
MachineLearning-Lecture13  

Instructor (Andrew Ng):Okay, good morning. For those of you actually online, sorry; 
starting a couple of minutes late. We’re having trouble with the lights just now, so we’re 
all sitting in the dark and they just came on. So welcome back, and what I want to do 
today is continue our discussions of the EM Algorithm, and in particular, I want to talk 
about the EM formulation that we derived in the previous lecture and apply it to the 
mixture of Gaussians model, apply it to a different model and a mixture of naive Bayes 
model, and then the launch part of today’s lecture will be on the factor analysis 
algorithm, which will also use the EM. And as part of that, we’ll actually take a brief 
digression to talk a little bit about sort of useful properties of Gaussian distributions.  

So just to recap where we are. In the previous lecture, I started to talk about unsupervised 
learning, which was machine-learning problems, where you’re given an unlabeled 
training set comprising m examples here, right? And then – so the fact that there are no 
labels; that’s what makes this unsupervised or anything. So one problem that I talked 
about last time was what if you’re given a data set that looks like this and you want to 
model the density PFX from which you think the data had been drawn, and so with a data 
set like this, maybe you think was a mixture of two Gaussians and start to talk about an 
algorithm for fitting a mixture of Gaussians model, all right? And so we said that we 
would model the density of XP of X as sum over Z PFX given Z times P of Z where this 
later random variable meaning this hidden random variable Z indicates which of the two 
Gaussian distributions each of your data points came from and so we have, you know, Z 
was not a nomial with parameter phi and X conditions on a coming from the JAFE 
Gaussian was given by Gaussian of mean mu J and covariant sigma J, all right?  

So, like I said at the beginning of the previous lecture, I just talked about a very specific 
algorithm that I sort of pulled out of the air for fitting the parameters of this model for 
finian, Francis, phi, mu and sigma, but then in the second half of the previous lecture I 
talked about what’s called the EM Algorithm in which our goal is that it’s a likelihood 
estimation of parameters. So we want to maximize in terms of theta, you know, the, sort 
of, usual right matter of log likelihood – well, parameterized by theta. And because we 
have a later random variable Z this is really maximizing in terms of theta, sum over I, 
sum over Z, P of XI, ZI parameterized by theta. Okay? So using Jensen’s inequality last 
time we worked out the EM Algorithm in which in the E step we would chose these 
probability distributions QI to the l posterior on Z given X and parameterized by theta 
and in the M step we would set theta to be the value that maximizes this. Okay? So these 
are the ones we worked out last time and the cartoon that I drew was that you have this 
long likelihood function L of theta that’s often hard to maximize and what the E step does 
is choose these probability distribution production QI’s. And in the cartoon, I drew what 
that corresponded to was finding a lower bounds for the log likelihood. And then 
horizontal access data and then the M step you maximize the lower boundary, right? So 
maybe you were here previously and so you jumped to the new point, the new maximum 
of this lower bound. Okay? And so this little curve here, right? This lower bound function 
here that’s really the right-hand side of that augments. Okay? So this whole thing in the 
augments. If you view this thing as a function of theta, this function of theta is a lower 



bounds for the log likelihood of theta and so the M step we maximize this lower bound 
and that corresponds to jumping to this new maximum to lower bound.  

So it turns out that in the EM Algorithm – so why do you evolve with the EM algorithm? 
It turns out that very often, and this will be true for all the examples we see today, it turns 
out that very often in the EM Algorithm maximizing the M Step, so performing the 
maximization the M Step, will be tractable and can often be done analytically in the 
closed form. Whereas if you were trying to maximize this objective we try to take this 
formula on the right and this maximum likely object, everyone, is to take this all on the 
right and set its derivatives to zero and try to solve and you’ll find that you’re unable to 
obtain a solution to this in closed form this maximization. Okay?  

And so to give you an example of that is that you remember our discussion on 
exponential family marbles, right? It turns out that if X and Z is jointly, I guess, a line in 
exponential families. So if P of X, Z prioritized by theta there’s an explanation family 
distribution, which it turns out to be true for the mixture of Gaussians distribution. Then 
turns out that the M step here will be tractable and the E step will also be tractable and so 
you can do each of these steps very easily. Whereas performing – trying to perform this 
original maximum likelihood estimation problem on this one, right? Will be 
computationally very difficult. You’re going to set the derivatives to zero and try to solve 
for that. Analytically you won’t be able to find an analytic solution to this. Okay?  

So what I want to do in a second is actually take this view of the EM Algorithm and 
apply it to the mixture of Gaussians models. I want to take these E steps and M Steps and 
work them out for the mixture of Gaussians model, but before I do that, I just want to say 
one more thing about this other view of the EM Algorithm. It turns out there’s one other 
way of thinking about the EM Algorithm, which is the following: I can define an 
optimization objective J of theta, Q are defined it to be this. This is just a thing in the 
augments in the M step. Okay? And so what we proved using Jensen’s inequality is that 
the log likelihood of theta is greater and equal to J of theta Q. So in other words, we 
proved last time that for any value of theta and Q the log likelihood upper bounds J of 
theta and Q. And so just to relate this back to, sort of, yet more things that you all ready 
know, you can also think of covariant cause in a sense, right? However, our discussion 
awhile back on the coordinate ascent optimization algorithm. So we can show, and I 
won’t actually show this view so just take our word for it and look for that at home if you 
want, that EM is just coordinate in a set on the function J. So in the E step you maximize 
with respect to Q and then the M step you maximize with respect to theta. Okay? So this 
is another view of the EM Algorithm that shows why it has to converge, for example. If 
you can – I’ve used in a sense of J of theta, Q having to monotonically increase on every 
iteration. Okay?  

So what I want to do next is actually take this general EM machinery that we worked up 
and apply it to a mixture Gaussians model. Before I do that, let me just check if there are 
questions about the EM Algorithm as a whole? Okay, cool.  



So let’s go ahead and work on the mixture of Gaussian’s EM, all right? MOG, and that’s 
my abbreviation for Mixture of Gaussian’s. So the E step were called those Q 
distributions, right? In particular, I want to work out – so Q is the probability distribution 
over the late and random variable Z and so the E step I’m gonna figure out what is these 
compute – what is Q of ZI equals J. And you can think of this as my writing P of ZI 
equals J, right? Under the Q distribution. That’s what this notation means. And so the EM 
Algorithm tells us that, let’s see, Q of J is the likelihood probability of Z being the value J 
and given XI and all your parameters. And so, well, the way you compute this is by 
Dave’s rule, right? So that is going to be equal to P of XI given ZI equals J times P of ZIJ 
divided by – right? That’s all the – by Dave’s rule. And so this you know because XI 
given ZI equals J. This was a Gaussian with mean mu J and covariant sigma J. And so to 
compute this first term you plug in the formula for the Gaussian density there with 
parameters mu J and sigma J and this you’d know because Z was not a nomial, right? 
Where parameters given by phi and so the problem of ZI being with J is just phi J and so 
you can substitute these terms in. Similarly do the same thing for the denominator and 
that’s how you work out what Q is. Okay? And so in the previous lecture this value the 
probability that ZI equals J under the Q distribution that was why I denoted that as WIJ. 
So that would be the E step and then in the M step we maximize with respect to all of our 
parameters. This, well I seem to be writing the same formula down a lot today. All right. 
And just so we’re completely concrete about how you do that, right? So if you do that 
you end up with – so plugging in the quantities that you know that becomes this, let’s see. 
Right. And so that we’re completely concrete about what the M step is doing. So in the M 
step that was, I guess, QI over Z, I being over J. Just in the summation, sum over J is the 
sum over all the possible values of ZI and then this thing here is my Gaussian density. 
Sorry, guys, this thing – well, this first term here, right? Is my P of XI given ZI and that’s 
P of ZI. Okay? And so to maximize this with respect to – say you want to maximize this 
with respect to all of your parameters phi, mu and sigma. So to maximize with respect to 
the parameter mu, say, you would take the derivative for respect to mu and set that to 
zero and you would – and if you actually do that computation you would get, for 
instance, that that becomes your update to mu J. Okay? Just so I want to – the equation is 
unimportant. All of these equations are written down in the lecture notes. I’m writing 
these down just to be completely concrete about what the M step means. And so write 
down that formula, plug in the densities you know, take the derivative set to zero, solve 
for mu J and in the same way you set the derivatives equal to zero and solve for your 
updates for your other parameters phi and sigma as well. Okay?  

Well, just point out just one little tricky bit for this that you haven’t seen before that most 
of you probably all ready now, but I’ll just mention is that since phi here is a multinomial 
distribution when you take this formula and you maximize it with respect to phi you 
actually have an additional constraint, right? That the sum of I – let’s see, sum over J, phi 
J must be equal to one. All right? So, again, in the M step I want to take this thing and 
maximize it with respect to all the parameters and when you maximize this respect to the 
parameters phi J you need to respect the constraint that sum of J phi J must be equal to 
one. And so, well, you all ready know how to do constraint maximization, right? So I’ll 
throw out the method of the granjay multipliers and generalize the granjay when you talk 
about the support of X machines. And so to actually perform the maximization in terms 



of phi J you construct to the granjay, which is – all right? So that’s the equation from 
above and we’ll denote in the dot dot dot plus theta times that, where this is sort of the 
granjay multiplier and this is your optimization objective. And so to actually solve the 
parameters phi J you set the parameters of this so that the granjay is zero and solve. 
Okay? And if you then work through the math you get the appropriate value to update the 
phi J’s too, which I won’t do, but I’ll be – all the full directions are in the lecture notes. I 
won’t do that here.  

Okay. And so if you actually perform all these computations you can also verify that. So I 
just wrote down a bunch of formulas for the EM Algorithm. At the beginning of the last 
lecture I said for the mixture of Gaussian’s model – I said for the EM here’s the formula 
for computing the WIJ’s and here’s a formula for computing the mud’s and so on, and 
this variation is where all of those formulas actually come from. Okay? Questions about 
this? Yeah?  

Student:[Inaudible]  

Instructor (Andrew Ng):Oh, I see. So it turns out that, yes, there’s also constrained to 
the phi J this must be greater than zero. It turns out that if you want you could actually 
write down then generalize the granjayn incorporating all of these constraints as well and 
you can solve to [inaudible] these constraints. It turns out that in this particular derivation 
– actually it turns out that very often we find maximum likely estimate for multinomial 
distributions probabilities. It turns out that if you ignore these constraints and you just 
maximize the formula luckily you end up with values that actually are greater than or 
equal to zero and so if even ignoring those constraint you end up with parameters that are 
greater than or equal to zero that shows that that must be the correct solution because 
adding that constraint won’t change anything. So this constraint it is then caused – it turns 
out that if you ignore this and just do what I’ve wrote down you actually get the right 
answer. Okay? Great.  

So let me just very quickly talk about one more example of a mixture model. And the 
perfect example for this is imagine you want to do text clustering, right? So someone 
gives you a large set of documents and you want to cluster them together into cohesive 
topics. I think I mentioned the news website news.google.com. That’s one application of 
text clustering where you might want to look at all of the news stories about today, all the 
news stories written by everyone, written by all the online news websites about whatever 
happened yesterday and there will be many, many different stories on the same thing, 
right? And by running a text-clustering algorithm you can group related documents 
together. Okay?  

So how do you apply the EM Algorithm to text clustering? I want to do this to illustrate 
an example in which you run the EM Algorithm on discreet valued inputs where the input 
– where the training examples XI are discreet values. So what I want to talk about 
specifically is the mixture of naïve Bayes model and depending on how much you 
remember about naïve Bayes I talked about two event models. One was the multivariant 
vanuvy event model. One was the multinomial event model. Today I’m gonna use the 



multivariant vanuvy event model. If you don’t remember what those terms mean 
anymore don’t worry about it. I think the equation will still make sense. But in this 
setting we’re given a training set X1 for XM. So we’re given M text documents where 
each XI is zero one to the end. So each of our training examples is an indimensional bit 
of vector, right? S this was the representation where XIJ was – it indicates whether word 
J appears in document I, right? And let’s say that we’re going to model ZI the – our latent 
random variable meaning our hidden random variable ZI will take on two values zero one 
so this means I’m just gonna find two clusters and you can generalize the clusters that 
you want.  

So in the mixture of naïve Bayes model we assume that ZI is distributed and mu E with 
some value of phi so there’s some probability of each document coming from cluster one 
or from cluster two. We assume that the probability of XI given ZI, right? Will make the 
same naïve Bayes assumption as we did before. Okay? And more specifically – well, 
excuse me, right. Okay. And so most of us [inaudible] cycles one given ZI equals say 
zero will be given by a parameter phi substitute J given Z equals zero. So if you take this 
chalkboard and if you take all instances of the alphabet Z and replace it with Y then you 
end up with exactly the same equation as I’ve written down for naïve Bayes like a long 
time ago. Okay?  

And I’m not actually going to work out the mechanics deriving the EM Algorithm, but it 
turns out that if you take this joint distribution of X and Z and if you work out what the 
equations are for the EM algorithm for maximum likelihood estimation of parameters you 
find that in the E step you compute, you know, let’s say these parameters – these weights 
WI which are going to be equal to your perceived distribution of Z being equal one 
conditioned on XI parameterized by your phi’s and given your parameters and in the M 
step. Okay? And that’s the equation you get in the M step. I mean, again, the equations 
themselves aren’t too important. Just sort of convey – I’ll give you a second to finish 
writing, I guess. And when you’re done or finished writing take a look at these equations 
and see if they make intuitive sense to you why these three equations, sort of, sound like 
they might be the right thing to do. Yeah?  

Student:[Inaudible]  

Instructor (Andrew Ng):Say that again.  

Student:Y –  

Instructor (Andrew Ng):Oh, yes, thank you. Right. Sorry, just, for everywhere over Y I 
meant Z. Yeah?  

Student:[Inaudible] in the first place?  

Instructor (Andrew Ng):No. So what is it? Normally you initialize phi’s to be 
something else, say randomly. So just like in naïve Bayes we saw zero probabilities as a 
bad thing so the same reason you try to avoid zero probabilities, yeah. Okay? And so just 



the intuition behind these equations is in the E step WI’s is you’re gonna take your best 
guess for whether the document came from cluster one or cluster zero, all right? This is 
very similar to the intuitions behind the EM Algorithm that we talked about in a previous 
lecture. So in the E step we’re going to compute these weights that tell us do I think this 
document came from cluster one or cluster zero. And then in the M step I’m gonna say 
does this numerator is the sum over all the elements of my training set of – so then 
informally, right? WI is one there, but I think the document came from cluster one and so 
this will essentially sum up all the times I saw words J in documents that I think are in 
cluster one. And these are sort of weighted by the actual probability. I think it came from 
cluster one and then I’ll divide by – again, if all of these were ones and zeros then I’d be 
dividing by the actual number of documents I had in cluster one. So if all the WI’s were 
either ones or zeroes then this would be exactly the fraction of documents that I saw in 
cluster one in which I also saw were at J. Okay? But in the EM Algorithm you don’t 
make a hard assignment decision about is this in cluster one or is this in cluster zero. You 
instead represent your uncertainty about cluster membership with the parameters WI. 
Okay?  

It actually turns out that when we actually implement this particular model it actually 
turns out that by the nature of this computation all the values of WI’s will be very close to 
either one or zero so they’ll be numerically almost indistinguishable from one’s and 
zeroes. This is a property of naïve Bayes. If you actually compute this probability from 
all those documents you find that WI is either 0.0001 or 0.999. It’ll be amazingly close to 
either zero or one and so the M step – and so this is pretty much guessing whether each 
document is in cluster one or cluster zero and then using formulas they’re very similar to 
maximum likely estimation for naïve Bayes. Okay? Cool. Are there – and if some of 
these equations don’t look that familiar to you anymore, sort of, go back and take another 
look at what you saw in naïve Bayes and hopefully you can see the links there as well. 
Questions about this before I move on? Right, okay.  

Of course the way I got these equations was by turning through the machinery of the EM 
Algorithm, right? I didn’t just write these out of thin air. The way you do this is by 
writing down the E step and the M step for this model and then the M step same 
derivatives equal to zero and solving from that so that’s how you get the M step and the E 
step.  

So the last thing I want to do today is talk about the factor analysis model and the reason 
I want to do this is sort of two reasons because one is factor analysis is kind of a useful 
model. It’s not as widely used as mixtures of Gaussian’s and mixtures of naïve Bayes 
maybe, but it’s sort of useful. But the other reason I want to derive this model is that there 
are a few steps in the math that are more generally useful. In particular, where this is for 
factor analysis this would be an example in which we’ll do EM where the late and 
random variable – where the hidden random variable Z is going to be continued as 
valued. And so some of the math we’ll see in deriving factor analysis will be a little bit 
different than what you saw before and they’re just a – it turns out the full derivation for 
EM for factor analysis is sort of extremely long and complicated and so I won’t inflect 
that on you in lecture today, but I will still be writing more equations than is – than you’ll 



see me do in other lectures because there are, sort of, just a few steps in the factor 
analysis derivation so I’ll physically illustrate it.  

So it’s actually [inaudible] the model and it’s really contrast to the mixture of Gaussians 
model, all right? So for the mixture of Gaussians model, which is our first model we had, 
that – well I actually motivated it by drawing the data set like this, right? That one of you 
has a data set that looks like this, right? So this was a problem where n is two-
dimensional and you have, I don’t know, maybe 50 or 100 training examples, whatever, 
right? And I said maybe you want to give a label training set like this. Maybe you want to 
model this as a mixture of two Gaussians. Okay? And so a mixture of Gaussian models 
tend to be applicable where m is larger, and often much larger, than n where the number 
of training examples you have is at least as large as, and is usually much larger than, the 
dimension of the data.  

What I want to do is talk about a different problem where I want you to imagine what 
happens if either the dimension of your data is roughly equal to the number of examples 
you have or maybe the dimension of your data is maybe even much larger than the 
number of training examples you have. Okay? So how do you model such a very high 
dimensional data? Watch and you will see sometimes, right? If you run a plant or 
something, you run a factory, maybe you have a thousand measurements all through your 
plants, but you only have five – you only have 20 days of data. So you can have 1,000 
dimensional data, but 20 examples of it all ready. So given data that has this property in 
the beginning that we’ve given a training set of m examples. Well, what can you do to try 
to model the density of X? So one thing you can do is try to model it just as a single 
Gaussian, right? So in my mixtures of Gaussian this is how you try model as a single 
Gaussian and say X is intuitive with mean mu and parameter sigma where sigma is going 
to be done n by n matrix and so if you work out the maximum likelihood estimate of the 
parameters you find that the maximum likelihood estimate for the mean is just the 
empirical mean of your training set, right. So that makes sense. And the maximum 
likelihood of the covariance matrix sigma will be this, all right? But it turns out that in 
this regime where the data is much higher dimensional – excuse me, where the data’s 
dimension is much larger than the training examples you have if you compute the 
maximum likely estimate of the covariance matrix sigma you find that this matrix is 
singular. Okay? By singular, I mean that it doesn’t have four vanq or it has zero eigen 
value so it doesn’t have – I hope one of those terms makes sense. And there’s another 
saying that the matrix sigma will be non-invertible. And just in pictures, one complete 
example is if D is – if N equals M equals two if you have two-dimensional data and you 
have two examples. So I’d have two training examples in two-dimen – this is X1 and X2. 
This is my unlabeled data. If you fit a Gaussian to this data set you find that – well you 
remember I used to draw constables of Gaussians as ellipses, right? So these are 
examples of different constables of Gaussians. You find that the maximum likely 
estimate Gaussian for this responds to Gaussian where the contours are sort of infinitely 
thin and infinitely long in that direction. Okay? So in terms – so the contours will sort of 
be infinitely thin, right? And stretch infinitely long in that direction. And another way of 
saying it is that if you actually plug in the formula for the density of the Gaussian, which 
is this, you won’t actually get a nice answer because the matrix sigma is non-invertible so 



sigma inverse is not defined and this is zero. So you also have one over zero times E to 
the sum inversive and non-inversive matrix so not a good model. So let’s do even better, 
right? So given this sort of data how do you model P of X?  

Well, one thing you could do is constrain sigma to be diagonal. So you have a covariance 
matrix X is – okay? So in other words you get a constraint sigma to be this matrix, all 
right? With zeroes on the off diagonals. I hope this makes sense. These zeroes I’ve 
written down here denote that everything after diagonal of this matrix is a zero. So the 
massive likely estimate of the parameters will be pretty much what you’ll expect, right? 
And in pictures what this means is that the [inaudible] the distribution with Gaussians 
whose controls are axis aligned. So that’s one example of a Gaussian where the 
covariance is diagonal. And here’s another example and so here’s a third example. But 
often I’ve used the examples of Gaussians where the covariance matrix is off diagonal. 
Okay? And, I don’t know, you could do this in model P of X, but this isn’t very nice 
because you’ve now thrown away all the correlations between the different variables so 
the axis are X1 and X2, right? So you’ve thrown away – you’re failing to capture any of 
the correlations or the relationships between any pair of variables in your data. Yeah?  

Student:Is it – could you say again what does that do for the diagonal?  

Instructor (Andrew Ng):Say again.  

Student:The covariance matrix the diagonal, what does that again? I didn’t quite 
understand what the examples mean.  

Instructor (Andrew Ng):Okay. So these are the contours of the Gaussian density that 
I’m drawing, right? So let’s see – so post covariance issues with diagonal then you can 
ask what is P of X parameterized by mu and sigma, right? If sigma is diagonal and so this 
will be some Gaussian dump, right? So not in – oh, boy. My drawing’s really bad, but in 
two-D the density for Gaussian is like this bump shaped thing, right? So this is the 
density of the Gaussian – wow, and this is a really bad drawing. With those, your axis X1 
and X2 and the height of this is P of X and so those figures over there are the contours of 
the density of the Gaussian. So those are the contours of this shape.  

Student:No, I don’t mean the contour. What’s special about these types? What makes 
them different than instead of general covariance matrix?  

Instructor (Andrew Ng):Oh, I see. Oh, okay, sorry. They’re axis aligned so the main – 
these, let’s see. So I’m not drawing a contour like this, right? Because the main axes of 
these are not aligned with the X1 and X-axis so this occurs found to Gaussian where the 
off-diagonals are non-zero, right? Cool. Okay. You could do this, this is sort of work. It 
turns out that what our best view is two training examples you can learn in non-singular 
covariance matrix, but you’ve thrown away all of the correlation in the data so this is not 
a great model.  



It turns out you can do something – well, actually, we’ll come back and use this property 
later. But it turns out you can do something even more restrictive, which is you can 
constrain sigma to equal to sigma squared times the identity matrix. So in other words, 
you can constrain it to be diagonal matrix and moreover all the diagonal entries must be 
the same and so the cartoon for that is that you’re constraining the contours of your 
Gaussian density to be circular. Okay? This is a sort of even harsher constraint to place in 
your model. So either of these versions, diagonal sigma or sigma being the, sort of, 
constant value diagonal are the all ready strong assumptions, all right? So if you have 
enough data maybe write a model just a little bit of a correlation between your different 
variables. So the factor analysis model is one way to attempt to do that. So here’s the 
idea. So this is how the factor analysis model models your data. We’re going to assume 
that there is a latent random variable, okay? Which just means random variable Z. So Z is 
distributed Gaussian with mean zero and covariance identity where Z will be a D-
dimensional vector now and D will be chosen so that it is lower than the dimension of 
your X’s. Okay? And now I’m going to assume that X is given by – well let me write 
this. Each XI is distributed – actually, sorry, I’m just. We have to assume that conditions 
on the value of Z, X is given by another Gaussian with mean given by mu plus lambda Z 
and covariance given by matrix si. So just to say the second line in an equivalent form, 
equivalently I’m going to model X as mu plus lambda Z plus a noise term epsilon where 
epsilon is Gaussian with mean zero and covariant si. And so the parameters of this model 
are going to be a vector mu with its n-dimensional and matrix lambda, which is n by D 
and a covariance matrix si, which is n by n, and I’m going to impose an additional 
constraint on si. I’m going to impose a constraint that si is diagonal. Okay? So that was a 
form of definition – let me actually, sort of, give a couple of examples to make this more 
complete. So let’s give a kind of example, suppose Z is one-dimensional and X is two-
dimensional so let’s see what this model – let’s see a, sort of, specific instance of the 
factor analysis model and how we’re modeling the joint – the distribution over X of – 
what this gives us in terms of a model over P of X, all right?  

So let’s see. From this model to let me assume that lambda is 2, 1 and si, which has to be 
diagonal matrix, remember, is this. Okay? So Z is one-dimensional so let me just draw a 
typical sample for Z, all right? So if I draw ZI from a Gaussian so that’s a typical sample 
for what Z might look like and so I’m gonna – at any rate I’m gonna call this Z1, Z2, Z3 
and so on. If this really were a typical sample the order of the Z’s would be jumbled up, 
but I’m just ordering them like this just to make the example easier. So, yes, typical 
sample of random variable Z from a Gaussian distribution with mean of covariance one. 
So – and with this example let me just set mu equals zero. It’s to write the – just that it’s 
easier to talk about. So lambda times Z, right? We’ll take each of these numbers and 
multiply them by lambda. And so you find that all of the values for lambda times Z will 
lie on a straight line, all right? So, for example, this one here would be one, two, three, 
four, five, six, seven, I guess. So if this was Z7 then this one here would be lambda times 
Z7 and now that’s the number in R2, because lambda’s a two by one matrix. And so what 
I’ve drawn here is like a typical sample for lambda times Z and the final step for this is 
what a typical sample for X looks like. Well X is mu plus lambda Z plus epsilon where 
epsilon is Gaussian with mean nu and covariance given by si, right? And so the last step 
to draw a typical sample for the random variables X I’m gonna take these non – these are 



really same as mu plus lambda Z because mu is zero in this example and around this 
point I’m going to place an axis aligned ellipse. Or in other words, I’m going to create a 
Gaussian distribution centered on this point and this I’ve drawn corresponds to one of the 
contours of my density for epsilon, right? And so you can imagine placing a little 
Gaussian bump here. And so I’ll draw an example from this little Gaussian and let’s say I 
get that point going, I do the same here and so on. So I draw a bunch of examples from 
these Gaussians and the – whatever they call it – the orange points I drew will comprise a 
typical sample for whether distribution of X is under this model. Okay? Yeah?  

Student:Would you add, like, mean? Instructor:  

Oh, say that again.  

Student:Do you add mean into that?  

Instructor (Andrew Ng):Oh, yes, you do. And in this example, I said you do a zero zero 
just to make it easier. If mu were something else you’d take the whole picture and you’d 
sort of shift it to whatever value of mu is. Yeah?  

Student:[Inaudible] horizontal line right there, which was Z. What did the X’s, of course, 
what does that Y-axis corresponds to?  

Instructor (Andrew Ng):Oh, so this is Z is one-dimensional so here I’m plotting the 
typical sample for Z so this is like zero. So this is just the Z Axis, right. So Z is one-
dimensional data. So this line here is like a plot of a typical sample of values for Z. 
Okay? Yeah?  

Student:You have by axis, right? And the axis data pertains samples.  

Instructor (Andrew Ng):Oh, yes, right.  

Student:So sort of projecting them into that?  

Instructor (Andrew Ng):Let’s not talk about projections yet, but, yeah, right. So these 
beige points – so that’s like X1 and that’s X2 and so on, right? So the beige points are 
what I see. And so in reality all you ever get to see are the X’s, but just like in the mixture 
of Gaussians model I tell a story about what I would imagine the Gau—the data came 
from two Gaussian’s was is had a random variable Z that led to the generation of X’s 
from two Gaussians. So the same way I’m sort of telling the story here, which all the 
algorithm actually sees are the orange points, but we’re gonna tell a story about how the 
data came about and that story is what comprises the factor analysis model. Okay? So one 
of the ways to see the intrusion of this model is that we’re going to think of the model as 
one way just informally, not formally, but one way to think about this model is you can 
think of this factor analysis model as modeling the data from coming from a lower 
dimensional subspace more or less so the data X here Y is approximately on one D line 



and then plus a little bit of noise – plus a little bit of random noise so the X isn’t exactly 
on this one D line. That’s one informal way of thinking about factor analysis.  

We’re not doing great on time. Well, let’s do this. So let me just do one more quick 
example, which is, in this example, let’s say Z is in R2 and X is in R3, right? And so in 
this example Z, your data Z now lies in 2-D and so let me draw this on a sheet of paper. 
Okay? So let’s say the axis of my paper are the Z1 and Z2 axis and so here is a typical 
sample of point Z, right? And so we’ll then take the sample Z – well, actually let me draw 
this here as well. All right. So this is a typical sample for Z going on the Z1 and Z2 axis 
and I guess the origin would be here. So center around zero. And then we’ll take those 
and map it to mu plus lambda Z and what that means is if you imagine the free space of 
this classroom is R3. What that means is we’ll take this sample of Z’s and we’ll map it to 
position in free space. So we’ll take this sheet of paper and move it somewhere and some 
orientation in 3-D space. And the last step is you have X equals mu plus lambda Z plus 
epsilon and so you would take the set of the points which align in some plane in our 3-D 
space the variable of noise of these and the noise will, sort of, come from Gaussians to 
the axis aligned. Okay? So you end up with a data set that’s sort of like a fat pancake or a 
little bit of fuzz off your pancake. So that’s a model – let’s actually talk about how to fit 
the parameters of the model. Okay?  

In order to describe how to fit the model I’m sure we need to re-write Gaussians and this 
is in a very slightly different way. So, in particular, let’s say I have a vector X and I’m 
gonna use this notation to denote partition vectors, right? X1, X2 where if X1 is say an r-
dimensional vector then X2 is an estimational vector and X is an R plus S dimensional 
vector. Okay? So I’m gonna use this notation to denote just the taking of vector and, sort 
of, partitioning the vector into two halves. The first R elements followed by the last S 
elements. So let’s say you have X coming from a Gaussian distribution with mean mu 
and covariance sigma where mu is itself a partition vector. So break mu up into two 
pieces mu1 and mu2 and the covariance matrix sigma is now a partitioned matrix. Okay? 
So what this means is that you take the covariance matrix sigma and I’m going to break it 
up into four blocks, right? And so the dimension of this is there will be R elements here 
and there will be S elements here and there will be R elements here. So, for example, 
sigma 1, 2 will be an R by S matrix. It’s R elements tall and S elements wide.  

So this Gaussian over to down is really a joint distribution of a loss of variables, right? So 
X is a vector so XY is a joint distribution over X1 through X of – over XN or over X of R 
plus S. We can then ask what are the marginal and conditional distributions of this 
Gaussian? So, for example, with my Gaussian, I know what P of X is, but can I compute 
the modular distribution of X1, right. And so P of X1 is just equal to, of course, integrate 
our X2, P of X1 comma X2 DX2. And if you actually perform that distribution – that 
computation you find that P of X1, I guess, is Gaussian with mean given by mu1 and 
sigma 1, 1. All right. So this is sort of no surprise. The marginal distribution of a 
Gaussian is itself the Gaussian and you just take out the relevant sub-blocks of the 
covariance matrix and the relevant sub-vector of the mu vector – E in vector mu. You can 
also compute conditionals. You can also – what does P of X1 given a specific value for 
X2, right? And so the way you compute that is, well, the usual way P of X1 comma X2 



divided by P of X2, right? And so you know what both of these formulas are, right? The 
numerator – well, this is just a usual Gaussian that your joint distribution over X1, X2 is a 
Gaussian with mean mu and covariance sigma and this by that marginalization operation 
I talked about is that. So if you actually plug in the formulas for these two Gaussians and 
if you simplify the simplification step is actually fairly non-trivial. If you haven’t seen it 
before this will actually be – this will actually be somewhat difficult to do. But if you 
plug this in for Gaussian and simplify that expression you find that conditioned on the 
value of X2, X1 is – the distribution of X1 conditioned on X2 is itself going to be 
Gaussian and it will have mean mu of 1 given 2 and covariant sigma of 1 given 2 where – 
well, so about the simplification and derivation I’m not gonna show the formula for mu 
given – of mu of one given 2 is given by this and I think the sigma of 1 given 2 is given 
by that. Okay?  

So these are just useful formulas to know for how to find the conditional distributions of 
the Gaussian and the marginal distributions of a Gaussian. I won’t actually show the 
derivation for this.  

Student:Could you repeat the [inaudible]?  

Instructor (Andrew Ng):Sure. So this one on the left mu of 1 given 2 equals mu1 plus 
sigma 1,2, sigma 2,2 inverse times X2 minus mu2 and this is sigma 1 given 2 equals 
sigma 1,1 minus sigma 1,2 sigma 2,2 inverse sigma 2,1. Okay? These are also in the 
lecture notes. Shoot. Nothing as where I was hoping to on time. Well, actually it is. 
Okay?  

So it turns out – I think I’ll skip this in the interest of time. So it turns out that – well, so 
let’s go back and use these in the factor analysis model, right? It turns out that you can go 
back and – oh, do I want to do this? I kind of need this though. So let’s go back and 
figure out just what the joint distribution factor analysis assumes on Z and X’s. Okay? So 
under the factor analysis model Z and X, the random variables Z and X have some joint 
distribution given by – I’ll write this vector as mu ZX in some covariance matrix sigma. 
So let’s go back and figure out what mu ZX is and what sigma is and I’ll do this so that 
we’ll get a little bit more practice with partition vectors and partition matrixes. So just to 
remind you, right? You have to have Z as Gaussian with mean zero and covariance 
identity and X is mu plus lambda Z plus epsilon where epsilon is Gaussian with mean 
zero covariant si. So I have the – I’m just writing out the same equations again. So let’s 
first figure out what this vector mu ZX is. Well, the expected value of Z is zero and, 
again, as usual I’ll often drop the square backers around here. And the expected value of 
X is – well, the expected value of mu plus lambda Z plus epsilon. So these two terms 
have zero expectation and so the expected value of X is just mu and so that vector mu 
ZX, right, in my parameter for the Gaussian this is going to be the expected value of this 
partition vector given by this partition Z and X and so that would just be zero followed by 
mu. Okay? And so that’s a d-dimensional zero followed by an indimensional mu. That’s 
not gonna work out what the covariance matrix sigma is. So the covariance matrix sigma 
– if you work out definition of a partition. So this is into your partition matrix. Okay? 
Will be – so the covariance matrix sigma will comprise four blocks like that and so the 



upper left most block, which I write as sigma 1,1 – well, that uppermost left block is just 
the covariance matrix of Z, which we know is the identity. I was gonna show you briefly 
how to derive some of the other blocks, right, so sigma 1,2 that’s the upper – oh, actually, 
excuse me. Sigma 2,1 which is the lower left block that’s E of X minus EX times Z 
minus EZ. So X is equal to mu plus lambda Z plus epsilon and then minus EX is minus 
mu and then times Z because the expected value of Z is zero, right, so that’s equal to 
zero. And so if you simplify – or if you expand this out plus mu minus mu cancel out and 
so you have the expected value of lambda – oh, excuse me. ZZ transpose minus the 
expected value of epsilon Z is equal to that, which is just equal to lambda times the 
identity matrix. Okay? Does that make sense? Cause this term is equal to zero. Both 
epsilon and Z are independent and have zero expectation so the second terms are zero.  

Well, so the final block is sigma 2,2 which is equal to the expected value of mu plus 
lambda Z plus epsilon minus mu times, right? Is equal to – and I won’t do this, but this 
simplifies to lambda lambda transpose plus si. Okay? So putting all this together this tells 
us that the joint distribution of this vector ZX is going to be Gaussian with mean vector 
given by that, which we worked out previously. So this is the new ZX that we worked out 
previously, and covariance matrix given by that. Okay? So in principle – let’s see, so the 
parameters of our model are mu, lambda, and si. And so in order to find the parameters of 
this model we’re given a training set of m examples and so we like to do a massive likely 
estimation of the parameters. And so in principle one thing you could do is you can 
actually write down what P of XI is and, right, so P of XI XI is actually – the distribution 
of X, right? If, again, you can marginalize this Gaussian and so the distribution of X, 
which is the lower half of this partition vector is going to have mean mu and covariance 
given by lambda lambda transpose plus si. Right? So that’s the distribution that we’re 
using to model P of X.  

And so in principle one thing you could do is actually write down the log likelihood of 
your parameters, right? Which is just the product over of – it is the sum over I log P of XI 
where P of XI will be given by this Gaussian density, right. And I’m using theta as a 
shorthand to denote all of my parameters. And so you actually know what the density for 
Gaussian is and so you can say P of XI is this Gaussian with E mu in covariance given by 
this lambda lambda transpose plus si. So in case you write down the log likelihood of 
your parameters as follows and you can try to take derivatives of your log likelihood with 
respect to your parameters and maximize the log likelihood, all right. It turns out that if 
you do that you end up with sort of an intractable atomization problem or at least one that 
you – excuse me, you end up with a optimization problem that you will not be able to 
find and in this analytics, sort of, closed form solutions to. So if you say my model of X 
is this and found your massive likely parameter estimation you won’t be able to find the 
massive likely estimate of the parameters in closed form. So what I would have liked to 
do is – well, so in order to fit parameters to this model what we’ll actually do is use the 
EM Algorithm in with the E step, right? We’ll compute that and this formula looks the 
same except that one difference is that now Z is a continuous random variable and so in 
the E step we actually have to find the density QI of ZI where it’s the, sort of, E step 
actually requires that we find the posterior distribution that – so the density to the random 
variable ZI and then the M step will then perform the following maximization where, 



again, because Z is now continuous we now need to integrate over Z. Okay? Where in the 
M step now because ZI was continuous we now have an integral over Z rather than a 
sum. Okay?  

I was hoping to go a little bit further in deriving these things, but I don’t have time today 
so we’ll wrap that up in the next lecture, but before I close let’s check if there are 
questions about the whole factor analysis model. Okay. So we’ll come back in the next 
lecture; I will wrap up this model and because I want to go a little bit deeper into the E 
and M steps, as there’s some tricky parts for the factor analysis model specifically. Okay. 
I’ll see you in a couple of days.  

[End of Audio]  

Duration: 75 minutes 


