
MachineLearning-Lecture06  

Instructor (Andrew Ng):Okay, good morning. Welcome back. Just one quick 
announcement for today, which is that this next discussion section as far as for the TA’s 
will mostly be on, sort of, a tutorial on Matlab and Octaves. So I know many of you 
already have program Matlab or Octave before, but in case not, and you want to, sort of, 
see along the tutorial on how direct terms and Matlab, please come to this next discussion 
section.  

What I want to do today is continue our discussion of Naïve Bayes, which is the learning 
algorithm that I started to discuss in the previous lecture and talk about a couple of 
different event models in Naïve Bayes, and then I’ll take a brief digression to talk about 
neural networks, which is something that I actually won’t spend a lot of time on, and then 
I want to start to talk about support vector machines, and support vector machines is the 
learning algorithms, the supervised learning algorithm that many people consider the 
most effective, off-the-shelf supervised learning algorithm. That point of view is 
debatable, but there are many people that hold that point of view, and we’ll start 
discussing that today, and this will actually take us a few lectures to complete.  

So let’s talk about Naïve Bayes. To recap from the previous lecture, I started off 
describing spam classification as the most [inaudible] example for Naïve Bayes in which 
we would create feature vectors like these, right, that correspond to words in a dictionary. 
And so, you know, based on what words appear in a piece of email were represented as a 
feature vector with ones and zeros in the corresponding places, and Naïve Bayes was a 
generative learning algorithm, and by that I mean it’s an algorithm in which we model 
PFX given Y, and for Naïve Bayes, specifically, we modeled it as product from I equals 
one to N, PFXI given Y, and also we model PFY, and then we use Bayes Rule, right, to 
combine these two together, and so our predictions, when you give it a new piece of 
email you want to tell if it’s spam or not spam, you predict RFX over Y, PFY given X, 
which by Bayes Rule is RFX over Y, PFX given Y, times BY, okay?  

So this is Naïve Bayes, and just to draw attention to two things, one is that in this model, 
each of our features were zero, one, so indicating whether different words appear, and the 
length or the feature vector was, sort of, the length N of the feature vector was the 
number of words in the dictionary. So it might be on this version on the order of 50,000 
words, say.  

What I want to do now is describe two variations on this algorithm. The first one is the 
simpler one, which it’s just a generalization to if XI takes on more values. So, you know, 
one thing that’s commonly done is to apply Naïve Bayes to problems where some of 
these features, XI, takes on K values rather than just two values, and in that case, you 
actually build, sort of, a very similar model where PFX given Y is really the same thing, 
right, where now these are going to be multinomial probabilities rather than Bernoulli’s 
because the XI’s can, maybe, take on up to K values.  



It turns out, the situation where – one situation where this arises very commonly is if you 
have a feature that’s actually continuous valued, and you choose to dispertise it, and you 
choose to take a continuous value feature and dispertise it into a finite set of K values, 
and so it’s a perfect example if you remember our very first supervised learning problem 
of predicting the price of houses. If you have the classification problem on these houses, 
so based on features of a house, and you want to predict whether or not the house will be 
sold in the next six months, say.  

That’s a classification problem, and once you use Naïve Bayes, then given a continuous 
value feature like the living area, you know, one pretty common thing to do would be 
take the continuous value living area and just dispertise it into a few – discreet buckets, 
and so depending on whether the living area of the house is less than 500 square feet or 
between 1,000 and 1500 square feet, and so on, or whether it’s greater than 2,000 square 
feet, you choose the value of the corresponding feature, XI, to be one, two, three, or four, 
okay? So that was the first variation or generalization of Naïve Bayes I wanted to talk 
about. I should just check; are there questions about this? Okay. Cool. And so it turns out 
that in practice, it’s fairly common to use about ten buckets to dispertise a continuous 
value feature. I drew four here only to save on writing.  

The second and, sort of, final variation that I want to talk about for Naïve Bayes is a 
variation that’s specific to classifying text documents, or, more generally, for classifying 
sequences. So the text document, like a piece of email, you can think of as a sequence of 
words and you can apply this, sort of, model I’m about to describe to classifying other 
sequences as well, but let me just focus on text, and here’s the idea.  

So the Naïve Bayes algorithm as I’ve described it so far, right, given a piece of email, we 
were representing it using this binary vector value representation, and one of the things 
that this loses, for instance, is the number of times that different words appear, all right? 
So, for example, if some word appears a lot of times, and you see the word, you know, 
“buy” a lot of times. You see the word “Viagra”; it seems to be a common email 
example. You see the word Viagra a ton of times in the email, it is more likely to be spam 
than it appears, I guess, only once because even once, I guess, is enough.  

So let me just try a different, what’s called an event model for Naïve Bayes that will take 
into account the number of times a word appears in the email, and to give this previous 
model a name as well this particular model for text classification is called the 
Multivariate Bernoulli Event Model. It’s not a great name. Don’t worry about what the 
name means. It refers to the fact that there are multiple Bernoulli random variables, but 
it’s really – don’t worry about what the name means.  

In contrast, what I want to do now is describe a different representation for email in terms 
of the feature vector, and this is called the Multinomial Event Model, and, again, there is 
a rationale behind the name, but it’s slightly cryptic, so don’t worry about why it’s called 
the Multinomial Event Model; it’s just called that. And here’s what we’re gonna do, 
given a piece of email, I’m going to represent my email as a feature vector, and so my IF 



training example, XI will be a feature vector, XI sub group one, XI sub group two, XI 
subscript NI where NI is equal to the number of words in this email, right?  

So if one of my training examples is an email with 300 words in it, then I represent this 
email via a feature vector with 300 elements, and each of these elements of the feature 
vector – lets see. Let me just write this as X subscript J. These will be an index into my 
dictionary, okay? And so if my dictionary has 50,000 words, then each position in my 
feature vector will be a variable that takes on one of 50,000 possible values 
corresponding to what word appeared in the J position of my email, okay?  

So, in other words, I’m gonna take all the words in my email and you have a feature 
vector that just says which word in my dictionary was each word in the email, okay? So a 
different definition for NI now, NI now varies and is different for every training example, 
and this XJ is now indexed into the dictionary. You know, the components of the feature 
vector are no longer binary random variables; they’re these indices in the dictionary that 
take on a much larger set of values.  

And so our generative model for this will be that the joint distribution over X and Y will 
be that, where again N is now the length of the email, all right? So the way to think about 
this formula is you imagine that there was some probably distribution over emails. 
There’s some random distribution that generates the emails, and that process proceeds as 
follows: First, Y is chosen, first the class label. Is someone gonna send you spam email or 
not spam emails is chosen for us.  

So first Y, the random variable Y, the class label of spam or not spam is generated, and 
then having decided whether they sent you spam or not spam, someone iterates over all 
300 positions of the email, or 300 words that are going to compose them as email, and 
would generate words from some distribution that depends on whether they chose to send 
you spam or not spam. So if they sent you spam, they’ll send you words – they’ll tend to 
generate words like, you know, buy, and Viagra, and whatever at discounts, sale, 
whatever. And if somebody chose to send you not spam, then they’ll send you, sort of, 
the more normal words you get in an email, okay?  

So, sort of, just careful, right? XI here has a very different definition from the previous 
event model, and N has a very different definition from the previous event model. And so 
the parameters of this model are – let’s see. Phi subscript K given Y equals one, which is 
the probability that, you know, conditioned on someone deciding to spend you spam, 
what’s the probability that the next word they choose to email you in the spam email is 
going to be word K, and similarly, you know, sort of, same thing – well, I’ll just write it 
out, I guess – and Phi Y and just same as before, okay?  

So these are the parameters of the model, and given a training set, you can work out the 
maximum likelihood estimates of the parameters. So the maximum likelihood estimate of 
the parameters will be equal to – and now I’m gonna write one of these, you know, big 
indicator function things again. It’ll be a sum over your training sets indicator whether 
that was spam times the sum over all the words in that email where N subscript I is the 



number of words in email I in your training set, times indicator XIJ, SK times that I, 
okay?  

So the numerator says sum over all your emails and take into account all the emails that 
had class label one, take into account only of the emails that were spam because if Y 
equals zero, then this is zero, and this would go away, and then times sum over all the 
words in your spam email, and it counts up the number of times you observed the word K 
in your spam emails. So, in other words, the numerator is look at all the spam emails in 
your training set and count up the total number of times the word K appeared in this 
email. The denominator then is sum over I into our training set of whenever one of your 
examples is spam, you know, sum up the length of that spam email, and so the 
denominator is the total length of all of the spam emails in your training set.  

And so the ratio is just out of all your spam emails, what is the fraction of words in all 
your spam emails that were word K, and that’s your estimate for the probability of the 
next piece of spam mail generating the word K in any given position, okay? At the end of 
the previous lecture, I talked about LaPlace smoothing, and so when you do that as well, 
you add one to the numerator and K to the denominator, and this is the LaPlace smoothed 
estimate of this parameter, okay? And similarly, you do the same thing for – and you can 
work out the estimates for the other parameters yourself, okay? So it’s very similar. 
Yeah?  

Student:I’m sorry. On the right on the top, I was just wondering what the X of I is, and 
what the N of –  

Instructor (Andrew Ng):Right. So in this second event model, the definition for XI and 
the definition for N are different, right? So here – well, this is for one example XY. So 
here, N is the number of words in a given email, right? And if it’s the I email subscripting 
then this N subscript I, and so N will be different for different training examples, and here 
XI will be, you know, these values from 1 to 50,000, and XI is essentially the identity of 
the Ith word in a given piece of email, okay? So that’s why this is grouping, or this is a 
product over all the different words of your email of their probability the Ith word in your 
email, conditioned on Y. Yeah?  

Student:[Off mic].  

Instructor (Andrew Ng):Oh, no, actually, you know what, I apologize. I just realized 
that overload the notation, right, and I shouldn’t have used K here. Let me use a different 
alphabet and see if that makes sense; does that make sense? Oh, you know what, I’m 
sorry. You’re absolutely right. Thank you. All right. So in LaPlace smoothing, that 
shouldn’t be K. This should be, you know, 50,000, if you have 50,000 words in your 
dictionary. Yeah, thanks. Great. I stole notation from the previous lecture and didn’t 
translate it properly. So LaPlace smoothing, right, this is the number of possible values 
that the random variable XI can take on. Cool. Raise your hand if this makes sense? 
Okay. Some of you, are there more questions about this? Yeah.  



Student:On LaPlace smoothing, the denominator and the plus A is the number of values 
that Y could take?  

Instructor (Andrew Ng):Yeah, let’s see. So LaPlace smoothing is a method to give you, 
sort of, hopefully, better estimates of their probability distribution over a multinomial, 
and so was I using X to Y in the previous lecture? So in trying to estimate the probability 
over a multinomial – I think X and Y are different. I think – was it X or Y? I think it was 
X, actually. Well – oh, I see, right, right. I think I was using a different definition for the 
random variable Y because suppose you have a multinomial random variable, X which 
takes on – let’s use a different alphabet. Suppose you have a multinomial random 
variable X which takes on L different values, then the maximum likelihood estimate for 
the probability of X, PFX equals K, will be equal to, right, the number of observations. 
The maximum likelihood estimate for the probability of X being equal to K will be the 
number of observations of X equals K divided by the total number of observations of X, 
okay? So that’s the maximum likelihood estimate. And to add LaPlace smoothing to this, 
you, sort of, add one to the numerator, and you add L to the denominator where L was the 
number of possible values that X can take on. So, in this case, this is a probability that X 
equals K, and X can take on 50,000 values if 50,000 is the length of your dictionary; it 
may be something else, but that’s why I add 50,000 to the denominator. Are there other 
questions? Yeah.  

Student:Is there a specific definition for a maximum likelihood estimation of a 
parameter? We’ve talked about it a couple times, and all the examples make sense, but I 
don’t know what the, like, general formula for it is.  

Instructor (Andrew Ng):I see. Yeah, right. So the definition of maximum likelihood – 
so the question is what’s the definition for maximum likelihood estimate? So actually in 
today’s lecture and the previous lecture when I talk about Gaussian Discriminant 
Analysis I was, sort of, throwing out the maximum likelihood estimates on the board 
without proving them. The way to actually work this out is to actually write down the 
likelihood.  

So the way to figure out all of these maximum likelihood estimates is to write down the 
likelihood of the parameters, phi K given Y being zero, phi Y, right? And so given a 
training set, the likelihood, I guess, I should be writing log likelihood will be the log of 
the product of I equals one to N, PFXI, YI, you know, parameterized by these things, 
okay? Where PFXI, YI, right, is given by NI, PFX, YJ given YI. They are parameterized 
by – well, I’ll just drop the parameters to write this more simply – oh, I just put it in – 
times PFYI, okay?  

So this is my log likelihood, and so the way you get the maximum likelihood estimate of 
the parameters is you – so if given a fixed training set, given a set of fixed IYI’s, you 
maximize this in terms of these parameters, and then you get the maximum likelihood 
estimates that I’ve been writing out. So in a previous section of today’s lecture I wrote 
out some maximum likelihood estimates for the Gaussian Discriminant Analysis model, 
and for Naïve Bayes, and then this – I didn’t prove them, but you get to, sort of, play with 



that yourself in the homework problem as well and for one of these models, and you’ll be 
able to verify that when you maximize the likelihood and maximize the log likelihood 
that hopefully you do get the same formulas as what I was drawing up on the board, but a 
way is to find the way these are derived is by maximizing this, okay? Cool.  

All right. So that wraps up what I wanted to say about – oh, so that, more or less, wraps 
up what I wanted to say about Naïve Bayes, and it turns out that for text classification, 
the Naïve Bayes algorithm with this second event model, the last Naïve Bayes model I 
presented with the multinomial event model, it turns out that almost always does better 
than the first Naïve Bayes model I talked about when you’re applying it to the specific 
case – to the specific of text classification, and one of the reasons is hypothesized for this 
is that this second model, the multinomial event model, takes into account the number of 
times a word appears in a document, whereas the former model doesn’t.  

I should say that in truth that actually turns out not to be completely understood why the 
latter model does better than the former one for text classification, and, sort of, 
researchers are still debating about it a little bit, but if you ever have a text classification 
problem, you know, Naïve Bayes Classify is probably not, by far, the best learning 
algorithm out there, but it is relatively straightforward to implement, and it’s a very good 
algorithm to try if you have a text classification problem, okay? Still a question? Yeah.  

Student:So the second model is still positioning a variant, right? It doesn’t actually care 
where the words are.  

Instructor (Andrew Ng):Yes, all right.  

Student:And, I mean, X variable, if my model like you had exclamation in, does that 
usually do better if you have enough data?  

Instructor (Andrew Ng):Yeah, so the question is, sort of, the second model, right? The 
second model, the multinomial event model actually doesn’t care about the ordering of 
the words. You can shuffle all the words in the email, and it does exactly the same thing. 
So in natural language processing, there’s actually another name; it’s called a Unique 
Grand Model in natural language processing, and there’s some other models like, sort of, 
say, higher order markup models that take into account some of the ordering of the 
words. It turns out that for text classification, the models like the bigram models or 
trigram models, I believe they do only very slightly better, if at all, but that’s when you’re 
applying them to text classification, okay?  

All right. So the next thing I want to talk about is to start again to discussion of non-linear 
classifiers. So it turns out – well, and so the very first classification algorithm we talked 
about was logistic regression, which had the forming form for hypothesis, and you can 
think of this as predicting one when this estimator probability is greater or equal to 0.5 
and predicting zero, right, when this is less than 0.5, and given a training set, right? 
Logistic regression will maybe do grade and descends or something or use Newton’s 
method to find a straight line that reasonably separates the positive and negative classes.  



But sometimes a data set just can’t be separated by a straight line, so is there an algorithm 
that will let you start to learn these sorts of non-linear division boundaries? And so how 
do you go about getting a non-linear classifier? And, by the way, one cool result is that 
remember when I said – when we talked about generative learning algorithms, I said that 
if you assume Y given X is exponential family, right, with parameter A, and if you build 
a generative learning algorithm using this, right, plus one, if this is A to one. This is 
exponential family with natural parameter A to zero, right.  

I think when we talked about Gaussian Discriminant Analysis, I said that if this holds 
true, then you end up with a logistic posterior. It actually turns out that a Naïve Bayes 
model actually falls into this as well. So the Naïve Bayes model actually falls into this 
exponential family as well, and, therefore, under the Naïve Bayes model, you’re actually 
using this other linear classifier as well, okay?  

So the question is how can you start to get non-linear classifiers? And I’m going to talk 
about one method today which is – and we started to talk about it very briefly which is 
taking a simpler algorithm like logistic regression and using it to build up to more 
complex non-linear classifiers, okay? So to motivate this discussion, I’m going to use the 
little picture – let’s see. So suppose you have features X1, X2, and X3, and so by 
convention, I’m gonna follow our earlier convention that X0 is set to one, and so I’m 
gonna use a little diagram like this to denote our logistic regression unit, okay?  

So think of a little picture like that, you know, this little circle as denoting a computation 
note that takes this input, you know, several features and then it outputs another number 
that’s X subscript theta of X, given by a sigmoid function, and so this little computational 
unit – well, will have parameters theta.  

Now, in order to get non-linear division boundaries, all we need to do – well, at least one 
thing to do is just come up with a way to represent hypotheses that can output non-linear 
division boundaries, right, and so this is – when you put a bunch of those little pictures 
that I drew on the previous board, you can then get what’s called a Neural Network in 
which you think of having my features here and then I would feed them to say a few of 
these little sigmoidal units, and these together will feed into yet another sigmoidal unit, 
say, which will output my final output H subscript theta of X, okay? And just to give 
these things names, let me call the values output by these three intermediate sigmoidal 
units; let me call them A1, A2, A3.  

And let me just be completely concrete about what this formula represents, right? So each 
of these units in the middle will have their own associated set of parameters, and so the 
value A1 will be computed as G of X transpose, and then some set of parameters, which 
I’ll write as theta one, and similarly, A2 will be computed as G of X transpose theta two, 
and A3 will be G of X transpose, theta three, where G is the sigmoid function, all right? 
So G of Z, and then, finally, our hypothesis will output G of A transpose theta four, right? 
Where, you know, this A vector is a vector of A1, A2, A3. We can append another one to 
it at first if you want, okay?  



Let me just draw up here this – I’m sorry about the cluttered board. And so H subscript 
theta of X, this is a function of all the parameters theta one through theta four, and so one 
way to learn parameters for this model is to write down the cost function, say, J of theta 
equals one-half sum from Y equals one to M, YI minus H subscript theta of XI squared, 
say. Okay, so that’s our familiar quadratic cost function, and so one way to learn the 
parameters of an algorithm like this is to just use gradient interscent to minimize J of 
theta as a function of theta, okay? See, in the phi gradient descent to minimize this square 
area, which stated differently means you use gradient descent to make the predictions of 
your neural network as close as possible to what you observed as the labels in your 
training set, okay?  

So it turns out green descent on this neural network is a specific name, the algorithm that 
implements grand descent is called back propagation, and so if you ever hear that all that 
means is – it just means gradient interscent on a cost function like this or a variation of 
this on the neural network that looks like that, and – well, this algorithm actually has 
some advantages and disadvantages, but let me actually show you. So, let’s see.  

One of the interesting things about the neural network is that you can look at what these 
intermediate notes are computing, right? So this neural network has what’s called a 
hidden layer before you then have the output layer, and, more generally, you can actually 
have inputs feed into these computation units, feed into more layers of computation units, 
to even more layers, to more layers, and then finally you have an output layer at the end  

And one cool thing you can do is look at all of these intermediate units, look at these 
units and what’s called a hidden layer of the neural network. Don’t worry about why it’s 
called that. Look at computations of the hidden unit and ask what is the hidden unit 
computing the neural network? So to, maybe, get a better sense of neural networks might 
be doing, let me show you a video – I’m gonna switch to the laptop – this is made by a 
friend, Yann LeCun who’s currently a professor at New York University. Can I show a 
video on the laptop?  

So let me show you a video from Yann LeCun on a neural network that he developed for 
Hammerton Digit Recognition. There was one other thing he did in this neural network 
that I’m not gonna talk about called a Convolutional Neural Network that – well, his 
system is called LeNet, and let’s see. Would you put on the laptop display? Hum, actually 
maybe if – or you can just put on the screen on the side; that would work too if the big 
screen isn’t working. Let’s see. I’m just trying to think, okay, how do I keep you guys 
entertained while we’re waiting for the video to come on?  

Well, let me say a few more things about neural network. So it turns out that when you 
write a quadratic cost function like I wrote down on the chalkboard just now, it turns out 
that unlike logistic regression, that will almost always respond to non-convex 
optimization problem, and so whereas for logistic regression if you run gradient descent 
or Newton’s method or whatever, you converse the global optimer. This is not true for 
neural networks. In general, there are lots of local optimer and, sort of, much harder 
optimization problem.  



So neural networks, if you’re, sort of, familiar with them, and you’re good at making 
design choices like what learning rate to use, and how many hidden units to use, and so 
on, you can, sort of, get them to be fairly effective, and there’s, sort of, often ongoing 
debates about, you know, is this learning algorithm better, or is that learning algorithm 
better? The vast majority of machine learning researchers today seem to perceive support 
vector machines, which is what I’ll talk about later, to be a much more effective off-the-
shelf learning algorithm than neural networks. This point of view is contested a bit, but so 
neural networks are not something that I personally use a lot right now because there’s a 
hard optimization problem and you should do so often verge, and it actually, sort of 
works. It, sort of, works reasonably well. It’s just because this is fairly complicated, 
there’s not an algorithm that I use commonly or that my friends use all time. Oh, cool.  

So but let me just go and show you an example of neural network, which was for many 
years, you know, the most effective learning algorithm before support vector machines 
were invented. So here’s Yann LeCun’s video, and – well, there’s actually audio on this 
too, the soundboard. So I’ll just tell you what’s happening. What you’re seeing is a 
trained neural network, and this display where my mouse pointer is pointing, right, this 
big three there is the input to the neural network.  

So you’re showing the neural network this image, and it’s trying to recognize what is 
this. The final answer output by the neural network is this number up here, right below 
where it says LeNet-5, and the neural network correctly recognizes this image as a three, 
and if you look to the left of this image, what’s interesting about this is the display on the 
left portion of this is actually showing the intermediate computations of the neural 
network. In other words, it’s showing you what are the hidden layers of the neural 
network computing.  

And so, for example, if you look at this one, the third image down from the top, this 
seems to be computing, you know, certain edges into digits, right? We’re just computing 
digits on the right-hand side of the bottom or something of the input display of the input 
image, okay? So let me just play this video, and you can see some of the inputs and 
outputs of the neural network, and those are very different fonts. There’s this robustness 
to noise. All right. Multiple digits, that’s, kind of, cool. All right.  

So, just for fun, let me show you one more video, which was – let’s see. This is another 
video from the various CV’s, the machine that changed the world, which was produced 
by WGBH Television in corporation with British Foreclass Incorporation, and it was 
aired on PBS a few years ago, I think. I want to show you a video describing the NETtalk 
Neural Network, which was developed by Terry Sejnowski; he’s a researcher. And so 
NETtalk was actually one of the major milestones in the history of neural network, and 
this specific application is getting the neural network to read text.  

So, in other words, can you show a piece of English to a computer and have the computer 
read, sort of, verbally produce sounds that could respond to the reading of the text. And it 
turns out that in the history of AI and the history of machine learning, this video created a 
lot of excitement about neural networks and about machine learning. Part of the reason 



was that Terry Sejnowski had the foresight to choose to use, in his video, a child-like 
voice talking about visiting your grandmother’s house and so on.  

You’ll see it in a second, and so this really created the perception of – created the 
impression of the neural network being like a young child learning how to speak, and 
talking about going to your grandmothers, and so on. So this actually helped generate a 
lot of excitement within academia and outside academia on neural networks, sort of, early 
in the history of neural networks. I’m just gonna show you the video.  

[Begin Video] You’re going to hear first what the network sounds like at the very 
beginning of the training, and it won’t sound like words, but it’ll sound like attempts that 
will get better and better with time. [Computer’s voice] The network takes the letters, say 
the phrase, “grandmother’s house,” and makes a random attempt at pronouncing it. 
[Computer’s voice] Grandmother’s house. The phonetic difference between the guess and 
the right pronunciation is sent back through the network. [Computer’s voice] 
Grandmother’s house. By adjusting the connection strengths after each attempt, the net 
slowly improves.  

And, finally, after letting it train overnight, the next morning it sounds like this: 
Grandmother’s house, I’d like to go to my grandmother’s house. Well, because she gives 
us candy. Well, and we – NETtalk understands nothing about the language. It is simply 
associating letters with sounds. [End Video]  

All right. So at the time this was done, I mean, this is an amazing piece of work. I should 
say today there are other text to speech systems that work better than what you just saw, 
and you’ll also appreciate getting candy from your grandmother’s house is a little bit less 
impressive than talking about the Dow Jones falling 15 points, and profit taking, 
whatever. So but I wanted to show that just because that was another cool, major 
landmark in the history of neural networks. Okay. So let’s switch back to the chalkboard, 
and what I want to do next is tell you about Support Vector Machines, okay?  

That, sort of, wraps up our discussion on neural networks. So I started off talking about 
neural networks by motivating it as a way to get us to output non-linear classifiers, right? 
I don’t really approve of it. It turns out that you’d be able to come up with non-linear 
division boundaries using a neural network like what I drew on the chalkboard earlier.  

Support Vector Machines will be another learning algorithm that will give us a way to 
come up with non-linear classifiers. There’s a very effective, off-the-shelf learning 
algorithm, but it turns out that in the discussion I’m gonna – in the progression and 
development I’m gonna pursue, I’m actually going to start off by describing yet another 
class of linear classifiers with linear division boundaries, and only be later, sort of, in 
probably the next lecture or the one after that, that we’ll then take the support vector 
machine idea and, sort of, do some clever things to it to make it work very well to 
generate non-linear division boundaries as well, okay? But we’ll actually start by talking 
about linear classifiers a little bit more.  



And to do that, I want to convey two intuitions about classification. One is you think 
about logistic regression; we have this logistic function that was outputting the 
probability that Y equals one, and it crosses this line at zero. So when you run logistic 
regression, I want you to think of it as an algorithm that computes theta transpose X, and 
then it predicts one, right, if and only if, theta transpose X is greater than zero, right? IFF 
stands for if and only if. It means the same thing as a double implication, and it predicts 
zero, if and only if, theta transpose X is less than zero, okay?  

So if it’s the case that theta transpose X is much greater than zero, the double greater than 
sign means these are much greater than, all right. So if theta transpose X is much greater 
than zero, then, you know, think of that as a very confident prediction that Y is equal to 
one, right? If theta transpose X is much greater than zero, then we’re gonna predict one 
then moreover we’re very confident it’s one, and the picture for that is if theta transpose 
X is way out here, then we’re estimating that the probability of Y being equal to one on 
the sigmoid function, it will be very close to one. And, in the same way, if theta transpose 
X is much less than zero, then we’re very confident that Y is equal to zero.  

So wouldn’t it be nice – so when we fit logistic regression of some of the classifiers is 
your training set, then so wouldn’t it be nice if, right, for all I such that Y is equal to one. 
We have theta transpose XI is much greater than zero, and for all I such that Y is equal to 
zero, we have theta transpose XI is much less than zero, okay? So wouldn’t it be nice if 
this is true? That, essentially, if our training set, we can find parameters theta so that our 
learning algorithm not only makes correct classifications on all the examples in a training 
set, but further it’s, sort of, is very confident about all of those correct classifications. 
This is the first intuition that I want you to have, and we’ll come back to this first 
intuition in a second when we talk about functional margins, okay? We’ll define this 
later.  

The second intuition that I want to convey, and it turns out for the rest of today’s lecture 
I’m going to assume that a training set is linearly separable, okay? So by that I mean for 
the rest of today’s lecture, I’m going to assume that there is indeed a straight line that can 
separate your training set, and we’ll remove this assumption later, but just to develop the 
algorithm, let’s take away the linearly separable training set. And so there’s a sense that 
out of all the straight lines that separate the training set, you know, maybe that straight 
line isn’t such a good one, and that one actually isn’t such a great one either, but maybe 
that line in the middle is a much better linear separator than the others, right?  

And one reason that when you and I look at it this one seems best is because this line is 
just further from the data, all right? That is separates the data with a greater distance 
between your positive and your negative examples and division boundary, okay? And 
this second intuition, we’ll come back to this shortly, about this final line that I drew 
being, maybe, the best line this notion of distance from the training examples. This is the 
second intuition I want to convey, and we’ll formalize it later when we talk about 
geometric margins of our classifiers, okay?  



So in order to describe support vector machine, unfortunately, I’m gonna have to pull a 
notation change, and, sort of, unfortunately, it, sort of, was impossible to do logistic 
regression, and support vector machines, and all the other algorithms using one 
completely consistent notation, and so I’m actually gonna change notations slightly for 
linear classifiers, and that will actually make it much easier for us – that’ll make it much 
easier later today and in next week’s lectures to actually talk about support vector 
machine.  

But the notation that I’m gonna use for the rest of today and for most of next week will 
be that my B equals Y, and instead of be zero, one, they’ll be minus one and plus one, 
and a development of a support vector machine we will have H, have a hypothesis output 
values to the either plus one or minus one, and so we’ll let G of Z be equal to one if Z is 
greater or equal to zero, and minus one otherwise, right? So just rather than zero and one, 
we change everything to plus one and minus one.  

And, finally, whereas previously I wrote G subscript theta of X equals G of theta 
transpose X and we had the convention that X zero is equal to one, right? And so X is an 
RN plus one. I’m gonna drop this convention of letting X zero equals a one, and letting X 
be an RN plus one, and instead I’m going to parameterize my linear classifier as H 
subscript W, B of X equals G of W transpose X plus B, okay? And so B just now plays 
the role of theta zero, and W now plays the role of the rest of the parameters, theta one 
through theta N, okay? So just by separating out the interceptor B rather than lumping it 
together, it’ll make it easier for us to develop support vector machines. So – yes.  

Student:[Off mic].  

Instructor (Andrew Ng):Oh, yes. Right, yes. So W is – right. So W is a vector in RN, 
and X is now a vector in RN rather than N plus one, and a lowercase b is a real number. 
Okay.  

Now, let’s formalize the notion of functional margin and germesh margin. Let me make a 
definition. I’m going to say that the functional margin of the hyper plane WB with 
respect to a specific training example, XIYI is – WRT stands for with respect to – the 
function margin of a hyper plane WB with respect to a certain training example, XIYI has 
been defined as Gamma Hat I equals YI times W transpose XI plus B, okay?  

And so a set of parameters, W, B defines a classifier – it, sort of, defines a linear 
separating boundary, and so when I say hyper plane, I just mean the decision boundary 
that’s defined by the parameters W, B. You know what, if you’re confused by the hyper 
plane term, just ignore it. The hyper plane of a classifier with parameters W, B with 
respect to a training example is given by this formula, okay? And interpretation of this is 
that if YI is equal to one, then for each to have a large functional margin, you want W 
transpose XI plus B to be large, right? And if YI is equal minus one, then in order for the 
functional margin to be large – we, sort of, want the functional margins to large, but in 
order for the function margins to be large, if YI is equal to minus one, then the only way 
for this to be big is if W transpose XI plus B is much less than zero, okay?  



So this captures the intuition that we had earlier about functional margins – the intuition 
we had earlier that if YI is equal to one, we want this to be big, and if YI is equal to 
minus one, we want this to be small, and this, sort of, practice of two cases into one 
statement that we’d like the functional margin to be large. And notice this is also that so 
long as YI times W transpose XY plus B, so long as this is greater than zero, that means 
we classified it correctly, okay?  

And one more definition, I’m going to say that the functional margin of a hyper plane 
with respect to an entire training set is going to define gamma hat to be equal to min over 
all your training examples of gamma hat, I, right? So if you have a training set, if you 
have just more than one training example, I’m going to define the functional margin with 
respect to the entire training set as the worst case of all of your functional margins of the 
entire training set. And so for now we should think of the first function like an intuition 
of saying that we would like the function margin to be large, and for our purposes, for 
now, let’s just say we would like the worst-case functional margin to be large, okay? And 
we’ll change this a little bit later as well.  

Now, it turns out that there’s one little problem with this intuition that will, sort of, edge 
us later, which it actually turns out to be very easy to make the functional margin large, 
all right? So, for example, so as I have a classifiable parameters W and B. If I take W and 
multiply it by two and take B and multiply it by two, then if you refer to the definition of 
the functional margin, I guess that was what? Gamma I, gamma hat I equals YI times W 
times transpose B. If I double W and B, then I can easily double my functional margin.  

So this goal of making the functional margin large, in and of itself, isn’t so useful because 
it’s easy to make the functional margin arbitrarily large just by scaling other parameters. 
And so maybe one thing we need to do later is add a normalization condition. For 
example, maybe we want to add a normalization condition that de-norm, the alter-norm 
of the parameter W is equal to one, and we’ll come back to this in a second. All right. 
And then so –  

Okay. Now, let’s talk about – see how much time we have, 15 minutes. Well, see, I’m 
trying to decide how much to try to do in the last 15 minutes. Okay. So let’s talk about 
the geometric margin, and so the geometric margin of a training example – [inaudible], 
right? So the division boundary of my classifier is going to be given by the plane W 
transpose X plus B is equal to zero, okay? Right, and these are the X1, X2 axis, say, and 
we’re going to draw relatively few training examples here. Let’s say I’m drawing 
deliberately few training examples so that I can add things to this, okay?  

And so assuming we classified an example correctly, I’m going to define the geometric 
margin as just a geometric distance between a point between the training example – yeah, 
between the training example XI, YI and the distance given by this separating line, given 
by this separating hyper plane, okay? That’s what I’m going to define the geometric 
margin to be.  



And so I’m gonna do some algebra fairly quickly. In case it doesn’t make sense, and read 
through the lecture notes more carefully for details. Sort of, by standard geometry, the 
normal, or in other words, the vector that’s 90 degrees to the separating hyper plane is 
going to be given by W divided by the norm of W; that’s just how planes and high 
dimensions work. If this stuff – some of this you have to use, take a look t the lecture 
notes on the website.  

And so let’s say this distance is gamma I, okay? And so I’m going to use the convention 
that I’ll put a hat on top where I’m referring to functional margins, and no hat on top for 
geometric margins. So let’s say geometric margin, as this example, is gamma I. That 
means that this point here, right, is going to be XI minus gamma I times W over normal 
W, okay? Because W over normal W is the unit vector, is the length one vector that is 
normal to the separating hyper plane, and so when we subtract gamma I times the unit 
vector from this point, XI, or at this point here is XI. So XI minus, you know, this little 
vector here is going to be this point that I’ve drawn as a heavy circle, okay? So this heavy 
point here is XI minus this vector, and this vector is gamma I time W over norm of W, 
okay?  

And so because this heavy point is on the separating hyper plane, right, this point must 
satisfy W transpose times that point equals zero, right? Because all points X on the 
separating hyper plane satisfy the equation W transpose X plus B equals zero, and so this 
point is on the separating hyper plane, therefore, it must satisfy W transpose this point – 
oh, excuse me. Plus B is equal to zero, okay? Raise your hand if this makes sense so far? 
Oh, okay. Cool, most of you, but, again, I’m, sort of, being slightly fast in this geometry. 
So if you’re not quite sure why this is a normal vector, or how I subtracted this, or 
whatever, take a look at the details in the lecture notes.  

And so what I’m going to do is I’ll just take this equation, and I’ll solve for gamma, 
right? So this equation I just wrote down, solve this equation for gamma or gamma I, and 
you find that – you saw that previous equation from gamma I – well, why don’t I just do 
it? You have W transpose XI plus B equals gamma I times W transpose W over norm of 
W; that’s just equal to gamma times the norm of W because W transpose W is the norm 
of W squared, and, therefore, gamma is just – well, transpose X equals, okay? And, in 
other words, this little calculation just showed us that if you have a training example XI, 
then the distance between XI and the separating hyper plane defined by the parameters W 
and B can be computed by this formula, okay?  

So the last thing I want to do is actually take into account the sign of the – the correct 
classification of the training example. So I’ve been assuming that we’ve been classifying 
an example correctly. So, more generally, to find the geometric margin of a training 
example to be gamma I equals YI times that thing on top, okay? And so this is very 
similar to the functional margin, except for the normalization by the norm of W, and so as 
before, you know, this says that so long as – we would like the geometric margin to be 
large, and all that means is that so long as we’re classifying the example correctly, we 
would ideally hope of the example to be as far as possible from the separating hyper 



plane, so long as it’s on the right side of the separating hyper plane, and that’s what YI 
multiplied into this does.  

And so a couple of easy facts, one is if the norm of W is equal to one, then the functional 
margin is equal to the geometric margin, and you see that quite easily, and, more 
generally, the geometric margin is just equal to the functional margin divided by the 
norm of W, okay? Let’s see, okay. And so one final definition is so far I’ve defined the 
geometric margin with respect to a single training example, and so as before, I’ll define 
the geometric margin with respect to an entire training set as gamma equals min over I of 
gamma I, all right?  

And so the maximum margin classifier, which is a precursor to the support vector 
machine, is the learning algorithm that chooses the parameters W and B so as to 
maximize the geometric margin, and so I just write that down. The maximum margin 
classified poses the following optimization problem. It says choose gamma, W, and B so 
as to maximize the geometric margin, subject to that YI times – well, this is just one way 
to write it, subject to – actually, do I write it like that? Yeah, fine. There are several ways 
to write this, and one of the things we’ll do next time is actually – I’m trying to figure out 
if I can do this in five minutes. I’m guessing this could be difficult.  

Well, so this maximizing your classifier is the maximization problem over parameter 
gamma W and B, and for now, it turns out that the geometric margin doesn’t change 
depending on the norm of W, right? Because in the definition of the geometric margin, 
notice that we’re dividing by the norm of W anyway. So you can actually set the norm of 
W to be anything you want, and you can multiply W and B by any constant; it doesn’t 
change the geometric margin. This will actually be important, and we’ll come back to this 
later. Notice that you can take the parameters WB, and you can impose any normalization 
constant to it, or you can change W and B by any scaling factor and replace them by ten 
W and ten B whatever, and it does not change the geometric margin, okay?  

And so in this first formulation, I’m just gonna impose a constraint and say that the norm 
of W was one, and so the function of the geometric margins will be the same, and then 
we’ll say maximize the geometric margins subject to – you maximize gamma subject to 
that every training example must have geometric margin at least gamma, and this is a 
geometric margin because when the norm of W is equal to one, then the functional of the 
geometric margin are identical, okay?  

So this is the maximum margin classifier, and it turns out that if you do this, it’ll run, you 
know, maybe about as well as a – maybe slight – maybe comparable to logistic 
regression, but it turns out that as we develop this algorithm further, there will be a clever 
way to allow us to change this algorithm to let it work in infinite dimensional feature 
spaces and come up with very efficient non-linear classifiers. So there’s a ways to go 
before we turn this into a support vector machine, but this is the first step. So are there 
questions about this? Yeah.  

Student:[Off mic].  



Instructor (Andrew Ng):For now, let’s just say you’re given a fixed training set, and 
you can’t – yeah, for now, let’s just say you’re given a fixed training set, and the scaling 
of the training set is not something you get to play with, right? So everything I’ve said is 
for a fixed training set, so that you can’t change the X’s, and you can’t change the Y’s. 
Are there other questions?  

Okay. So all right. Next week we will take this, and we’ll talk about authorization 
algorithms, and work our way towards turning this into one of the most effective off-the-
shelf learning algorithms, and just a final reminder again, this next discussion session will 
be on Matlab and Octaves. So show up for that if you want to see a tutorial. Okay. See 
you guys in the next class.  

[End of Audio]  
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