
MachineLearning-Lecture03  

Instructor (Andrew Ng):Okay. Good morning and welcome back to the third lecture of 
this class. So here’s what I want to do today, and some of the topics I do today may seem 
a little bit like I’m jumping, sort of, from topic to topic, but here’s, sort of, the outline for 
today and the illogical flow of ideas. In the last lecture, we talked about linear regression 
and today I want to talk about sort of an adaptation of that called locally weighted 
regression. It’s very a popular algorithm that’s actually one of my former mentors 
probably favorite machine learning algorithm.  

We’ll then talk about a probable second interpretation of linear regression and use that to 
move onto our first classification algorithm, which is logistic regression; take a brief 
digression to tell you about something called the perceptron algorithm, which is 
something we’ll come back to, again, later this quarter; and time allowing I hope to get to 
Newton’s method, which is an algorithm for fitting logistic regression models.  

So this is recap where we’re talking about in the previous lecture, remember the notation 
I defined was that I used this X superscript I, Y superscript I to denote the I training 
example. And when we’re talking about linear regression or linear least squares, we use 
this to denote the predicted value of “by my hypothesis H” on the input XI. And my 
hypothesis was franchised by the vector of grams as theta and so we said that this was 
equal to some from theta J, si J, and more theta transpose X. And we had the convention 
that X subscript Z is equal to one so this accounts for the intercept term in our linear 
regression model. And lowercase n here was the notation I was using for the number of 
features in my training set. Okay? So in the example when trying to predict housing 
prices, we had two features, the size of the house and the number of bedrooms. We had 
two features and there was – little n was equal to two. So just to finish recapping the 
previous lecture, we defined this quadratic cos function J of theta equals one-half, 
something I equals one to m, theta of XI minus YI squared where this is the sum over our 
m training examples and my training set. So lowercase m was the notation I’ve been 
using to denote the number of training examples I have and the size of my training set. 
And at the end of the last lecture, we derive the value of theta that minimizes this 
enclosed form, which was X transpose X inverse X transpose Y. Okay?  

So as we move on in today’s lecture, I’ll continue to use this notation and, again, I realize 
this is a fair amount of notation to all remember, so if partway through this lecture you 
forgot – if you’re having trouble remembering what lowercase m is or what lowercase n 
is or something please raise your hand and ask. When we talked about linear regression 
last time we used two features. One of the features was the size of the houses in square 
feet, so the living area of the house, and the other feature was the number of bedrooms in 
the house. In general, we apply a machine-learning algorithm to some problem that you 
care about. The choice of the features will very much be up to you, right? And the way 
you choose your features to give the learning algorithm will often have a large impact on 
how it actually does. So just for example, the choice we made last time was X1 equal this 
size, and let’s leave this idea of the feature of the number of bedrooms for now, let’s say 
we don’t have data that tells us how many bedrooms are in these houses. One thing you 



could do is actually define – oh, let’s draw this out. And so, right? So say that was the 
size of the house and that’s the price of the house. So if you use this as a feature maybe 
you get theta zero plus theta 1, X1, this, sort of, linear model. If you choose – let me just 
copy the same data set over, right? You can define the set of features where X1 is equal 
to the size of the house and X2 is the square of the size of the house. Okay? So X1 is the 
size of the house in say square footage and X2 is just take whatever the square footage of 
the house is and just square that number, and this would be another way to come up with 
a feature, and if you do that then the same algorithm will end up fitting a quadratic 
function for you. Theta 2, XM squared. Okay? Because this is actually X2. And 
depending on what the data looks like, maybe this is a slightly better fit to the data.  

You can actually take this even further, right? Which is – let’s see. I have seven training 
examples here, so you can actually maybe fit up to six for the polynomial. You can 
actually fill a model theta zero plus theta one, X1 plus theta two, X squared plus up to 
theta six. X to the power of six and theta six are the polynomial to these seven data 
points. And if you do that you find that you come up with a model that fits your data 
exactly. This is where, I guess, in this example I drew, we have seven data points, so if 
you fit a six model polynomial you can, sort of, fit a line that passes through these seven 
points perfectly. And you probably find that the curve you get will look something like 
that. And on the one hand, this is a great model in a sense that it fits your training data 
perfectly. On the other hand, this is probably not a very good model in the sense that 
none of us seriously think that this is a very good predictor of housing prices as a 
function of the size of the house, right?  

So we’ll actually come back to this later. It turns out of the models we have here; I feel 
like maybe the quadratic model fits the data best. Whereas the linear model looks like 
there’s actually a bit of a quadratic component in this data that the linear function is not 
capturing. So we’ll actually come back to this a little bit later and talk about the problems 
associated with fitting models that are either too simple, use two small a set of features, 
or on the models that are too complex and maybe use too large a set of features. Just to 
give these a name, we call this the problem of underfitting and, very informally, this 
refers to a setting where there are obvious patterns that – where there are patterns in the 
data that the algorithm is just failing to fit. And this problem here we refer to as 
overfitting and, again, very informally, this is when the algorithm is fitting the 
idiosyncrasies of this specific data set, right? It just so happens that of the seven houses 
we sampled in Portland, or wherever you collect data from, that house happens to be a bit 
more expensive, that house happened on the less expensive, and by fitting six for the 
polynomial we’re, sort of, fitting the idiosyncratic properties of this data set, rather than 
the true underlying trends of how housing prices vary as the function of the size of house. 
Okay?  

So these are two very different problems. We’ll define them more formally me later and 
talk about how to address each of these problems, but for now I hope you appreciate that 
there is this issue of selecting features. So if you want to just teach us the learning 
problems there are a few ways to do so. We’ll talk about feature selection algorithms later 
this quarter as well. So automatic algorithms for choosing what features you use in a 



regression problem like this. What I want to do today is talk about a class of algorithms 
called non-parametric learning algorithms that will help to alleviate the need somewhat 
for you to choose features very carefully. Okay? And this leads us into our discussion of 
locally weighted regression. And just to define the term, linear regression, as we’ve 
defined it so far, is an example of a parametric learning algorithm. Parametric learning 
algorithm is one that’s defined as an algorithm that has a fixed number of parameters that 
fit to the data. Okay? So in linear regression we have a fix set of parameters theta, right? 
That must fit to the data. In contrast, what I’m gonna talk about now is our first non-
parametric learning algorithm. The formal definition, which is not very intuitive, so I’ve 
replaced it with a second, say, more intuitive. The, sort of, formal definition of the non-
parametric learning algorithm is that it’s an algorithm where the number of parameters 
goes with M, with the size of the training set. And usually it’s defined as a number of 
parameters grows linearly with the size of the training set. This is the formal definition. A 
slightly less formal definition is that the amount of stuff that your learning algorithm 
needs to keep around will grow linearly with the training sets or, in another way of saying 
it, is that this is an algorithm that we’ll need to keep around an entire training set, even 
after learning. Okay? So don’t worry too much about this definition. But what I want to 
do now is describe a specific non-parametric learning algorithm called locally weighted 
regression. Which also goes by a couple of other names – which also goes by the name of 
Loess for self-hysterical reasons. Loess is usually spelled L-O-E-S-S, sometimes spelled 
like that, too. I just call it locally weighted regression. So here’s the idea. This will be an 
algorithm that allows us to worry a little bit less about having to choose features very 
carefully. So for my motivating example, let’s say that I have a training site that looks 
like this, okay? So this is X and that’s Y. If you run linear regression on this and you fit 
maybe a linear function to this and you end up with a more or less flat, straight line, 
which is not a very good fit to this data. You can sit around and stare at this and try to 
decide whether the features are used right. So maybe you want to toss in a quadratic 
function, but this isn’t really quadratic either. So maybe you want to model this as a X 
plus X squared plus maybe some function of sin of X or something. You actually sit 
around and fiddle with features. And after a while you can probably come up with a set of 
features that the model is okay, but let’s talk about an algorithm that you can use without 
needing to do that.  

So if – well, suppose you want to evaluate your hypothesis H at a certain point with a 
certain query point low K is X. Okay? And let’s say you want to know what’s the 
predicted value of Y at this position of X, right? So for linear regression, what we were 
doing was we would fit theta to minimize sum over I, YI minus theta, transpose XI 
squared, and return theta transpose X. Okay? So that was linear regression. In contrast, in 
locally weighted linear regression you’re going to do things slightly different. You’re 
going to look at this point X and then I’m going to look in my data set and take into 
account only the data points that are, sort of, in the little vicinity of X. Okay? So we’ll 
look at where I want to value my hypothesis. I’m going to look only in the vicinity of this 
point where I want to value my hypothesis, and then I’m going to take, let’s say, just 
these few points, and I will apply linear regression to fit a straight line just to this sub-set 
of the data. Okay? I’m using this sub-term sub-set – well let’s come back to that later. So 
we take this data set and I fit a straight line to it and maybe I get a straight line like that. 



And what I’ll do is then evaluate this particular value of straight line and that will be the 
value I return for my algorithm. I think this would be the predicted value for – this would 
be the value of then my hypothesis outputs in locally weighted regression. Okay?  

So we’re gonna fall one up. Let me go ahead and formalize that. In locally weighted 
regression, we’re going to fit theta to minimize sum over I to minimize that where these 
terms W superscript I are called weights. There are many possible choice for ways, I’m 
just gonna write one down. So this E’s and minus, XI minus X squared over two. So let’s 
look at what these weights really are, right? So notice that – suppose you have a training 
example XI. So that XI is very close to X. So this is small, right? Then if XI minus X is 
small, so if XI minus X is close to zero, then this is E’s to the minus zero and E to the 
zero is one. So if XI is close to X, then WI will be close to one. In other words, the 
weight associated with the, I training example be close to one if XI and X are close to 
each other. Conversely if XI minus X is large then – I don’t know, what would WI be?  

Student:Zero.  

Instructor (Andrew Ng):Zero, right. Close to zero. Right. So if XI is very far from X 
then this is E to the minus of some large number and E to the minus some large number 
will be close to zero. Okay? So the picture is, if I’m quarrying at a certain point X, shown 
on the X axis, and if my data set, say, look like that, then I’m going to give the points 
close to this a large weight and give the points far away a small weight. So for the points 
that are far away, WI will be close to zero. And so as if for the points that are far away, 
they will not contribute much at all to this summation, right? So I think this is sum over I 
of one times this quadratic term for points by points plus zero times this quadratic term 
for faraway points. And so the effect of using this weighting is that locally weighted 
linear regression fits a set of parameters theta, paying much more attention to fitting the 
points close by accurately. Whereas ignoring the contribution from faraway points. 
Okay? Yeah?  

Student:Your Y is exponentially [inaudible]?  

Instructor (Andrew Ng):Yeah. Let’s see. So it turns out there are many other weighting 
functions you can use. It turns out that there are definitely different communities of 
researchers that tend to choose different choices by default. There is somewhat of a 
literature on debating what point – exactly what function to use. This, sort of, exponential 
decay function is – this happens to be a reasonably common one that seems to be a more 
reasonable choice on many problems, but you can actually plug in other functions as 
well. Did I mention what [inaudible] is it at? For those of you that are familiar with the 
normal distribution, or the Gaussian distribution, say this – what this formula I’ve written 
out here, it cosmetically looks a bit like a Gaussian distribution. Okay? But this actually 
has absolutely nothing to do with Gaussian distribution. So this is not that a problem with 
XI is Gaussian or whatever. This is no such interpretation. This is just a convenient 
function that happens to be a bell-shaped function, but don’t endow this of any Gaussian 
semantics. Okay?  



So, in fact – well, if you remember the familiar bell-shaped Gaussian, again, it’s just the 
ways of associating with these points is that if you imagine putting this on a bell-shaped 
bump, centered around the position of where you want to value your hypothesis H, then 
there’s a saying this point here I’ll give a weight that’s proportional to the height of the 
Gaussian – excuse me, to the height of the bell-shaped function evaluated at this point. 
And the way to get to this point will be, to this training example, will be proportionate to 
that height and so on. Okay? And so training examples that are really far away get a very 
small weight.  

One last small generalization to this is that normally there’s one other parameter to this 
algorithm, which I’ll denote as tow. Again, this looks suspiciously like the variants of a 
Gaussian, but this is not a Gaussian. This is a convenient form or function. This 
parameter tow is called the bandwidth parameter and informally it controls how fast the 
weights fall of with distance. Okay? So just copy my diagram from the other side, I 
guess. So if tow is very small, if that’s a query X, then you end up choosing a fairly 
narrow Gaussian – excuse me, a fairly narrow bell shape, so that the weights of the points 
are far away fall off rapidly. Whereas if tow is large then you’d end up choosing a 
weighting function that falls of relatively slowly with distance from your query. Okay?  

So I hope you can, therefore, see that if you apply locally weighted linear regression to a 
data set that looks like this, then to ask what your hypothesis output is at a point like this 
you end up having a straight line making that prediction. To ask what kind of class this 
[inaudible] at that value you put a straight line there and you predict that value. It turns 
out that every time you try to vary your hypothesis, every time you ask your learning 
algorithm to make a prediction for how much a new house costs or whatever, you need to 
run a new fitting procedure and then evaluate this line that you fit just at the position of 
the value of X. So the position of the query where you’re trying to make a prediction. 
Okay? But if you do this for every point along the X-axis then you find that locally 
weighted regression is able to trace on this, sort of, very non-linear curve for a data set 
like this. Okay?  

So in the problem set we’re actually gonna let you play around more with this algorithm. 
So I won’t say too much more about it here. But to finally move on to the next topic let 
me check the questions you have. Yeah?  

Student:It seems like you still have the same problem of overfitting and underfitting, like 
when you had a Q’s tow. Like you make it too small in your –  

Instructor (Andrew Ng):Yes, absolutely. Yes. So locally weighted regression can run 
into – locally weighted regression is not a penancier for the problem of overfitting or 
underfitting. You can still run into the same problems with locally weighted regression. 
What you just said about – and so some of these things I’ll leave you to discover for 
yourself in the homework problem. You’ll actually see what you just mentioned. Yeah?  

Student:It almost seems like you’re not even thoroughly [inaudible] with this locally 
weighted, you had all the data that you originally had anyway.  



Instructor (Andrew Ng):Yeah.  

Student:I’m just trying to think of [inaudible] the original data points.  

Instructor (Andrew Ng):Right. So the question is, sort of, this – it’s almost as if you’re 
not building a model, because you need the entire data set. And the other way of saying 
that is that this is a non-parametric learning algorithm. So this –I don’t know. I won’t 
debate whether, you know, are we really building a model or not. But this is a perfectly 
fine – so if I think when you write a code implementing locally weighted linear 
regression on the data set I think of that code as a whole – as building your model. So it 
actually uses – we’ve actually used this quite successfully to model, sort of, the dynamics 
of this autonomous helicopter this is. Yeah?  

Student:I ask if this algorithm that learn the weights based on the data?  

Instructor (Andrew Ng):Learn what weights? Oh, the weights WI.  

Student:Instead of using [inaudible].  

Instructor (Andrew Ng):I see, yes. So it turns out there are a few things you can do. One 
thing that is quite common is how to choose this band with parameter tow, right? As 
using the data. We’ll actually talk about that a bit later when we talk about model 
selection. Yes? One last question.  

Student:I used [inaudible] Gaussian sometimes if you [inaudible] Gaussian and then –  

Instructor (Andrew Ng):Oh, I guess. Lt’s see. Boy. The weights are not random 
variables and it’s not, for the purpose of this algorithm, it is not useful to endow it with 
probable semantics. So you could choose to define things as Gaussian, but it, sort of, 
doesn’t lead anywhere. In fact, it turns out that I happened to choose this, sort of, bell-
shaped function to define my weights. It’s actually fine to choose a function that doesn’t 
even integrate to one, that integrates to infinity, say, as you’re weighting function. So in 
that sense, I mean, you could force in the definition of a Gaussian, but it’s, sort of, not 
useful. Especially since you use other functions that integrate to infinity and don’t 
integrate to one. Okay? It’s the last question and let’s move on  

Student:Assume that we have a very huge [inaudible], for example. A very huge set of 
houses and want to predict the linear for each house and so should the end result for each 
input – I’m seeing this very constantly for –  

Instructor (Andrew Ng):Yes, you’re right. So because locally weighted regression is a 
non-parametric algorithm every time you make a prediction you need to fit theta to your 
entire training set again. So you’re actually right. If you have a very large training set 
then this is a somewhat expensive algorithm to use. Because every time you want to 
make a prediction you need to fit a straight line to a huge data set again. Turns out there 
are algorithms that – turns out there are ways to make this much more efficient for large 



data sets as well. So don’t want to talk about that. If you’re interested, look up the work 
of Andrew Moore on KD-trees. He, sort of, figured out ways to fit these models much 
more efficiently. That’s not something I want to go into today. Okay? Let me move one. 
Let’s take more questions later.  

So, okay. So that’s locally weighted regression. Remember the outline I had, I guess, at 
the beginning of this lecture. What I want to do now is talk about a probabilistic 
interpretation of linear regression, all right? And in particular of the – it’ll be this 
probabilistic interpretation that let’s us move on to talk about logistic regression, which 
will be our first classification algorithm. So let’s put aside locally weighted regression for 
now. We’ll just talk about ordinary unweighted linear regression. Let’s ask the question 
of why least squares, right? Of all the things we could optimize how do we come up with 
this criteria for minimizing the square of the area between the predictions of the 
hypotheses and the values Y predicted. So why not minimize the absolute value of the 
areas or the areas to the power of four or something? What I’m going to do now is 
present one set of assumptions that will serve to “justify” why we’re minimizing the sum 
of square zero. Okay?  

It turns out that there are many assumptions that are sufficient to justify why we do least 
squares and this is just one of them. So just because I present one set of assumptions 
under which least squares regression make sense, but this is not the only set of 
assumptions. So even if the assumptions I describe don’t hold, least squares actually still 
makes sense in many circumstances. But this sort of new help, you know, give one 
rationalization, like, one reason for doing least squares regression. And, in particular, 
what I’m going to do is endow the least squares model with probabilistic semantics. So 
let’s assume in our example of predicting housing prices, that the price of the house it’s 
sold four, and there’s going to be some linear function of the features, plus some term 
epsilon I. Okay? And epsilon I will be our error term. You can think of the error term as 
capturing unmodeled effects, like, that maybe there’s some other features of a house, like, 
maybe how many fireplaces it has or whether there’s a garden or whatever, that there are 
additional features that we jut fail to capture or you can think of epsilon as random noise. 
Epsilon is our error term that captures both these unmodeled effects. Just things we forgot 
to model. Maybe the function isn’t quite linear or something. As well as random noise, 
like maybe that day the seller was in a really bad mood and so he sold it, just refused to 
go for a reasonable price or something. And now I will assume that the errors have a 
probabilistic – have a probability distribution. I’ll assume that the errors epsilon I are 
distributed just till they denote epsilon I is distributive according to a probability 
distribution. That’s a Gaussian distribution with mean zero and variance sigma squared. 
Okay? So let me just scripts in here, n stands for normal, right? To denote a normal 
distribution, also known as the Gaussian distribution, with mean zero and covariance 
sigma squared.  

Actually, just quickly raise your hand if you’ve seen a Gaussian distribution before. 
Okay, cool. Most of you. Great. Almost everyone. So, in other words, the density for 
Gaussian is what you’ve seen before. The density for epsilon I would be one over root 2 
pi sigma, E to the negative, epsilon I squared over 2 sigma squared, right? And the 



density of our epsilon I will be this bell-shaped curve with one standard deviation being 
a, sort of, sigma. Okay? This is form for that bell-shaped curve. So, let’s see. I can erase 
that. Can I erase the board? So this implies that the probability distribution of a price of a 
house given in si and the parameters theta, that this is going to be Gaussian with that 
density. Okay? In other words, saying goes as that the price of a house given the features 
of the house and my parameters theta, this is going to be a random variable that’s 
distributed Gaussian with mean theta transpose XI and variance sigma squared. Right? 
Because we imagine that the way the housing prices are generated is that the price of a 
house is equal to theta transpose XI and then plus some random Gaussian noise with 
variance sigma squared. So the price of a house is going to have mean theta transpose XI, 
again, and sigma squared, right? Does this make sense? Raise your hand if this makes 
sense. Yeah, okay. Lots of you.  

In point of notation – oh, yes?  

Student:Assuming we don’t know anything about the error, why do you assume here the 
error is a Gaussian?  

Instructor (Andrew Ng):Right. So, boy. Why do I see the error as Gaussian? Two 
reasons, right? One is that it turns out to be mathematically convenient to do so and the 
other is, I don’t know, I can also mumble about justifications, such as things to the central 
limit theorem. It turns out that if you, for the vast majority of problems, if you apply a 
linear regression model like this and try to measure the distribution of the errors, not all 
the time, but very often you find that the errors really are Gaussian. That this Gaussian 
model is a good assumption for the error in regression problems like these. Some of you 
may have heard of the central limit theorem, which says that the sum of many 
independent random variables will tend towards a Gaussian. So if the error is caused by 
many effects, like the mood of the seller, the mood of the buyer, some other features that 
we miss, whether the place has a garden or not, and if all of these effects are independent, 
then by the central limit theorem you might be inclined to believe that the sum of all 
these effects will be approximately Gaussian. If in practice, I guess, the two real answers 
are that, 1.) In practice this is actually a reasonably accurate assumption, and 2.) Is it 
turns out to be mathematically convenient to do so. Okay? Yeah?  

Student:It seems like we’re saying if we assume that area around model has zero mean, 
then the area is centered around our model. Which it seems almost like we’re trying to 
assume what we’re trying to prove. Instructor? 

That’s the [inaudible] but, yes. You are assuming that the error has zero mean. Which is, 
yeah, right. I think later this quarter we get to some of the other things, but for now just 
think of this as a mathematically – it’s actually not an unreasonable assumption. I guess, 
in machine learning all the assumptions we make are almost never true in the absence 
sense, right? Because, for instance, housing prices are priced to dollars and cents, so the 
error will be – errors in prices are not continued as value random variables, because 
houses can only be priced at a certain number of dollars and a certain number of cents 
and you never have fractions of cents in housing prices. Whereas a Gaussian random 



variable would. So in that sense, assumptions we make are never “absolutely true,” but 
for practical purposes this is a accurate enough assumption that it’ll be useful to make. 
Okay? I think in a week or two, we’ll actually come back to selected more about the 
assumptions we make and when they help our learning algorithms and when they hurt our 
learning algorithms. We’ll say a bit more about it when we talk about generative and 
discriminative learning algorithms, like, in a week or two. Okay?  

So let’s point out one bit of notation, which is that when I wrote this down I actually 
wrote P of YI given XI and then semicolon theta and I’m going to use this notation when 
we are not thinking of theta as a random variable. So in statistics, though, sometimes it’s 
called the frequentist’s point of view, where you think of there as being some, sort of, 
true value of theta that’s out there that’s generating the data say, but we don’t know what 
theta is, but theta is not a random vehicle, right? So it’s not like there’s some random 
value of theta out there. It’s that theta is – there’s some true value of theta out there. It’s 
just that we don’t know what the true value of theta is. So if theta is not a random 
variable, then I’m going to avoid writing P of YI given XI comma theta, because this 
would mean that probably of YI conditioned on X and theta and you can only condition 
on random variables. So at this part of the class where we’re taking sort of frequentist’s 
viewpoint rather than the Dasian viewpoint, in this part of class we’re thinking of theta 
not as a random variable, but just as something we’re trying to estimate and use the 
semicolon notation. So the way to read this is this is the probability of YI given XI and 
parameterized by theta. Okay? So you read the semicolon as parameterized by. And in 
the same way here, I’ll say YI given XI parameterized by theta is distributed Gaussian 
with that.  

All right. So we’re gonna make one more assumption. Let’s assume that the error terms 
are IID, okay? Which stands for Independently and Identically Distributed. So it’s going 
to assume that the error terms are independent of each other, right? The identically 
distributed part just means that I’m assuming the outcome for the same Gaussian 
distribution or the same variance, but the more important part of is this is that I’m 
assuming that the epsilon I’s are independent of each other. Now, let’s talk about how to 
fit a model. The probability of Y given X parameterized by theta – I’m actually going to 
give this another name. I’m going to write this down and we’ll call this the likelihood of 
theta as the probability of Y given X parameterized by theta. And so this is going to be 
the product over my training set like that. Which is, in turn, going to be a product of those 
Gaussian densities that I wrote down just now, right? Okay?  

Then in parts of notation, I guess, I define this term here to be the likelihood of theta. 
And the likely of theta is just the probability of the data Y, right? Given X and prioritized 
by theta. To test the likelihood and probability are often confused. So the likelihood of 
theta is the same thing as the probability of the data you saw. So likely and probably are, 
sort of, the same thing. Except that when I use the term likelihood I’m trying to 
emphasize that I’m taking this thing and viewing it as a function of theta. Okay? So 
likelihood and for probability, they’re really the same thing except that when I want to 
view this thing as a function of theta holding X and Y fix are then called likelihood. 
Okay? So hopefully you hear me say the likelihood of the parameters and the probability 



of the data, right? Rather than the likelihood of the data or probability of parameters. So 
try to be consistent in that terminology.  

So given that the probability of the data is this and this is also the likelihood of the 
parameters, how do you estimate the parameters theta? So given a training set, what 
parameters theta do you want to choose for your model? Well, the principle of maximum 
likelihood estimation says that, right? You can choose the value of theta that makes the 
data as probable as possible, right? So choose theta to maximize the likelihood. Or in 
other words choose the parameters that make the data as probable as possible, right? So 
this is massive likely your estimation from six to six. So it’s choose the parameters that 
makes it as likely as probable as possible for me to have seen the data I just did.  

So for mathematical convenience, let me define lower case l of theta. This is called the 
log likelihood function and it’s just log of capital L of theta. So this is log over product 
over I to find sigma E to that. I won’t bother to write out what’s in the exponent for now. 
It’s just saying this from the previous board. Log and a product is the same as the sum of 
over logs, right? So it’s a sum of the logs of – which simplifies to m times one over root 
two pi sigma plus and then log of explanation cancel each other, right? So if log of E of 
something is just whatever’s inside the exponent. So, you know what, let me write this on 
the next board.  

Okay. So maximizing the likelihood or maximizing the log likelihood is the same as 
minimizing that term over there. Well, you get it, right? Because there’s a minus sign. So 
maximizing this because of the minus sign is the same as minimizing this as a function of 
theta. And this is, of course, just the same quadratic cos function that we had last time, J 
of theta, right? So what we’ve just shown is that the ordinary least squares algorithm, that 
we worked on the previous lecture, is just maximum likelihood assuming this 
probabilistic model, assuming IID Gaussian errors on our data. Okay?  

One thing that we’ll actually leave is that, in the next lecture notice that the value of 
sigma squared doesn’t matter, right? That somehow no matter what the value of sigma 
squared is, I mean, sigma squared has to be a positive number. It’s a variance of a 
Gaussian. So that no matter what sigma squared is since it’s a positive number the value 
of theta we end up with will be the same, right? So because minimizing this you get the 
same value of theta no matter what sigma squared is. So it’s as if in this model the value 
of sigma squared doesn’t really matter. Just remember that for the next lecture. We’ll 
come back to this again. Any questions about this? Actually, let me clean up another 
couple of boards and then I’ll see what questions you have.  

Okay. Any questions? Yeah?  

Student:You are, I think here you try to measure the likelihood of your nice of theta by a 
fraction of error, but I think it’s that you measure because it depends on the family of 
theta too, for example. If you have a lot of parameters [inaudible] or fitting in?  



Instructor (Andrew Ng):Yeah, yeah. I mean, you’re asking about overfitting, whether 
this is a good model. I think let’s – the thing’s you’re mentioning are maybe deeper 
questions about learning algorithms that we’ll just come back to later, so don’t really 
want to get into that right now. Any more questions? Okay.  

So this endows linear regression with a probabilistic interpretation. I’m actually going to 
use this probabil – use this, sort of, probabilistic interpretation in order to derive our next 
learning algorithm, which will be our first classification algorithm. Okay? So you’ll recall 
that I said that regression problems are where the variable Y that you’re trying to predict 
is continuous values. Now I’m actually gonna talk about our first classification problem, 
where the value Y you’re trying to predict will be discreet value. You can take on only a 
small number of discrete values and in this case I’ll talk about binding classification 
where Y takes on only two values, right? So you come up with classification problems if 
you’re trying to do, say, a medical diagnosis and try to decide based on some features that 
the patient has a disease or does not have a disease. Or if in the housing example, maybe 
you’re trying to decide will this house sell in the next six months or not and the answer is 
either yes or no. It’ll either be sold in the next six months or it won’t be. Other standing 
examples, if you want to build a spam filter. Is this e-mail spam or not? It’s yes or no. Or 
if you, you know, some of my colleagues sit in whether predicting whether a computer 
system will crash. So you have a learning algorithm to predict will this computing cluster 
crash over the next 24 hours? And, again, it’s a yes or no answer.  

So there’s X, there’s Y. And in a classification problem Y takes on two values, zero and 
one. That’s it in binding the classification. So what can you do? Well, one thing you 
could do is take linear regression, as we’ve described it so far, and apply it to this 
problem, right? So you, you know, given this data set you can fit a straight line to it. 
Maybe you get that straight line, right? But this data set I’ve drawn, right? This is an 
amazingly easy classification problem. It’s pretty obvious to all of us that, right? The 
relationship between X and Y is – well, you just look at a value around here and it’s the 
right is one, it’s the left and Y is zero. So you apply linear regressions to this data set and 
you get a reasonable fit and you can then maybe take your linear regression hypothesis to 
this straight line and threshold it at 0.5. If you do that you’ll certainly get the right 
answer. You predict that if X is to the right of, sort of, the mid-point here then Y is one 
and then next to the left of that mid-point then Y is zero.  

So some people actually do this. Apply linear regression to classification problems and 
sometimes it’ll work okay, but in general it’s actually a pretty bad idea to apply linear 
regression to classification problems like these and here’s why. Let’s say I change my 
training set by giving you just one more training example all the way up there, right? 
Imagine if given this training set is actually still entirely obvious what the relationship 
between X and Y is, right? It’s just – take this value as greater than Y is one and it’s less 
then Y is zero. By giving you this additional training example it really shouldn’t change 
anything. I mean, I didn’t really convey much new information. There’s no surprise that 
this corresponds to Y equals one. But if you now fit linear regression to this data set you 
end up with a line that, I don’t know, maybe looks like that, right? And now the 



predictions of your hypothesis have changed completely if your threshold – your 
hypothesis at Y equal both 0.5. Okay? So –  

Student:In between there might be an interval where it’s zero, right? For that far off 
point?  

Instructor (Andrew Ng):Oh, you mean, like that?  

Student:Right.  

Instructor (Andrew Ng):Yeah, yeah, fine. Yeah, sure. A theta set like that so. So, I 
guess, these just – yes, you’re right, but this is an example and this example works. This 
–  

Student:[Inaudible] that will change it even more if you gave it all –  

Instructor (Andrew Ng):Yeah. Then I think this actually would make it even worse. 
You would actually get a line that pulls out even further, right? So this is my example. I 
get to make it whatever I want, right? But the point of this is that there’s not a deep 
meaning to this. The point of this is just that it could be a really bad idea to apply linear 
regression to classification algorithm. Sometimes it work fine, but usually I wouldn’t do 
it. So a couple of problems with this. One is that, well – so what do you want to do for 
classification? If you know the value of Y lies between zero and one then to kind of fix 
this problem let’s just start by changing the form of our hypothesis so that my hypothesis 
always lies in the unit interval between zero and one. Okay? So if I know Y is either zero 
or one then let’s at least not have my hypothesis predict values much larger than one and 
much smaller than zero. And so I’m going to – instead of choosing a linear function for 
my hypothesis I’m going to choose something slightly different. And, in particular, I’m 
going to choose this function, H subscript theta of X is going to equal to G of theta 
transpose X where G is going to be this function and so this becomes more than one plus 
theta X of theta transpose X. And G of Z is called the sigmoid function and it is often also 
called the logistic function. It goes by either of these names.  

And what G of Z looks like is the following. So when you have your horizontal axis I’m 
going to plot Z and so G of Z will look like this. Okay? I didn’t draw that very well. 
Okay. So G of Z tends towards zero as Z becomes very small and G of Z will ascend 
towards one as Z becomes large and it crosses the vertical axis at 0.5. So this is what 
sigmoid function, also called the logistic function of. Yeah? Question?  

Student:What sort of sigmoid in other step five?  

Instructor (Andrew Ng):Say that again.  

Student:Why we cannot chose this at five for some reason, like, that’s better binary.  



Instructor (Andrew Ng):Yeah. Let me come back to that later. So it turns out that Y – 
where did I get this function from, right? I just wrote down this function. It actually turns 
out that there are two reasons for using this function that we’ll come to. One is – we 
talked about generalized linear models. We’ll see that this falls out naturally as part of the 
broader class of models. And another reason that we’ll talk about next week, it turns out 
there are a couple of, I think, very beautiful reasons for why we choose logistic functions. 
We’ll see that in a little bit. But for now let me just define it and just take my word for it 
for now that this is a reasonable choice. Okay? But notice now that my – the values 
output by my hypothesis will always be between zero and one. Furthermore, just like we 
did for linear regression, I’m going to endow the outputs and my hypothesis with a 
probabilistic interpretation, right? So I’m going to assume that the probability that Y is 
equal to one given X and parameterized by theta that’s equal to H subscript theta of X, all 
right? So in other words I’m going to imagine that my hypothesis is outputting all these 
numbers that lie between zero and one. I’m going to think of my hypothesis as trying to 
estimate the probability that Y is equal to one. Okay? And because Y has to be either zero 
or one then the probability of Y equals zero is going to be that. All right? So more simply 
it turns out – actually, take these two equations and write them more compactly. Write P 
of Y given X parameterized by theta. This is going to be H subscript theta of X to the 
power of Y times one minus H of X to the power of one minus Y. Okay?  

So I know this looks somewhat bizarre, but this actually makes the variation much nicer. 
So Y is equal to one then this equation is H of X to the power of one times something to 
the power of zero. So anything to the power of zero is just one, right? So Y equals one 
then this is something to the power of zero and so this is just one. So if Y equals one this 
is just saying P of Y equals one is equal to H subscript theta of X. Okay? And in the same 
way, if Y is equal to zero then this is P of Y equals zero equals this thing to the power of 
zero and so this disappears. This is just one times this thing power of one. Okay? So this 
is a compact way of writing both of these equations to gather them to one line. So let’s 
hope our parameter fitting, right? And, again, you can ask – well, given this model by 
data, how do I fit the parameters theta of my model? So the likelihood of the parameters 
is, as before, it’s just the probability of theta, right? Which is product over I, PFYI given 
XI parameterized by theta. Which is – just plugging those in. Okay? I dropped this theta 
subscript just so you can write a little bit less. Oh, excuse me. These should be XI’s and 
YI’s. Okay?  

So, as before, let’s say we want to find a maximum likelihood estimate of the parameters 
theta. So we want to find the – setting the parameters theta that maximizes the likelihood 
L of theta. It turns out that very often – just when you work with the derivations, it turns 
out that it is often much easier to maximize the log of the likelihood rather than maximize 
the likelihood. So the log likelihood L of theta is just log of capital L. This will, therefore, 
be sum of this. Okay? And so to fit the parameters theta of our model we’ll find the value 
of theta that maximizes this log likelihood. Yeah?  

Student:[Inaudible]  

Instructor (Andrew Ng):Say that again.  



Student:YI is [inaudible].  

Instructor (Andrew Ng):Oh, yes. Thanks. So having maximized this function – well, it 
turns out we can actually apply the same gradient descent algorithm that we learned. That 
was the first algorithm we used to minimize the quadratic function. And you remember, 
when we talked about least squares, the first algorithm we used to minimize the quadratic 
error function was great in descent. So can actually use exactly the same algorithm to 
maximize the log likelihood. And you remember, that algorithm was just repeatedly take 
the value of theta and you replace it with the previous value of theta plus a learning rate 
alpha times the gradient of the cos function. The log likelihood will respect the theta. 
Okay? One small change is that because previously we were trying to minimize the 
quadratic error term. Today we’re trying to maximize rather than minimize. So rather 
than having a minus sign we have a plus sign. So this is just great in ascents, but for the 
maximization rather than the minimization. So we actually call this gradient ascent and 
it’s really the same algorithm.  

So to figure out what this gradient – so in order to derive gradient descent, what you need 
to do is compute the partial derivatives of your objective function with respect to each of 
your parameters theta I, right? It turns out that if you actually compute this partial 
derivative – so you take this formula, this L of theta, which is – oh, got that wrong too. If 
you take this lower case l theta, if you take the log likelihood of theta, and if you take it’s 
partial derivative with respect to theta I you find that this is equal to – let’s see. Okay? 
And, I don’t know, the derivation isn’t terribly complicated, but in the interest of saving 
you watching me write down a couple of blackboards full of math I’ll just write down the 
final answer. But the way you get this is you just take those, plug in the definition for F 
subscript theta as function of XI, and take derivatives, and work through the algebra it 
turns out it’ll simplify down to this formula. Okay?  

And so what that gives you is that gradient ascent is the following rule. Theta J gets 
updated as theta J plus alpha gives this. Okay? Does this look familiar to anyone? Did 
you remember seeing this formula at the last lecture? Right. So when I worked up 
Bastrian descent for least squares regression I, actually, wrote down exactly the same 
thing, or maybe there’s a minus sign and this is also fit. But I, actually, had exactly the 
same learning rule last time for least squares regression, right? Is this the same learning 
algorithm then? So what’s different? How come I was making all that noise earlier about 
least squares regression being a bad idea for classification problems and then I did a 
bunch of math and I skipped some steps, but I’m, sort of, claiming at the end they’re 
really the same learning algorithm?  

Student:[Inaudible] constants?  

Instructor (Andrew Ng):Say that again.  

Student:[Inaudible]  

Instructor (Andrew Ng):Oh, right. Okay, cool.  



Student:It’s the lowest it –  

Instructor (Andrew Ng):No, exactly. Right. So zero to the same, this is not the same, 
right? And the reason is, in logistic regression this is different from before, right? The 
definition of this H subscript theta of XI is not the same as the definition I was using in 
the previous lecture. And in particular this is no longer theta transpose XI. This is not a 
linear function anymore. This is a logistic function of theta transpose XI. Okay? So even 
though this looks cosmetically similar, even though this is similar on the surface, to the 
Bastrian descent rule I derived last time for least squares regression this is actually a 
totally different learning algorithm. Okay? And it turns out that there’s actually no 
coincidence that you ended up with the same learning rule. We’ll actually talk a bit more 
about this later when we talk about generalized linear models. But this is one of the most 
elegant generalized learning models that we’ll see later. That even though we’re using a 
different model, you actually ended up with what looks like the same learning algorithm 
and it’s actually no coincidence. Cool.  

One last comment as part of a sort of learning process, over here I said I take the 
derivatives and I ended up with this line. I didn’t want to make you sit through a long 
algebraic derivation, but later today or later this week, please, do go home and look at our 
lecture notes, where I wrote out the entirety of this derivation in full, and make sure you 
can follow every single step of how we take partial derivatives of this log likelihood to 
get this formula over here. Okay? By the way, for those who are interested in seriously 
masking machine learning material, when you go home and look at the lecture notes it 
will actually be very easy for most of you to look through the lecture notes and read 
through every line and go yep, that makes sense, that makes sense, that makes sense, and, 
sort of, say cool. I see how you get this line. You want to make sure you really 
understand the material. My concrete suggestion to you would be to you to go home, read 
through the lecture notes, check every line, and then to cover up the derivation and see if 
you can derive this example, right? So in general, that’s usually good advice for studying 
technical material like machine learning. Which is if you work through a proof and you 
think you understood every line, the way to make sure you really understood it is to cover 
it up and see if you can rederive the entire thing itself. This is actually a great way 
because I did this a lot when I was trying to study various pieces of machine learning 
theory and various proofs. And this is actually a great way to study because cover up the 
derivations and see if you can do it yourself without looking at the original derivation. All 
right.  

I probably won’t get to Newton’s Method today. I just want to say – take one quick 
digression to talk about one more algorithm, which was the discussion sort of alluding to 
this earlier, which is the perceptron algorithm, right? So I’m not gonna say a whole lot 
about the perceptron algorithm, but this is something that we’ll come back to later. Later 
this quarter we’ll talk about learning theory. So in logistic regression we said that G of Z 
are, sort of, my hypothesis output values that were low numbers between zero and one. 
The question is what if you want to force G of Z to up the value to either zero one? So the 
perceptron algorithm defines G of Z to be this. So the picture is – or the cartoon is, rather 
than this sigmoid function. E of Z now looks like this step function that you were asking 



about earlier. In saying this before, we can use H subscript theta of X equals G of theta 
transpose X. Okay? So this is actually – everything is exactly the same as before, except 
that G of Z is now the step function. It turns out there’s this learning called the perceptron 
learning rule that’s actually even the same as the classic gradient ascent for logistic 
regression. And the learning rule is given by this. Okay? So it looks just like the classic 
gradient ascent rule for logistic regression. So this is very different flavor of algorithm 
than least squares regression and logistic regression, and, in particular, because it outputs 
only values are either zero or one it turns out it’s very difficult to endow this algorithm 
with probabilistic semantics. And this is, again, even though – oh, excuse me. Right 
there. Okay. And even though this learning rule looks, again, looks cosmetically very 
similar to what we have in logistics regression this is actually a very different type of 
learning rule than the others that were seen in this class. So because this is such a simple 
learning algorithm, right? It just computes theta transpose X and then you threshold and 
then your output is zero or one. This is – right. So these are a simpler algorithm than 
logistic regression, I think. When we talk about learning theory later in this class, the 
simplicity of this algorithm will let us come back and use it as a building block. Okay? 
But that’s all I want to say about this algorithm for now.  

Just for fun, the last thing I’ll do today is show you a historical video with – that talks 
about the perceptron algorithm. This particular video comes from a video series titled The 
Machine that Changed The World and was produced WGBH Television in cooperation 
with the BBC, British Broadcasting Corporation, and it aired on PBS a few years ago. 
This shows you what machine learning used to be like. It’s a fun clip on perceptron 
algorithm.  

In the 1950’s and 60’s scientists built a few working perceptrons, as these artificial brains 
were called. He’s using it to explore the mysterious problem of how the brain learns. This 
perceptron is being trained to recognize the difference between males and females. It is 
something that all of us can do easily, but few of us can explain how. To get a computer 
to do this it would involve working out many complex rules about faces and writing a 
computer program, but this perceptron was simply given lots and lots of examples, 
including some with unusual hairstyles. But when it comes to a beetle the computer looks 
at facial features and hair outline and takes longer to learn what it’s told by Dr. Taylor. 
Andrew puts on his wig also causes a little part searching. After training on lots of 
examples, it’s given new faces it has never seen and is able to successfully distinguish 
male from female. It has learned.  

All right. Isn’t that great? Okay. That’s it for today. I’ll see you guys at the next lecture.  

[End of Audio]  
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