture as follows. The initialized [inaudible] system, say a 
helicopter or whatever in sum state S0, you choose an action A0, and then you’ll say 
helicopter dynamics takes you to some new state S1, you choose some other action A1, 
and so on. And then you have some reward function, which you reply to the sequence of 
states you summed out, and that’s your total payoff. 

So this is just a picture I wanna use to summarize the RL problem. Our goal is to 
maximize the expected payoff, which is this, the expected sum of the rewards. And our 
goal is to learn the policy, which I denote by a green box. So our policy – and I’ll switch 
back to deterministic policies for now. So my deterministic policy will be some function 
mapping from the states to the actions. 

As a concrete example, you imagine that in the policy search setting, you may have a 
linear class of policies. So you may imagine that the action A will be say a linear function 
of the states, and your goal is to learn the parameters of the linear function. So imagine 
trying to do linear progression on policies, except you’re trying to optimize the 
reinforcement learning objective. So just [inaudible] imagine that the action A is state of 
transpose S, and you go and policy search this to come up with good parameters theta so 
as to maximize the expected payoff. That would be one setting in which this picture 
applies. There’s the idea. Quite often we come up with a model or a simulator for the 
MDP, and as before a model or a simulator is just a box that takes this input some state 
ST, takes this input some action AT, and then outputs some [inaudible] state ST plus one 
that you might want to take in the MDP. This ST plus one will be a random state. It will 
be drawn from the random state transition probabilities of MDP. This is important. Very 
important, ST plus one will be a random function ST and AT. In the simulator, this is 
[inaudible]. 



So for example, for autonomous helicopter flight, you [inaudible] build a simulator using 
supervised learning, an algorithm like linear regression [inaudible] to linear regression, so 
we can get a nonlinear model of the dynamics of what ST plus one is as a random 
function of ST and AT. Now once you have a simulator, given any fixed policy you can 
quite straightforwardly evaluate any policy in a simulator. Concretely, our goal is to find 
the policy pi mapping from states to actions, so the goal is to find the green box like that. 
It works well. So if you have any one fixed policy pi, you can evaluate the policy pi just 
using the simulator via the picture shown at the bottom of the slide. So concretely, you 
can take your initial state S0, feed it into the policy pi, your policy pi will output some 
action A0, you plug it in the simulator, the simulator outputs a random state S1, you feed 
S1 into the policy and so on, and you get a sequence of states S0 through ST that your 
helicopter flies through in simulation. Then sum up the rewards, and this gives you an 
estimate of the expected payoff of the policy. 

This picture is just a fancy way of saying fly your helicopter in simulation and see how 
well it does, and measure the sum of rewards you get on average in the simulator. The 
picture I’ve drawn here assumes that you run your policy through the simulator just once. 
In general, you would run the policy through the simulator some number of times and 
then average to get an average over M simulations to get a better estimate of the policy’s 
expected payoff. Now that I have a way – given any one fixed policy, this gives me a way 
to evaluate the expected payoff of that policy. So one reasonably obvious thing you might 
try to do is then just search for a policy, in other words search for parameters theta for 
your policy, that gives you high estimated payoff. Does that make sense? So my policy 
has some parameters theta, so my policy is my actions A are equal to theta transpose S 
say if there’s a linear policy. For any fixed value of the parameters theta, I can evaluate – 
I can get an estimate for how good the policy is using the simulator. One thing I might try 
to do is search for parameters theta to try to maximize my estimated payoff. It turns out 
you can sort of do that, but that idea as I’ve just stated is hard to get to work. Here’s the 
reason. The simulator allows us to evaluate policy, so let’s search for policy of high 
value. 

The difficulty is that the simulator is random, and so every time we evaluate a policy, we 
get back a very slightly different answer. So in the cartoon below, I want you to imagine 
that the horizontal axis is the space of policies. In other words, as I vary the parameters in 
my policy, I get different points on the horizontal axis here. As I vary the parameters 
theta, I get different policies, and so I’m moving along the X axis, and my total payoff 
I’m gonna plot on the vertical axis, and the red line in this cartoon is the expected payoff 
of the different policies. My goal is to find the policy with the highest expected payoff. 
You could search for a policy with high expected payoff, but every time you evaluate a 
policy – say I evaluate some policy, then I might get a point that just by chance looked a 
little bit better than it should have. If I evaluate a second policy and just by chance it 
looked a little bit worse. I evaluate a third policy, fourth, sometimes you look here – 
sometimes I might actually evaluate exactly the same policy twice and get back slightly 
different answers just because my simulator is random, so when I apply the same policy 
twice in simulation, I might get back slightly different answers. 



So as I evaluate more and more policies, these are the pictures I get. My goal is to try to 
optimize the red line. I hope you appreciate this is a hard problem, especially when all 
[inaudible] optimization algorithm gets to see are these black dots, and they don’t have 
direct access to the red line. So when my input space is some fairly high dimensional 
space, if I have ten parameters, the horizontal axis would actually be a 10-D space, all I 
get are these noisy estimates of what the red line is. This is a very hard stochastic 
optimization problem. So it turns out there’s one way to make this optimization problem 
much easier. Here’s the idea. And the method is called Pegasus, which is an acronym for 
something. I’ll tell you later. So the simulator repeatedly makes calls to a random number 
generator to generate random numbers RT, which are used to simulate the stochastic 
dynamics. What I mean by that is that the simulator takes this input of state and action, 
and it outputs the mixed state randomly, and if you peer into the simulator, if you open 
the box of the simulator and ask how is my simulator generating these random mixed 
states ST plus one, pretty much the only way to do so – pretty much the only way to write 
a simulator with random outputs is we’re gonna make calls to a random number 
generator, and get random numbers, these RTs, and then you have some function that 
takes this input S0, A0, and the results of your random number generator, and it computes 
some mixed state as a function of the inputs and of the random number it got from the 
random number generator. 

This is pretty much the only way anyone implements any random code, any code that 
generates random outputs. You make a call to a random number generator, and you 
compute some function of the random number and of your other inputs. The reason that 
when you evaluate different policies you get different answers is because every time you 
rerun the simulator, you get a different sequence of random numbers from the random 
number generator, and so you get a different answer every time, even if you evaluate the 
same policy twice. So here’s the idea. Let’s say we fix in advance the sequence of 
random numbers, choose R1, R2, up to RT minus one. Fix the sequence of random 
numbers in advance, and we’ll always use the same sequence of random numbers to 
evaluate different policies. Go into your code and fix R1, R2, through RT minus one. 
Choose them randomly once and then fix them forever. 

If you always use the same sequence of random numbers, then the system is no longer 
random, and if you evaluate the same policy twice, you get back exactly the same answer. 
And so these sequences of random numbers, [inaudible] call them scenarios, and Pegasus 
is an acronym for policy evaluation of gradient and search using scenarios. So when you 
do that, this is the picture you get. As before, the red line is your expected payoff, and by 
fixing the random numbers, you’ve defined some estimate of the expected payoff. And as 
you evaluate different policies, they’re still only approximations to their true expected 
payoff, but at least now you have a deterministic function to optimize, and you can now 
apply your favorite algorithms, be it gradient ascent or some sort of local [inaudible] 
search to try to optimize the black curve. This gives you a much easier optimization 
problem, and you can optimize this to find hopefully a good policy. So this is the Pegasus 
policy search method. 



So when I started to talk about reinforcement learning, I showed that video of a helicopter 
flying upside down. That was actually done using exactly method, using exactly this 
policy search algorithm. This seems to scale well even to fairly large problems, even to 
fairly high dimensional state spaces. Typically Pegasus policy search algorithms have 
been using – the optimization problem is still – is much easier than the stochastic version, 
but sometimes it’s not entirely trivial, and so you have to apply this sort of method with 
maybe on the order of ten parameters or tens of parameters, so 30, 40 parameters, but not 
thousands of parameters, at least in these sorts of things with them.  

Student:So is that method different than just assuming that you know your simulator 
exactly, just throwing away all the random numbers entirely?  

Instructor (Andrew Ng):So is this different from assuming that we have a deterministic 
simulator? The answer is no. In the way you do this, for the sake of simplicity I talked 
about one sequence of random numbers. What you do is – so imagine that the random 
numbers are simulating different wind gusts against your helicopter. So what you want to 
do isn’t really evaluate just against one pattern of wind gusts. What you want to do is 
sample some set of different patterns of wind gusts, and evaluate against all of them in 
average. So what you do is you actually sample say 100 – some number I made up like 
100 sequences of random numbers, and every time you want to evaluate a policy, you 
evaluate it against all 100 sequences of random numbers and then average. This is in 
exactly the same way that on this earlier picture you wouldn’t necessarily evaluate the 
policy just once. You evaluate it maybe 100 times in simulation, and then average to get a 
better estimate of the expected reward. In the same way, you do that here but with 100 
fixed sequences of random numbers. Does that make sense? Any other questions?  

Student:If we use 100 scenarios and get an estimate for the policy, [inaudible] 100 times 
[inaudible] random numbers [inaudible] won’t you get similar ideas [inaudible]?  

Instructor (Andrew Ng):Yeah. I guess you’re right. So the quality – for a fixed policy, 
the quality of the approximation is equally good for both cases. The advantage of fixing 
the random numbers is that you end up with an optimization problem that’s much easier. 
I have some search problem, and on the horizontal axis there’s a space of control policies, 
and my goal is to find a control policy that maximizes the payoff.  

The problem with this earlier setting was that when I evaluate policies I get these noisy 
estimates, and then it’s just very hard to optimize the red curve if I have these points that 
are all over the place. And if I evaluate the same policy twice, I don’t even get back the 
same answer. By fixing the random numbers, the algorithm still doesn’t get to see the red 
curve, but at least it’s now optimizing a deterministic function. That makes the 
optimization problem much easier. Does that make sense?  

Student:So every time you fix the random numbers, you get a nice curve to optimize. 
And then you change the random numbers to get a bunch of different curves that are easy 
to optimize. And then you smush them together?  



Instructor (Andrew Ng):Let’s see. I have just one nice black curve that I’m trying to 
optimize.  

Student:For each scenario.  

Instructor (Andrew Ng):I see. So I’m gonna average over M scenarios, so I’m gonna 
average over 100 scenarios. So the black curve here is defined by averaging over a large 
set of scenarios. Does that make sense? So instead of only one – if the averaging thing 
doesn’t make sense, imagine that there’s just one sequence of random numbers. That 
might be easier to think about. Fix one sequence of random numbers, and every time I 
evaluate another policy, I evaluate against the same sequence of random numbers, and 
that gives me a nice deterministic function to optimize. Any other questions? The 
advantage is really that – one way to think about it is when I evaluate the same policy 
twice, at least I get back the same answer. This gives me a deterministic function 
mapping from parameters in my policy to my estimate of the expected payoff. That’s just 
a function that I can try to optimize using the search algorithm. So we use this algorithm 
for inverted hovering, and again policy search algorithms tend to work well when you 
can find a reasonably simple policy mapping from the states to the actions. This is sort of 
especially the low level control tasks, which I think of as sort of reflexes almost. 

Completely, if you want to solve a problem like Tetris where you might plan ahead a few 
steps about what’s a nice configuration of the board, or something like a game of chess, 
or problems of long path plannings of go here, then go there, then go there, then 
sometimes you might apply a value function method instead. But for tasks like helicopter 
flight, for low level control tasks, for the reflexes of driving or controlling various robots, 
policy search algorithms were easier – we can sometimes more easily approximate the 
policy directly works very well. Some [inaudible] the state of RL today. RL algorithms 
are applied to a wide range of problems, and the key is really sequential decision making. 
The place where you think about applying reinforcement learning algorithm is when you 
need to make a decision, then another decision, then another decision, and some of your 
actions may have long-term consequences. I think that is the heart of RL’s sequential 
decision making, where you make multiple decisions, and some of your actions may have 
long-term consequences. I’ve shown you a bunch of robotics examples. RL is also 
applied to thinks like medical decision making, where you may have a patient and you 
want to choose a sequence of treatments, and you do this now for the patient, and the 
patient may be in some other state, and you choose to do that later, and so on.  

It turns out there’s a large community of people applying these sorts of tools to queues. 
So imagine you have a bank where you have people lining up, and after they go to one 
cashier, some of them have to go to the manager to deal with something else. You have a 
system of multiple people standing in line in multiple queues, and so how do you route 
people optimally to minimize the waiting time. And not just people, but objects in an 
assembly line and so on. It turns out there’s a surprisingly large community working on 
optimizing queues. I mentioned game playing a little bit already. Things like financial 
decision making, if you have a large amount of stock, how do you sell off a large amount 
– how do you time the selling off of your stock so as to not affect market prices adversely 



too much? There are many operations research problems, things like factory automation. 
Can you design a factory to optimize throughput, or minimize cost, or whatever. These 
are all sorts of problems that people are applying reinforcement learning algorithms to. 

Let me just close with a few robotics examples because they’re always fun, and we just 
have these videos. This video was a work of Ziko Coulter and Peter Abiel, which is a 
PhD student here. They were working getting a robot dog to climb over difficult rugged 
terrain. Using a reinforcement learning algorithm, they applied an approach that’s similar 
to a value function approximation approach, not quite but similar. They allowed the robot 
dog to sort of plan ahead multiple steps, and carefully choose his footsteps and traverse 
rugged terrain. This is really state of the art in terms of what can you get a robotic dog to 
do. Here’s another fun one. It turns out that wheeled robots are very fuel-efficient. Cars 
and trucks are the most fuel-efficient robots in the world almost. Cars and trucks are very 
fuel-efficient, but the bigger robots have the ability to traverse more rugged terrain. So 
this is a robot – this is actually a small scale mockup of a larger vehicle built by 
Lockheed Martin, but can you come up with a vehicle that has wheels and has the fuel 
efficiency of wheeled robots, but also has legs so it can traverse obstacles. Again, using a 
reinforcement algorithm to design a controller for this robot to make it traverse obstacles, 
and somewhat complex gaits that would be very hard to design by hand, but by choosing 
a reward function, tell the robot this is a plus one reward that’s top of the goal, and a few 
other things, it learns these sorts of policies automatically. 

Last couple fun ones – I’ll show you a couple last helicopter videos. This is the work of 
again PhD students here, Peter Abiel and Adam Coates who have been working on 
autonomous flight. I’ll just let you watch. I’ll just show you one more.  

Student:[Inaudible] do this with a real helicopter [inaudible]?  

Instructor (Andrew Ng):Not a full-size helicopter. Only small radio control helicopters.  

Student:[Inaudible].  

Instructor (Andrew Ng):Full-size helicopters are the wrong design for this. You 
shouldn’t do this on a full-size helicopter. Many full-size helicopters would fall apart if 
you tried to do this. Let’s see. There’s one more.  

Student:Are there any human [inaudible]?  

Instructor (Andrew Ng):Yes, there are very good human pilots that can. This is just one 
more maneuver. That was kind of fun. So this is the work of Peter Abiel and Adam 
Coates. So that was it. That was all the technical material I wanted to present in this class. 
I guess you’re all experts on machine learning now. Congratulations. And as I hope 
you’ve got the sense through this class that this is one of the technologies that’s really 
having a huge impact on science in engineering and industry. As I said in the first lecture, 
I think many people use machine learning algorithms dozens of times a day without even 
knowing about it. 



Based on the projects you’ve done, I hope that most of you will be able to imagine 
yourself going out after this class and applying these things to solve a variety of 
problems. Hopefully, some of you will also imagine yourselves writing research papers 
after this class, be it on a novel way to do machine learning, or on some way of applying 
machine learning to a problem that you care about. In fact, looking at project milestones, 
I’m actually sure that a large fraction of the projects in this class will be publishable, so I 
think that’s great. I guess many of you will also go industry, make new products, and 
make lots of money using learning algorithms. Remember me if that happens. One of the 
things I’m excited about is through research or industry, I’m actually completely sure that 
the people in this class in the next few months will apply machine learning algorithms to 
lots of problems in industrial management, and computer science, things like optimizing 
computer architectures, network security, robotics, computer vision, to problems in 
computational biology, to problems in aerospace, or understanding natural language, and 
many more things like that. 

So right now I have no idea what all of you are going to do with the learning algorithms 
you learned about, but every time as I wrap up this class, I always feel very excited, and 
optimistic, and hopeful about the sorts of amazing things you’ll be able to do. One final 
thing, I’ll just give out this handout. One final thing is that machine learning has grown 
out of a larger literature on the AI where this desire to build systems that exhibit 
intelligent behavior and machine learning is one of the tools of AI, maybe one that’s had 
a disproportionately large impact, but there are many other ideas in AI that I hope you go 
and continue to learn about. Fortunately, Stanford has one of the best and broadest sets of 
AI classes, and I hope that you take advantage of some of these classes, and go and learn 
more about AI, and more about other fields which often apply learning algorithms to 
problems in vision, problems in natural language processing in robotics, and so on. 

So the handout I just gave out has a list of AI related courses. Just running down very 
quickly, I guess, CS221 is an overview that I teach. There are a lot of robotics classes 
also: 223A, 225A, 225B – many robotics class. There are so many applications of 
learning algorithms to robotics today. 222 and 227 are knowledge representation and 
reasoning classes. 228 – of all the classes on this list, 228, which Daphne Koller teaches, 
is probably closest in spirit to 229. This is one of the classes I highly recommend to all of 
my PhD students as well. 

Many other problems also touch on machine learning. On the next page, courses on 
computer vision, speech recognition, natural language processing, various tools that 
aren’t just machine learning, but often involve machine learning in many ways. Other 
aspects of AI, multi-agent systems taught by [inaudible]. EE364A is convex optimization. 
It’s a class taught by Steve Boyd, and convex optimization came up many times in this 
class. If you want to become really good at it, EE364 is a great class. If you’re interested 
in project courses, I also teach a project class next quarter where we spend the whole 
quarter working on research projects. 

So I hope you go and take some more of those classes. In closing, let me just say this 
class has been really fun to teach, and it’s very satisfying to me personally when we set 



these insanely difficult hallmarks, and then we’d see a solution, and I’d be like, “Oh my 
god. They actually figured that one out.” It’s actually very satisfying when I see that. Or 
looking at the milestones, I often go, “Wow, that’s really cool. I bet this would be 
publishable.” So I hope you take what you’ve learned, go forth, and do amazing things 
with learning algorithms. I know this is a heavy workload class, so thank you all very 
much for the hard work you’ve put into this class, and the hard work you’ve put into 
learning this material, and thank you very much for having been students in this class. 

[End of Audio] 

Duration: 78 minutes 

 


