
MachineLearning-Lecture09  

Instructor (Andrew Ng): All right, good morning. Just one quick announcement, first 
things for all of your project proposals, I’ve read through all of them and they all look 
fine. There is one or two that I was trying to email back comments on that had slightly 
questionable aspects, but if you don’t hear by me from today you can safely assume that 
your project proposal is fine and you should just go ahead and start working on your 
proposals. You should just go ahead and start working on your project. Okay, there’s 
many exciting proposals sent in on Friday and so I think the proposal session at the end 
of the quarter will be an exciting event.  

Okay. So welcome back. What I want to do today is start a new chapter in between now 
and then. In particular, I want to talk about learning theory. So in the previous, I guess 
eight lectures so far, you’ve learned about a lot of learning algorithms, and yes, you now 
I hope understand a little about some of the best and most powerful tools of machine 
learning in the [inaudible]. And all of you are now sort of well qualified to go into 
industry and though powerful learning algorithms apply, really the most powerful 
learning algorithms we know to all sorts of problems, and in fact, I hope you start to do 
that on your projects right away as well.  

You might remember, I think it was in the very first lecture, that I made an analogy to if 
you’re trying to learn to be a carpenter, so if you imagine you’re going to carpentry 
school to learn to be a carpenter, then only a small part of what you need to do is to 
acquire a set of tools. If you learn to be a carpenter you don’t walk in and pick up a tool 
box and [inaudible], so when you need to cut a piece of wood do you use a rip saw, or a 
jig saw, or a keyhole saw whatever, is this really mastering the tools there’s also an 
essential part of becoming a good carpenter. And what I want to do in the next few 
lectures is actually give you a sense of the mastery of the machine learning tools all of 
you have. Okay?  

And so in particular, in the next few lectures what I want to is to talk more deeply about 
the properties of different machine learning algorithms so that you can get a sense of 
when it’s most appropriate to use each one. And it turns out that one of the most common 
scenarios in machine learning is someday you’ll be doing research or [inaudible] a 
company. And you’ll apply one of the learning algorithms you learned about, you may 
apply logistic regression, or support vector machines, or Naïve Bayes or something, and 
for whatever bizarre reason, it won’t work as well as you were hoping, or it won’t quite 
do what you were hoping it to.  

To me what really separates the people from – what really separates the people that really 
understand and really get machine learning, compared to people that maybe read the 
textbook and so they’ll work through the math, will be what you do next. Will be in your 
decisions of when you apply a support vector machine and it doesn’t quite do what you 
wanted, do you really understand enough about support vector machines to know what to 
do next and how to modify the algorithm? And to me that’s often what really separates 
the great people in machine learning versus the people that like read the text book and so 



they’ll [inaudible] the math, and so they’ll have just understood that. Okay? So what I 
want to do today – today’s lecture will mainly be on learning theory and we’ll start to talk 
about some of the theoretical results of machine learning. The next lecture, later this 
week, will be on algorithms for sort of [inaudible], or fixing some of the problems that 
the learning theory will point out to us and help us understand. And then two lectures 
from now, that lecture will be almost entirely focused on the practical advice for how to 
apply learning algorithms. Okay? So you have any questions about this before I start? 
Okay.  

So the very first thing we’re gonna talk about is something that you’ve probably already 
seen on the first homework, and something that alluded to previously, which is the bias 
variance trade-off. So take ordinary least squares, the first learning algorithm we learned 
about, if you [inaudible] a straight line through these datas, this is not a very good model. 
Right. And if this happens, we say it has underfit the data, or we say that this is a learning 
algorithm with a very high bias, because it is failing to fit the evident quadratic structure 
in the data. And for the prefaces of [inaudible] you can formally think of the bias of the 
learning algorithm as representing the fact that even if you had an infinite amount of 
training data, even if you had tons of training data, this algorithm would still fail to fit the 
quadratic function – the quadratic structure in the data. And so we think of this as a 
learning algorithm with high bias. Then there’s the opposite problem, so that’s the same 
dataset. If you fit a fourth of the polynomials into this dataset, then you have – you’ll be 
able to interpolate the five data points exactly, but clearly, this is also not a great model to 
the structure that you and I probably see in the data.  

And we say that this algorithm has a problem – excuse me, is overfitting the data, or 
alternatively that this algorithm has high variance. Okay? And the intuition behind 
overfitting a high variance is that the algorithm is fitting serious patterns in the data, or is 
fitting idiosyncratic properties of this specific dataset, be it the dataset of housing prices 
or whatever. And quite often, they’ll be some happy medium of fitting a quadratic 
function that maybe won’t interpolate your data points perfectly, but also captures multi-
structure in your data than a simple model which under fits. I say that you can sort of 
have the exactly the same picture of classification problems as well, so lets say this is my 
training set, right, of positive and negative examples, and so you can fit logistic 
regression with a very high order polynomial [inaudible], or [inaudible] of X equals the 
sigmoid function of – whatever. Sigmoid function applied to a tenth of the polynomial. 
And you do that, maybe you get a decision boundary like this. Right. That does indeed 
perfectly separate the positive and negative classes, this is another example of how 
overfitting, and in contrast you fit logistic regression into this model with just the linear 
features, with none of the quadratic features, then maybe you get a decision boundary like 
that, which can also underfit. Okay.  

So what I want to do now is understand this problem of overfitting versus underfitting, of 
high bias versus high variance, more explicitly, I will do that by posing a more formal 
model of machine learning and so trying to prove when these two twin problems – when 
each of these two problems come up. And as I’m modeling the example for our initial 
foray into learning theory, I want to talk about learning classification, in which H of X is 



equal to G of data transpose X. Okay? So the learning classifier. And for this class I’m 
going to use, Z – excuse me – I’m gonna use G as indicator Z grading with zero. With 
apologies in advance for changing the notation yet again, for the support vector machine 
lectures we use Y equals minus one or plus one. For learning theory lectures, turns out 
it’ll be a bit cleaner if I switch back to Y equals zero-one again, so I’m gonna switch back 
to my original notation. And so you think of this model as a model forum as logistic 
regressions, say, and think of this as being similar to logistic regression, except that now 
we’re going to force the logistic regression algorithm, to opt for labels that are either zero 
or one. Okay? So you can think of this as a classifier to opt for labels zero or one 
involved in the probabilities. And so as usual, let’s say we’re given a training set of M 
examples. That’s just my notation for writing a set of M examples ranging from I equals 
one through M. And I’m going to assume that the training example is XIYI. I’ve drawn 
IID, from sum distribution, scripts D. Okay? [Inaudible]. Identically and definitively 
distributed and if you have – you have running a classification problem on houses, like 
features of the house comma, whether the house will be sold in the next six months, then 
this is just the priority distribution over features of houses and whether or not they’ll be 
sold. Okay?  

So I’m gonna assume that training examples we’ve drawn IID from some probability 
distributions, scripts D. Well, same thing for spam, if you’re trying to build a spam 
classifier then this would be the distribution of what emails look like comma, whether 
they are spam or not. And in particular, to understand or simplify – to understand the 
phenomena of bias invariance, I’m actually going to use a simplified model of machine 
learning. And in particular, logistic regression fits this parameters the model like this for 
maximizing the law of likelihood. But in order to understand learning algorithms more 
deeply, I’m just going to assume a simplified model of machine learning, let me just 
write that down. So I’m going to define training error as – so this is a training error of a 
hypothesis X subscript data. Write this epsilon hat of subscript data. If I want to make the 
dependence on a training set explicit, I’ll write this with a subscript S there where S is a 
training set. And I’ll define this as, let’s see. Okay. I hope the notation is clear. This is a 
sum of indicator functions for whether your hypothesis correctly classifies the Y – the 
IFE example.  

And so when you divide by M, this is just in your training set what’s the fraction of 
training examples your hypothesis classifies so defined as a training error. And training 
error is also called risk. The simplified model of machine learning I’m gonna talk about is 
called empirical risk minimization. And in particular, I’m going to assume that the way 
my learning algorithm works is it will choose parameters data, that minimize my training 
error. Okay? And it will be this learning algorithm that we’ll prove properties about. And 
it turns out that you can think of this as the most basic learning algorithm, the algorithm 
that minimizes your training error.  

It turns out that logistic regression and support vector machines can be formally viewed 
as approximation cities, so it turns out that if you actually want to do this, this is a 
nonconvex optimization problem. This is actually – it actually [inaudible] hard to solve 
this optimization problem. And logistic regression and support vector machines can both 



be viewed as approximations to this nonconvex optimization problem by finding the 
convex approximation to it. Think of this as similar to what algorithms like logistic 
regression are doing. So let me take that definition of empirical risk minimization and 
actually just rewrite it in a different equivalent way. For the results I want to prove today, 
it turns out that it will be useful to think of our learning algorithm as not choosing a set of 
parameters, but as choosing a function. So let me say what I mean by that. Let me define 
the hypothesis class, script h, as the class of all hypotheses of – in other words as the 
class of all linear classifiers, that your learning algorithm is choosing from. Okay? So H 
subscript data is a specific linear classifier, so H subscript data, in each of these functions 
– each of these is a function mapping from the input domain X is the class zero-one. Each 
of these is a function, and as you vary the parameter’s data, you get different functions. 
And so let me define the hypothesis class script H to be the class of all functions that say 
logistic regression can choose from. Okay.  

So this is the class of all linear classifiers and so I’m going to define, or maybe redefine 
empirical risk minimization as instead of writing this choosing a set of parameters, I want 
to think of it as choosing a function into hypothesis class of script H that minimizes – that 
minimizes my training error. Okay? So – actually can you raise your hand if it makes 
sense to you why this is equivalent to the previous formulation? Okay, cool. Thanks. So 
for development of the use of think of algorithms as choosing from function from the 
class instead, because in a more general case this set, script H, can be some other class of 
functions. Maybe is a class of all functions represented by viewer network, or the class of 
all – some other class of functions the learning algorithm wants to choose from. And this 
definition for empirical risk minimization will still apply. Okay? So what we’d like to do 
is understand whether empirical risk minimization is a reasonable algorithm. Alex?  

Student:[Inaudible] a function that’s defined by G of data TX, or is it now more general?  

Instructor (Andrew Ng): I see, right, so lets see – I guess this – the question is H data 
still defined by G of phase transpose X, is this more general? So –  

Student:[Inaudible]  

Instructor (Andrew Ng): Oh, yeah so very – two answers to that. One is, this framework 
is general, so for the purpose of this lecture it may be useful to you to keep in mind a 
model of the example of when H subscript data is the class of all linear classifiers such as 
those used by like a visectron algorithm or logistic regression. This – everything on this 
board, however, is actually more general. H can be any set of functions, mapping from 
the INFA domain to the center of class label zero and one, and then you can perform 
empirical risk minimization over any hypothesis class.  

For the purpose of today’s lecture, I am going to restrict myself to talking about binary 
classification, but it turns out everything I say generalizes to regression in other problem 
as well. Does that answer your question?  

Student:Yes.  



Instructor (Andrew Ng): Cool. All right. So I wanna understand if empirical risk 
minimization is a reasonable algorithm. In particular, what are the things we can prove 
about it? So clearly we don’t actually care about training error, we don’t really care about 
making accurate predictions on the training set, or at a least that’s not the ultimate goal. 
The ultimate goal is how well it makes – generalization – how well it makes predictions 
on examples that we haven’t seen before. How well it predicts prices or sale or no sale 
outcomes of houses you haven’t seen before.  

So what we really care about is generalization error, which I write as epsilon of H. And 
this is defined as the probability that if I sample a new example, X comma Y, from that 
distribution scripts D, my hypothesis mislabels that example. And in terms of notational 
convention, usually if I use – if I place a hat on top of something, it usually means – not 
always – but it usually means that it is an attempt to estimate something about the hat. So 
for example, epsilon hat here – this is something that we’re trying – think of epsilon hat 
training error as an attempt to approximate generalization error. Okay, so the notation 
convention is usually the things with the hats on top are things we’re using to estimate 
other quantities. And H hat is a hypothesis output by learning algorithm to try to estimate 
what the functions from H to Y – X to Y. So let’s actually prove some things about when 
empirical risk minimization will do well in a sense of giving us low generalization error, 
which is what we really care about. In order to prove our first learning theory result, I’m 
going to have to state two lemmas, the first is the union vowel, which is the following, let 
A1 through AK be K event. And when I say events, I mean events in a sense of a 
probabilistic event that either happens or not. And these are not necessarily independent.  

So there’s some current distribution over the events A one through AK, and maybe 
they’re independent maybe not, no assumption on that. Then the probability of A one or 
A two or dot, dot, dot, up to AK, this union symbol, this hat, this just means this sort of 
just set notation for probability just means “or.” So the probability of at least one of these 
events occurring, of A one or A two, or up to AK, this is S equal to the probability of A 
one plus probability of A two plus dot, dot, dot, plus probability of AK. Okay? So the 
intuition behind this is just that – I’m not sure if you’ve seen Venn diagrams depictions of 
probability before, if you haven’t, what I’m about to do may be a little cryptic, so just 
ignore that. Just ignore what I’m about to do if you haven’t seen it before. But if you have 
seen it before then this is really – this is really great – the probability of A one, union A 
two, union A three, is less than the P of A one, plus P of A two, plus P of A three. Right. 
So that the total mass in the union of these three things [inaudible] to the sum of the 
masses in the three individual sets, it’s not very surprising.  

It turns out that depending on how you define your axioms of probability, this is actually 
one of the axioms that probably varies, so I won’t actually try to prove this. This is 
usually written as an axiom. So sigmas of avitivity are probably measured as this – what 
is sometimes called as well. But in learning theory it’s commonly called the union 
balance – I just call it that. The other lemma I need is called the Hufting inequality. And 
again, I won’t actually prove this, I’ll just state it, which is – let’s let Z1 up to ZM, BM, 
IID, there may be random variables with mean Phi. So the probability of ZI equals 1 is 
equal to Phi. So let’s say you observe M IID for newly random variables and you want to 



estimate their mean. So let me define Phi hat, and this is again that notation, no 
convention, Phi hat means – does not attempt – is an estimate or something else. So when 
we define Phi hat to be 1 over M, semper my equals one through MZI. Okay? So this is 
our attempt to estimate the mean of these Benuve random variables by sort of taking its 
average. And let any gamma be fixed.  

Then, the Hufting inequality is that the probability your estimate of Phi is more than 
gamma away from the true value of Phi, that this is bounded by two E to the next of two 
gamma squared. Okay? So just in pictures – so this theorem holds – this lemma, the 
Hufting inequality, this is just a statement of fact, this just holds true. But let me now 
draw a cartoon to describe some of the intuition behind this, I guess. So lets say 
[inaudible] this is a real number line from zero to one. And so Phi is the mean of your 
Benuve random variables. You will remember from – you know, whatever – some 
undergraduate probability or statistics class, the central limit theorem that says that when 
you average all the things together, you tend to get a Gaussian distribution. And so when 
you toss M coins with bias Phi, we observe these M Benuve random variables, and we 
average them, then the probability distribution of Phi hat will roughly be a Gaussian lets 
say. Okay? It turns out if you haven’t seen this up before, this is actually that the 
cumulative distribution function of Phi hat will converse with that of the Gaussian. 
Technically Phi hat can only take on a discreet set of values because these are factions 
one over Ms. It doesn’t really have an entity but just as a cartoon think of it as a converse 
roughly to a Gaussian.  

So what the Hufting inequality says is that if you pick a value of gamma, let me put S one 
interval gamma there’s another interval gamma. Then the saying that the probability mass 
of the details, in other words the probability that my value of Phi hat is more than a 
gamma away from the true value, that the total mass – that the total probability mass in 
these tails is at most two E to the negative two gamma squared M. Okay? That’s what the 
Hufting inequality – so if you can’t read that this just says – this is just the right hand side 
of the bound, two E to negative two gamma squared. So balance the probability that you 
make a mistake in estimating the mean of a Benuve random variable.  

And the cool thing about this bound – the interesting thing behind this bound is that the 
[inaudible] exponentially in M, so it says that for a fixed value of gamma, as you increase 
the size of your training set, as you toss a coin more and more, then the worth of this 
Gaussian will shrink. The worth of this Gaussian will actually shrink like one over root to 
M. And that will cause the probability mass left in the tails to decrease exponentially, 
quickly, as a function of that. And this will be important later. Yeah?  

Student: 

Does this come from the central limit theorem [inaudible].  

Instructor (Andrew Ng): No it doesn’t. So this is proved by a different – this is proved – 
no – so the central limit theorem – there may be a version of the central limit theorem, 
but the versions I’m familiar with tend – are sort of asymptotic, but this works for any 



finer value of M. Oh, and for your – this bound holds even if M is equal to two, or M is 
[inaudible], if M is very small, the central limit theorem approximation is not gonna hold, 
but this theorem holds regardless. Okay? I’m drawing this just as a cartoon to help 
explain the intuition, but this theorem just holds true, without reference to central limit 
theorem.  

All right. So lets start to understand empirical risk minimization, and what I want to do is 
begin with studying empirical risk minimization for a [inaudible] case that’s a logistic 
regression, and in particular I want to start with studying the case of finite hypothesis 
classes. So let’s say script H is a class of K hypotheses. Right. So this is K functions with 
no – each of these is just a function mapping from inputs to outputs, there’s no 
parameters in this. And so what the empirical risk minimization would do is it would take 
the training set and it’ll then look at each of these K functions, and it’ll pick whichever of 
these functions has the lowest training error. Okay?  

So now that the logistic regression uses an infinitely large – a continuous infinitely large 
class of hypotheses, script H, but to prove the first row I actually want to just describe our 
first learning theorem is all for the case of when you have a finite hypothesis class, and 
then we’ll later generalize that into the hypothesis classes. So empirical risk minimization 
takes the hypothesis of the lowest training error, and what I’d like to do is prove a bound 
on the generalization error of H hat. All right. So in other words I’m gonna prove that 
somehow minimizing training error allows me to do well on generalization error.  

And here’s the strategy, I’m going to – the first step in this prove I’m going to show that 
training error is a good approximation to generalization error, and then I’m going to show 
that this implies a bound on the generalization error of the hypothesis of [inaudible] 
empirical risk minimization. And I just realized, this class I guess is also maybe slightly 
notation heavy class round, instead of just introducing a reasonably large set of new 
symbols, so if again, in the course of today’s lecture, you’re looking at some symbol and 
you don’t quite remember what it is, please raise your hand and ask. [Inaudible] what’s 
that, what was that, was that a generalization error or was it something else? So raise your 
hand and ask if you don’t understand what the notation I was defining.  

Okay. So let me introduce this in two steps. And the empirical risk strategy is I’m gonna 
show training errors that give approximation generalization error, and this will imply that 
minimizing training error will also do pretty well in terms of minimizing generalization 
error. And this will give us a bound on the generalization error of the hypothesis output 
by empirical risk minimization. Okay? So here’s the idea. So lets even not consider all 
the hypotheses at once, lets pick any hypothesis, HJ in the class script H, and so until 
further notice lets just consider there one fixed hypothesis. So pick any one hypothesis 
and let’s talk about that one.  

Let me define ZI to be indicator function for whether this hypothesis misclassifies the 
IFE example – excuse me – or Z subscript I. Okay? So ZI would be zero or one 
depending on whether this one hypothesis which is the only one I’m gonna even consider 
now, whether this hypothesis was classified as an example. And so my training set is 



drawn randomly from sum distribution scripts d, and depending on what training 
examples I’ve got, these ZIs would be either zero or one. So let’s figure out what the 
probability distribution ZI is. Well, so ZI takes on the value of either zero or one, so 
clearly is a Benuve random variable, it can only take on these values.  

Well, what’s the probability that ZI is equal to one? In other words, what’s the 
probability that from a fixed hypothesis HJ, when I sample my training set IID from 
distribution D, what is the chance that my hypothesis will misclassify it? Well, by 
definition, that’s just a generalization error of my hypothesis HJ. So ZI is a Benuve 
random variable with mean given by the generalization error of this hypothesis. Raise 
your hand if that made sense. Oh, cool. Great.  

And moreover, all the ZIs have the same probability of being one, and all my training 
examples I’ve drawn are IID, and so the ZIs are also independent – and therefore the ZIs 
themselves are IID random variables. Okay? Because my training examples were drawn 
independently of each other, by assumption.  

If you read this as the definition of training error, the training error of my hypothesis HJ, 
that’s just that. That’s just the average of my ZIs, which was – well I previously defined 
it like this. Okay? And so epsilon hat of HJ is exactly the average of MIID, Benuve 
random variables, drawn from Benuve distribution with mean given by the generalization 
error, so this is – well this is the average of MIID Benuve random variables, each of 
which has meaning given by the generalization error of HJ.  

And therefore, by the Hufting inequality we have to add the probability that the 
difference between training and generalization error, the probability that this is greater 
than gamma is less than to two, E to the negative two, gamma squared M. Okay? Exactly 
by the Hufting inequality.  

And what this proves is that, for my fixed hypothesis HJ, my training error, epsilon hat 
will with high probability, assuming M is large, if M is large than this thing on the right 
hand side will be small, because this is two Es and a negative two gamma squared M. So 
this says that if my training set is large enough, then the probability my training error is 
far from generalization error, meaning that it is more than gamma, will be small, will be 
bounded by this thing on the right hand side. Okay?  

Now, here’s the [inaudible] tricky part, what we’ve done is approve this bound for one 
fixed hypothesis, for HJ. What I want to prove is that training error will be a good 
estimate for generalization error, not just for this one hypothesis HJ, but actually for all K 
hypotheses in my hypothesis class script H. So let’s do it – well, better do it on a new 
board. So in order to show that, let me define a random event, let me define AJ to be the 
event that – let me define AJ to be the event that – you know, the difference between 
training and generalization error is more than gamma on a hypothesis HJ. And so what 
we put on the previous board was that the probability of AJ is less equal to two E to the 
negative two, gamma squared M, and this is pretty small. Now, What I want to bound is 
the probability that there exists some hypothesis in my class script H, such that I make a 



large error in my estimate of generalization error. Okay? Such that this holds true. So this 
is really just that the probability that there exists a hypothesis for which this holds. This is 
really the probability that A one or A two, or up to AK holds. The chance there exists a 
hypothesis is just well the priority that – for hypothesis one and make a large error in 
estimating the generalization error, or for hypothesis two and make a large error in 
estimating generalization error, and so on. And so by the union bound, this is less than 
equal to that, which is therefore less than equal to – is equal to that. Okay?  

So let me just take one minus both sides – of the equation on the previous board – let me 
take one minus both sides, so the probability that there does not exist for hypothesis such 
that, that. The probability that there does not exist a hypothesis on which I make a large 
error in this estimate while this is equal to the probability that for all hypotheses, I make a 
small error, or at most gamma, in my estimate of generalization error. In taking one 
minus on the right hand side I get two KE to the negative two gamma squared M. Okay? 
And so – and the sign of the inequality flipped because I took one minus both sides. The 
minus sign flips the sign of the equality. So what we’re shown is that with probability – 
which abbreviates to WP – with probability one minus two KE to the negative two 
gamma squared M. We have that, epsilon hat of H will be – will then gamma of epsilon 
of H, simultaneously for all hypotheses in our class script H.  

And so just to give this result a name, this is called – this is one instance of what’s called 
a uniform conversions result, and the term uniform conversions – this sort of alludes to 
the fact that this shows that as M becomes large, then these epsilon hats will all 
simultaneously converge to epsilon of H. That training error will become very close to 
generalization error simultaneously for all hypotheses H. That’s what the term uniform 
refers to, is the fact that this converges for all hypotheses H and not just for one 
hypothesis. And so what we’re shown is one example of a uniform conversions result. 
Okay? So let me clean a couple more boards. I’ll come back and ask what questions you 
have about this. We should take another look at this and make sure it all makes sense. 
Yeah, okay. What questions do you have about this?  

Student: 

How the is the value of gamma computed [inaudible]?  

Instructor (Andrew Ng): Right. Yeah. So let’s see, the question is how is the value of 
gamma computed? So for these purposes – for the purposes of this, gamma is a constant. 
Imagine a gamma is some constant that we chose in advance, and this is a bound that 
holds true for any fixed value of gamma. Later on as we take this bound and then sort of 
develop this result further, we’ll choose specific values of gamma as a [inaudible] of this 
bound. For now we’ll just imagine that when we’re proved this holds true for any value 
of gamma. Any questions? Yeah?  

Student:[Inaudible] hypothesis phase is infinite [inaudible]?  



Instructor (Andrew Ng):Yes, the labs in the hypothesis phase is infinite, so this simple 
result won’t work in this present form, but we’ll generalize this – probably won’t get to it 
today – but we’ll generalize this at the beginning of the next lecture to infinite hypothesis 
classes.  

Student:How do we use this theory [inaudible]?  

Instructor (Andrew Ng):How do you use theorem factors? So let me – I might get to a 
little of that later today, we’ll talk concretely about algorithms, the consequences of the 
understanding of these things in the next lecture as well. Yeah, okay? Cool. Can you just 
raise your hand if the things I’ve proved so far make sense? Okay. Cool. Great. Thanks.  

All right. Let me just take this uniform conversions bound and rewrite it in a couple of 
other forms. So this is a sort of a bound on probability, this is saying suppose I fix my 
training set and then fix my training set – fix my threshold, my error threshold gamma, 
what is the probability that uniform conversions holds, and well, that’s my formula that 
gives the answer. This is the probability of something happening.  

So there are actually three parameters of interest. One is, “What is this probability?” The 
other parameter is, “What’s the training set size M?” And the third parameter is, “What is 
the value of this error threshold gamma?” I’m not gonna vary K for these purposes. So 
other two other equivalent forms of the bounds, which – so you can ask, “Given gamma – 
so what we proved was given gamma and given M, what is the probability of uniform 
conversions?” The other equivalent forms are, so that given gamma and the probability 
delta of making a large error, how large a training set size do you need in order to give a 
bound on – how large a training set size do you need to give a uniform conversions 
bound with parameters gamma and delta?  

And so – well, so if you set delta to be two KE so negative two gamma squared M. This 
is that form that I had on the left. And if you solve for M, what you find is that there’s an 
equivalent form of this result that says that so long as your training set assigns M as 
greater than this. And this is the formula that I get by solving for M. Okay? So long as M 
is greater than equal to this, then with probability, which I’m abbreviating to WP again, 
with probability at least one minus delta, we have for all. Okay? So this says how large a 
training set size that I need to guarantee that with probability at least one minus delta, we 
have the training error is within gamma of generalization error for all my hypotheses, and 
this gives an answer.  

And just to give this another name, this is an example of a sample complexity bound. So 
from undergrad computer science classes you may have heard of computational 
complexity, which is how much computations you need to achieve something. So sample 
complexity just means how large a training example – how large a training set – how 
large a sample of examples do you need in order to achieve a certain bound and error. 
And it turns out that in many of the theorems we write out you can pose them in sort of a 
form of probability bound or a sample complexity bound or in some other form. I 



personally often find the sample complexity bounds the most easy to interpret because it 
says how large a training set do you need to give a certain bound on the errors.  

And in fact – well, we’ll see this later, sample complexity bounds often sort of help to 
give guidance for really if you’re trying to achieve something on a machine learning 
problem, this really is trying to give guidance on how much training data you need to 
prove something.  

The one thing I want to note here is that M grows like the log of K, right, so the log of K 
grows extremely slowly as a function of K. The log is one of the slowest growing 
functions, right. It’s one of – well, some of you may have heard this, right? That for all 
values of K, right – I learned this from a colleague, Andrew Moore, at Carnegie Mellon – 
that in computer science for all practical purposes for all values of K, log K is less 
[inaudible], this is almost true. So log K is – logs is one of the slowest growing functions, 
and so the fact that M sample complexity grows like the log of K, means that you can 
increase this number of hypotheses in your hypothesis class quite a lot and the number of 
the training examples you need won’t grow very much.  

[Inaudible]. This property will be important later when we talk about infinite hypothesis 
classes. The final form is the – I guess is sometimes called the error bound, which is 
when you hold M and delta fixed and solved for gamma. And so – and what do you do – 
what you get then is that the probability at least one minus delta, we have that. For all 
hypotheses in my hypothesis class, the difference in the training generalization error 
would be less than equal to that. Okay? And that’s just solving for gamma and plugging 
the value I get in there. Okay?  

All right. So the second step of the overall proof I want to execute is the following. The 
result of the training error is essentially that uniform conversions will hold true with high 
probability. What I want to show now is let’s assume that uniform conversions hold. So 
let’s assume that for all hypotheses H, we have that epsilon of H minus epsilon hat of H, 
is less than of the gamma. Okay? What I want to do now is use this to see what we can 
prove about the bound of – see what we can prove about the generalization error. So I 
want to know – suppose this holds true – I want to know can we prove something about 
the generalization error of H hat, where again, H hat was the hypothesis selected by 
empirical risk minimization. Okay?  

So in order to show this, let me make one more definition, let me define H star, to be the 
hypothesis in my class script H that has the smallest generalization error. So this is – if I 
had an infinite amount of training data or if I really I could go in and find the best 
possible hypothesis – best possible hypothesis in the sense of minimizing generalization 
error – what’s the hypothesis I would get? Okay? So in some sense, it sort of makes sense 
to compare the performance of our learning algorithm to the performance of H star, 
because we sort of – we clearly can’t hope to do better than H star. Another way of 
saying that is that if your hypothesis class is a class of all linear decision boundaries, that 
the data just can’t be separated by any linear functions. So if even H star is really bad, 
then there’s sort of – it’s unlikely – then there’s just not much hope that your learning 



algorithm could do even better than H star. So I actually prove this result in three steps. 
So the generalization error of H hat, the hypothesis I chose, this is going to be less than 
equal to that, actually let me number these equations, right. This is – because of equation 
one, because I see that epsilon of H hat and epsilon hat of H hat will then gamma of each 
other. Now because H star, excuse me, now by the definition of empirical risk 
minimization, H hat was chosen to minimize training error and so there can’t be any 
hypothesis with lower training error than H hat. So the training error of H hat must be 
less than the equal to the training error of H star. So this is sort of by two, or by the 
definition of H hat, as the hypothesis that minimizes training error H hat.  

And the final step is I’m going to apply this uniform conversions result again. We know 
that epsilon hat of H star must be moving gamma of epsilon of H star. And so this is at 
most plus gamma. Then I have my original gamma there. Okay? And so this is by 
equation one again because – oh, excuse me – because I know the training error of H star 
must be moving gamma of the generalization error of H star. And so – well, I’ll just write 
this as plus two gamma. Okay? Yeah?  

Student:[Inaudible] notation, is epsilon proof of [inaudible] H hat that’s not the training 
error, that’s the generalization error with estimate of the hypothesis?  

Instructor (Andrew Ng): Oh, okay. Let me just – well, let me write that down on this 
board. So actually – actually let me think – [inaudible] fit this in here. So epsilon hat of H 
is the training error of the hypothesis H. In other words, given the hypothesis – a 
hypothesis is just a function, right mapped from X or Ys – so epsilon hat of H is given the 
hypothesis H, what’s the fraction of training examples it misclassifies? And 
generalization error of H, is given the hypothesis H if I sample another example from my 
distribution scripts D, what’s the probability that H will misclassify that example? Does 
that make sense?  

Student:[Inaudible]?  

Instructor (Andrew Ng): Oh, okay. And H hat is the hypothesis that’s chosen by 
empirical risk minimization. So when I talk about empirical risk minimization, is the 
algorithm that minimizes training error, and so epsilon hat of H is the training error of H, 
and so H hat is defined as the hypothesis that out of all hypotheses in my class script H, 
the one that minimizes training error epsilon hat of H. Okay?  

All right. Yeah?  

Student:[Inaudible] H is [inaudible] a member of typical H, [inaudible] family right?  

Instructor (Andrew Ng): Yes it is.  

Student:So what happens with the generalization error [inaudible]?  



Instructor (Andrew Ng): I’ll talk about that later. So let me tie all these things together 
into a theorem. Let there be a hypothesis class given with a finite set of K hypotheses, 
and let any M delta be fixed. Then – so I fixed M and delta, so this will be the error 
bound form of the theorem, right? Then, with probability at least one minus delta. We 
have that. The generalization error of H hat is less than or equal to the minimum over all 
hypotheses in set H epsilon of H, plus two times, plus that. Okay?  

So to prove this, well, this term of course is just epsilon of H star. And so to prove this 
we set gamma to equal to that – this is two times the square root term. To prove this 
theorem we set gamma to equal to that square root term. Say that again?  

Student:[Inaudible].  

Instructor (Andrew Ng): Wait. Say that again?  

Student:[Inaudible].  

Instructor (Andrew Ng): Oh, yes. Thank you. That didn’t make sense at all. Thanks. 
Great. So set gamma to that square root term, and so we know equation one, right, from 
the previous board holds with probability one minus delta. Right. Equation one was the 
uniform conversions result right, that – well, IE. This is equation one from the previous 
board, right, so set gamma equal to this we know that we’ll probably use one minus delta 
this uniform conversions holds, and whenever that holds, that implies – you know, I 
guess – if we call this equation “star” I guess. And whenever uniform conversions holds, 
we showed again, on the previous boards that this result holds, that generalization error of 
H hat is less than two – generalization error of H star plus two times gamma. Okay? And 
so that proves this theorem.  

So this result sort of helps us to quantify a little bit that bias variance tradeoff that I talked 
about at the beginning of – actually near the very start of this lecture. And in particular 
let’s say I have some hypothesis class script H, that I’m using, maybe as a class of all 
linear functions and linear regression, and logistic regression with just the linear features. 
And let’s say I’m considering switching to some new class H prime by having more 
features. So lets say this is linear and this is quadratic, so the class of all linear functions 
and the subset of the class of all quadratic functions, and so H is the subset of H prime. 
And let’s say I’m considering – instead of using my linear hypothesis class – let’s say I’m 
considering switching to a quadratic hypothesis class, or switching to a larger hypothesis 
class. Then what are the tradeoffs involved? Well, I proved this only for finite hypothesis 
classes, but we’ll see that something very similar holds for infinite hypothesis classes too. 
But the tradeoff is what if I switch from H to H prime, or I switch from linear to quadratic 
functions. Then epsilon of H star will become better because the best hypothesis in my 
hypothesis class will become better.  

The best quadratic function – by best I mean in the sense of generalization error – the 
hypothesis function – the quadratic function with the lowest generalization error has to 
have equal or more likely lower generalization error than the best linear function. So by 



switching to a more complex hypothesis class you can get this first term as you go down. 
But what I pay for then is that K will increase. By switching to a larger hypothesis class, 
the first term will go down, but the second term will increase because I now have a larger 
class of hypotheses and so the second term K will increase.  

And so this is sometimes called the bias – this is usually called the bias variance tradeoff. 
Whereby going to larger hypothesis class maybe I have the hope for finding a better 
function, that my risk of sort of not fitting my model so accurately also increases, and 
that’s because – illustrated by the second term going up when the size of your hypothesis, 
when K goes up. And so speaking very loosely, we can think of this first term as 
corresponding maybe to the bias of the learning algorithm, or the bias of the hypothesis 
class. And you can – again speaking very loosely, think of the second term as 
corresponding to the variance in your hypothesis, in other words how well you can 
actually fit a hypothesis in the – how well you actually fit this hypothesis class to the 
data. And by switching to a more complex hypothesis class, your variance increases and 
your bias decreases.  

As a note of warning, it turns out that if you take like a statistics class you’ve seen 
definitions of bias and variance, which are often defined in terms of squared error or 
something. It turns out that for classification problems, there actually is no universally 
accepted formal definition of bias and variance for classification problems. For regression 
problems, there is this square error definition. For classification problems it turns out 
there’ve been several competing proposals for definitions of bias and variance. So when I 
say bias and variance here, think of these as very loose, informal, intuitive definitions, 
and not formal definitions. Okay. The cartoon associated with intuition I just said would 
be as follows: Let’s say – and everything about the plot will be for a fixed value of M, for 
a fixed training set size M. Vertical axis I’ll plot ever and on the horizontal axis I’ll plot 
model complexity. And by model complexity I mean sort of degree of polynomial, size of 
your hypothesis class script H etc. It actually turns out, you remember the bandwidth 
parameter from locally weighted linear regression, that also has a similar effect in 
controlling how complex your model is. Model complexity [inaudible] polynomial I 
guess. So the more complex your model, the better your training error, and so your 
training error will tend to [inaudible] zero as you increase the complexity of your model 
because the more complete your model the better you can fit your training set.  

But because of this bias variance tradeoff, you find that generalization error will come 
down for a while and then it will go back up. And this regime on the left is when you’re 
underfitting the data or when you have high bias. And this regime on the right is when 
you have high variance or you’re overfitting the data. Okay? And this is why a model of 
sort of intermediate complexity, somewhere here if often preferable to if [inaudible] and 
minimize generalization error. Okay? So that’s just a cartoon. In the next lecture we’ll 
actually talk about the number of algorithms for trying to automatically select model 
complexities, say to get you as close as possible to this minimum – to this area of 
minimized generalization error. The last thing I want to do is actually going back to the 
theorem I wrote out, I just want to take that theorem – well, so the theorem I wrote out 
was an error bound theorem this says for fixed M and delta where probability one minus 



delta, I get a bound on gamma, which is what this term is. So the very last thing I wanna 
do today is just come back to this theorem and write out a corollary where I’m gonna fix 
gamma, I’m gonna fix my error bound, and fix delta and solve for M. And if you do that, 
you get the following corollary: Let H be fixed with K hypotheses and let any delta and 
gamma be fixed.  

Then in order to guarantee that, let’s say I want a guarantee that the generalization error 
of the hypothesis I choose with empirical risk minimization, that this is at most two times 
gamma worse than the best possible error I could obtain with this hypothesis class. Lets 
say I want this to hold true with probability at least one minus delta, then it suffices that 
M is [inaudible] to that. Okay? And this is sort of solving for the error bound for M. One 
thing we’re going to convince yourselves of the easy part of this is if you set that term 
[inaudible] gamma and solve for M you will get this. One thing I want you to go home 
and sort of convince yourselves of is that this result really holds true. That this really 
logically follows from the theorem we’ve proved. In other words, you can take that 
formula we wrote and solve for M and – because this is the formula you get for M, that’s 
just – that’s the easy part. That once you go back and convince yourselves that this 
theorem is a true fact and that it does indeed logically follow from the other one. In 
particular, make sure that if you solve for that you really get M grading equals this, and 
why is this M grading that and not M less equal two, and just make sure – I can write this 
down and it sounds plausible why don’t you just go back and convince yourself this is 
really true. Okay?  

And it turns out that when we prove these bounds in learning theory it turns out that very 
often the constants are sort of loose. So it turns out that when we prove these bounds 
usually we’re interested – usually we’re not very interested in the constants, and so I 
write this as big O of one over gamma squared, log K over delta, and again, the key step 
in this is that the dependence on M with the size of the hypothesis class is logarithmic. 
And this will be very important later when we talk about infinite hypothesis classes. 
Okay? Any questions about this? No? Okay, cool. So next lecture we’ll come back, we’ll 
actually start from this result again. Remember this. I’ll write this down as the first thing I 
do in the next lecture and we’ll generalize these to infinite hypothesis classes and then 
talk about practical algorithms for model spectrum. So I’ll see you guys in a couple days.  

[End of Audio]  

Duration: 75 minutes  


