
MachineLearning-Lecture02  

Instructor (Andrew Ng):All right, good morning, welcome back. So before we jump 
into today's material, I just have one administrative announcement, which is graders. So I 
guess sometime next week, we'll hand out the first homework assignment for this class.  

Is this loud enough, by the way? Can people in the back hear me? No. Can you please 
turn up the mic a bit louder? Is this better? Is this okay? This is okay? Great.  

So sometime next week, we'll hand out the first problem sets and it'll be two weeks after 
that, and the way we grade homework problems in this class is by some combination of 
TAs and graders, where graders are usually members – students currently in the class.  

So in maybe about a week or so, I'll email the class to solicit applications for those of you 
that might be interested in becoming graders for this class, and there's usually sort of a 
fun thing to do. So four times this quarter, the TAs, and the graders, and I will spend one 
evening staying up late and grading all the homework problems.  

For those of you who that have never taught a class before, or sort of been a grader, it's an 
interesting way for you to see, you know, what the other half of the teaching experience 
is. So the students that grade for the first time sort of get to learn about what it is that 
really makes a difference between a good solution and amazing solution. And to give 
everyone to just how we do points assignments, or what is it that causes a solution to get 
full marks, or just how to write amazing solutions. Becoming a grader is usually a good 
way to do that.  

Graders are paid positions and you also get free food, and it's usually fun for us to sort of 
hang out for an evening and grade all the assignments. Okay, so I will send email. So 
don't email me yet if you want to be a grader. I'll send email to the entire class later with 
the administrative details and to solicit applications. So you can email us back then, to 
apply, if you'd be interested in being a grader.  

Okay, any questions about that? All right, okay, so let's get started with today's material. 
So welcome back to the second lecture. What I want to do today is talk about linear 
regression, gradient descent, and the normal equations. And I should also say, lecture 
notes have been posted online and so if some of the math I go over today, I go over rather 
quickly, if you want to see every equation written out and work through the details more 
slowly yourself, go to the course homepage and download detailed lecture notes that 
pretty much describe all the mathematical, technical contents I'm going to go over today.  

Today, I'm also going to delve into a fair amount – some amount of linear algebra, and so 
if you would like to see a refresher on linear algebra, this week's discussion section will 
be taught by the TAs and will be a refresher on linear algebra. So if some of the linear 
algebra I talk about today sort of seems to be going by pretty quickly, or if you just want 
to see some of the things I'm claiming today with our proof, if you want to just see some 
of those things written out in detail, you can come to this week's discussion section.  



So I just want to start by showing you a fun video. Remember at the last lecture, the 
initial lecture, I talked about supervised learning. And supervised learning was this 
machine-learning problem where I said we're going to tell the algorithm what the close 
right answer is for a number of examples, and then we want the algorithm to replicate 
more of the same.  

So the example I had at the first lecture was the problem of predicting housing prices, 
where you may have a training set, and we tell the algorithm what the "right" housing 
price was for every house in the training set. And then you want the algorithm to learn the 
relationship between sizes of houses and the prices, and essentially produce more of the 
"right" answer.  

So let me show you a video now. Load the big screen, please. So I'll show you a video 
now that was from Dean Pomerleau at some work he did at Carnegie Mellon on applied 
supervised learning to get a car to drive itself. This is work on a vehicle known as Alvin. 
It was done sort of about 15 years ago, and I think it was a very elegant example of the 
sorts of things you can get supervised or any algorithms to do.  

On the video, you hear Dean Pomerleau's voice mention and algorithm called Neural 
Network. I'll say a little bit about that later, but the essential learning algorithm for this is 
something called gradient descent, which I will talk about later in today's lecture. Let's 
watch the video. [Video plays]  

Instructor (Andrew Ng):So two comments, right. One is this is supervised learning 
because it's learning from a human driver, in which a human driver shows that we're on 
this segment of the road, I will steer at this angle. This segment of the road, I'll steer at 
this angle. And so the human provides the number of "correct" steering directions to the 
car, and then it's the job of the car to try to learn to produce more of these "correct" 
steering directions that keeps the car on the road.  

On the monitor display up here, I just want to tell you a little bit about what this display 
means. So on the upper left where the mouse pointer is moving, this horizontal line 
actually shows the human steering direction, and this white bar, or this white area right 
here shows the steering direction chosen by the human driver, by moving the steering 
wheel.  

The human is steering a little bit to the left here indicated by the position of this white 
region. This second line here where Mamos is pointing, the second line here is the output 
of the learning algorithm, and where the learning algorithm currently thinks is the right 
steering direction. And right now what you're seeing is the learning algorithm just at the 
very beginning of training, and so there's just no idea of where to steer. And so its output, 
this little white smear over the entire range of steering directions.  

And as the algorithm collects more examples and learns of a time, you see it start to more 
confidently choose a steering direction. So let's keep watching the video. [Video plays]  



Instructor (Andrew Ng):All right, so who thought driving could be that dramatic, right? 
Switch back to the chalkboard, please. I should say, this work was done about 15 years 
ago and autonomous driving has come a long way. So many of you will have heard of the 
DARPA Grand Challenge, where one of my colleagues, Sebastian Thrun, the winning 
team's drive a car across a desert by itself.  

So Alvin was, I think, absolutely amazing work for its time, but autonomous driving has 
obviously come a long way since then. So what you just saw was an example, again, of 
supervised learning, and in particular it was an example of what they call the regression 
problem, because the vehicle is trying to predict a continuous value variables of a 
continuous value steering directions, we call the regression problem.  

And what I want to do today is talk about our first supervised learning algorithm, and it 
will also be to a regression task. So for the running example that I'm going to use 
throughout today's lecture, you're going to return to the example of trying to predict 
housing prices. So here's actually a dataset collected by TA, Dan Ramage, on housing 
prices in Portland, Oregon.  

So here's a dataset of a number of houses of different sizes, and here are their asking 
prices in thousands of dollars, $200,000. And so we can take this data and plot it, square 
feet, best price, and so you make your other dataset like that. And the question is, given a 
dataset like this, or given what we call a training set like this, how do you learn to predict 
the relationship between the size of the house and the price of the house?  

So I'm actually going to come back and modify this task a little bit more later, but let me 
go ahead and introduce some notation, which I'll be using, actually, throughout the rest of 
this course. The first piece of notation is I'm going to let the lower case alphabet M 
denote the number of training examples, and that just means the number of rows, or the 
number of examples, houses, and prices we have.  

And in this particular dataset, we have, what actually happens, we have 47 training 
examples, although I wrote down only five. Okay, so throughout this quarter, I'm going 
to use the alphabet M to denote the number of training examples. I'm going to use the 
lower case alphabet X to denote the input variables, which I'll often also call the features. 
And so in this case, X would denote the size of the house they were looking at.  

I'm going to use Y to denote the "output" variable, which is sometimes also called a 
target variable, and so one pair, x, y, is what comprises one training example. In other 
words, one row on the table I drew just now what would be what I call one training 
example, and the Ith training example, in other words the Ith row in that table, I'm going 
to write as XI, Y, I.  

Okay, and so in this notation they're going to use this superscript I is not exponentiation. 
So this is not X to the power of IY to the power of I. In this notation, the superscript I in 
parentheses is just sort of an index into the Ith row of my list of training examples.  



So in supervised learning, this is what we're going to do. We're given a training set, and 
we're going to feed our training set, comprising our M training example, so 47 training 
examples, into a learning algorithm. Okay, and our algorithm then has output function 
that is by tradition, and for historical reasons, is usually denoted lower case alphabet H, 
and is called a hypothesis. Don't worry too much about whether the term hypothesis has a 
deep meaning. It's more a term that's used for historical reasons.  

And the hypothesis's job is to take this input. There's some new [inaudible]. What the 
hypothesis does is it takes this input, a new living area in square feet saying and output 
estimates the price of this house. So the hypothesis H maps from inputs X to outputs Y. 
So in order to design a learning algorithm, the first thing we have to decide is how we 
want to represent the hypothesis, right.  

And just for this purposes of this lecture, for the purposes of our first learning algorithm, 
I'm going to use a linear representation for the hypothesis. So I'm going to represent my 
hypothesis as H of X equals theta zero, plus theta 1X, where X here is an input feature, 
and so that's the size of the house we're considering.  

And more generally, come back to this, more generally for many regression problems we 
may have more than one input feature. So for example, if instead of just knowing the size 
of the houses, if we know also the number of bedrooms in these houses, let's say, then, so 
if our training set also has a second feature, the number of bedrooms in the house, then 
you may, let's say X1 denote the size and square feet. Let X have script two denote the 
number of bedrooms, and then I would write the hypothesis, H of X, as theta rho plus 
theta 1X1 plus theta 2X2.  

Okay, and sometimes when I went to take the hypothesis H, and when I went to make 
this dependent on the theta is explicit, I'll sometimes write this as H subscript theta of X. 
And so this is the price that my hypothesis predicts a house with features X costs. So 
given the new house with features X, a certain size and a certain number of bedrooms, 
this is going to be the price that my hypothesis predicts this house is going to cost.  

One final piece of notation, so for conciseness, just to write this a bit more compactly I'm 
going to take the convention of defining X0 to be equal to one, and so I can now write H 
of X to be equal to sum from I equals one to two of theta I, oh sorry, zero to two, theta I, 
X I. And if you think of theta as an X, as vectors, then this is just theta transpose X.  

And the very final piece of notation is I'm also going to let lower case N be the number of 
features in my learning problem. And so this actually becomes a sum from I equals zero 
to N, where in this example if you have two features, N would be equal to two.  

All right, I realize that was a fair amount of notation, and as I proceed through the rest of 
the lecture today, or in future weeks as well, if some day you're looking at me write a 
symbol and you're wondering, gee, what was that simple lower case N again? Or what 
was that lower case X again, or whatever, please raise hand and I'll answer. This is a fair 



amount of notation. We'll probably all get used to it in a few days and we'll standardize 
notation and make a lot of our descriptions of learning algorithms a lot easier.  

But again, if you see me write some symbol and you don't quite remember what it means, 
chances are there are others in this class who've forgotten too. So please raise your hand 
and ask if you're ever wondering what some symbol means. Any questions you have 
about any of this?  

Yeah?  

Student:The variable can be anything? [Inaudible]?  

Instructor (Andrew Ng):Say that again.  

Student:[inaudible] zero theta one?  

Instructor (Andrew Ng):Right, so, well let me – this was going to be next, but the theta 
or the theta Is are called the parameters. The thetas are called the parameters of our 
learning algorithm and theta zero, theta one, theta two are just real numbers. And then it 
is the job of the learning algorithm to use the training set to choose or to learn appropriate 
parameters theta.  

Okay, is there other questions?  

Student:What does [inaudible]?  

Instructor (Andrew Ng):Oh, transpose. Oh yeah, sorry. When [inaudible] theta and 
theta transpose X, theta [inaudible].  

Student:Is this like a [inaudible] hypothesis [inaudible], or would you have higher 
orders? Or would theta [inaudible]?  

Instructor (Andrew Ng):All great questions. The answer – so the question was, is this a 
typical hypothesis or can theta be a function of other variables and so on. And the answer 
is sort of yes. For now, just for this first learning algorithm we'll talk about using a linear 
hypothesis class. A little bit actually later this quarter, we'll talk about much more 
complicated hypothesis classes, and we'll actually talk about higher order functions as 
well, a little bit later today.  

Okay, so for the learning problem then. How do we chose the parameters theta so that our 
hypothesis H will make accurate predictions about all the houses. All right, so one 
reasonable thing to do seems to be, well, we have a training set. So – and just on the 
training set, our hypothesis will make some prediction, predictions of the housing prices, 
of the prices of the houses in the training set.  



So one thing we could do is just try to make the predictions of a learning algorithm 
accurate on a training set. So given some features, X, and some correct prices, Y, we 
might want to make that theta square difference between the prediction of the algorithm 
and the actual price [inaudible].  

So to choose parameters theta, unless we want to minimize over the parameters theta, so 
the squared area between the predicted price and the actual price. And so going to fill this 
in. We have M training examples. So the sum from I equals one through M of my M 
training examples, of price predicted on the Ith house in my training set. Mine is the 
actual target variable. Mine is actual price on the Ith training example.  

And by convention, instead of minimizing this sum of the squared differences, I'm just 
going to put a one-half there, which will simplify some of the math we do later. Okay, 
and so let me go ahead and define J of theta to be equal to just the same, one-half sum 
from I equals one through M on the number of training examples, of the value predicted 
by my hypothesis minus the actual value.  

And so what we'll do, let's say, is minimize as a function of the parameters of theta, this 
quantity J of theta. I should say, to those of you who have taken sort of linear algebra 
classes, or maybe basic statistics classes, some of you may have seen things like these 
before and seen least [inaudible] regression or [inaudible] squares.  

Many of you will not have seen this before. I think some of you may have seen it before, 
but either way, regardless of whether you've seen it before, let's keep going. Just for those 
of you that have seen it before, I should say eventually, we'll actually show that this 
algorithm is a special case of a much broader class of algorithms. But let's keep going. 
We'll get there eventually.  

So I'm going to talk about a couple of different algorithms for performing that 
minimization over theta of J of theta. The first algorithm I'm going to talk about is a 
search algorithm, where the basic idea is we'll start with some value of my parameter 
vector theta. Maybe initialize my parameter vector theta to be the vector of all zeros, and 
excuse me, have to correct that. I sort of write zero with an arrow on top to denote the 
vector of all zeros.  

And then I'm going to keep changing my parameter vector theta to reduce J of theta a 
little bit, until we hopefully end up at the minimum with respect to theta of J of theta. So 
switch the laptops please, and lower the big screen. So let me go ahead and show you an 
animation of this first algorithm for minimizing J of theta, which is an algorithm called 
grading and descent.  

So here's the idea. You see on the display a plot and the axes, the horizontal axes are 
theta zero and theta one. That's usually – minimize J of theta, which is represented by the 
height of this plot. So the surface represents the function J of theta and the axes of this 
function, or the inputs of this function are the parameters theta zero and theta one, written 
down here below.  



So here's the gradient descent algorithm. I'm going to choose some initial point. It could 
be vector of all zeros or some randomly chosen point. Let's say we start from that point 
denoted by the star, by the cross, and now I want you to imagine that this display actually 
shows a 3D landscape. Imagine you're all in a hilly park or something, and this is the 3D 
shape of, like, a hill in some park.  

So imagine you're actually standing physically at the position of that star, of that cross, 
and imagine you can stand on that hill, right, and look all 360 degrees around you and 
ask, if I were to take a small step, what would allow me to go downhill the most? Okay, 
just imagine that this is physically a hill and you're standing there, and would look around 
ask, "If I take a small step, what is the direction of steepest descent, that would take me 
downhill as quickly as possible?"  

So the gradient descent algorithm does exactly that. I'm going to take a small step in this 
direction of steepest descent, or the direction that the gradient turns out to be. And then 
you take a small step and you end up at a new point shown there, and it would keep 
going. You're now at a new point on this hill, and again you're going to look around you, 
look all 360 degrees around you, and ask, "What is the direction that would take me 
downhill as quickly as possible?"  

And we want to go downhill as quickly as possible, because we want to find the 
minimum of J of theta. So you do that again. You can take another step, okay, and you 
sort of keep going until you end up at a local minimum of this function, J of theta. One 
property of gradient descent is that where you end up – in this case, we ended up at this 
point on the lower left hand corner of this plot.  

But let's try running gradient descent again from a different position. So that was where I 
started gradient descent just now. Let's rerun gradient descent, but using a slightly 
different initial starting point, so a point slightly further up and further to the right. So it 
turns out if you run gradient descent from that point, then if you take a steepest descent 
direction again, that's your first step.  

And if you keep going, it turns out that with a slightly different initial starting point, you 
can actually end up at a completely different local optimum. Okay, so this is a property of 
gradient descent, and we'll come back to it in a second. So be aware that gradient descent 
can sometimes depend on where you initialize your parameters, theta zero and theta one.  

Switch back to the chalkboard, please. Let's go ahead and work out the math of the 
gradient descent algorithm. Then we'll come back and revisit this issue of local optimum. 
So here's the gradient descent algorithm.  

We're going to take a repeatedly take a step in the direction of steepest descent, and it 
turns out that you can write that as [inaudible], which is we're going to update the 
parameters theta as theta I minus the partial derivative with respect to theta I, J of Theta. 
Okay, so this is how we're going to update the I parameter, theta I, how we're going to 
update Theta I on each iteration of gradient descent.  



Just a point of notation, I use this colon equals notation to denote setting a variable on the 
left hand side equal to the variable on the right hand side. All right, so if I write A colon 
equals B, then what I'm saying is, this is part of a computer program, or this is part of an 
algorithm where we take the value of B, the value on the right hand side, and use that to 
overwrite the value on the left hand side.  

In contrast, if I write A equals B, then this is an assertion of truth. I'm claiming that the 
value of A is equal to the value of B, whereas this is computer operation where we 
overwrite the value of A. If I write A equals B then I'm asserting that the values of A and 
B are equal.  

So let's see, this algorithm sort of makes sense – well, actually let's just move on. Let's 
just go ahead and take this algorithm and apply it to our problem. And to work out 
gradient descent, let's take gradient descent and just apply it to our problem, and this 
being the first somewhat mathematical lecture, I'm going to step through derivations 
much more slowly and carefully than I will later in this quarter. We'll work through the 
steps of these in much more detail than I will later in this quarter.  

Let's actually work out what this gradient descent rule is. So – and I'll do this just for the 
case of, if we had only one training example. Okay, so in this case we need to work out 
what the partial derivative with respect to the parameter theta I of J of theta. If we have 
only one training example then J of theta is going to be one-half of script theta, of X 
minus Y, script. So if you have only one training example comprising one pair, X, Y, 
then this is what J of theta is going to be.  

And so taking derivatives, you have one-half something squared. So the two comes 
down. So you have two times one-half times theta of X minus Y, and then by the 
[inaudible] derivatives, we also must apply this by the derivative of what's inside the 
square. Right, the two and the one-half cancel. So this leaves [inaudible] times that, theta 
zero, X zero plus [inaudible].  

Okay, and if you look inside this sum, we're taking the partial derivative of this sum with 
respect to the parameter theta I. But all the terms in the sum, except for one, do not 
depend on theta I. In this sum, the only term that depends on theta I will be some term 
here of theta I, X I. And so we take the partial derivative with respect to theta I, X I – take 
the partial derivative with respect to theta I of this term theta I, X I, and so you get that 
times X I.  

Okay, and so this gives us our learning rule, right, of theta I gets updated as theta I minus 
alpha times that. Okay, and this Greek alphabet alpha here is a parameter of the algorithm 
called the learning rate, and this parameter alpha controls how large a step you take. So 
you're standing on the hill. You decided what direction to take a step in, and so this 
parameter alpha controls how aggressive – how large a step you take in this direction of 
steepest descent.  



And so if you – and this is a parameter of the algorithm that's often set by hand. If you 
choose alpha to be too small than your steepest descent algorithm will take very tiny 
steps and take a long time to converge. If alpha is too large then the steepest descent may 
actually end up overshooting the minimum, if you're taking too aggressive a step.  

Yeah?  

Student:[Inaudible].  

Instructor (Andrew Ng):Say that again?  

Student:Isn't there a one over two missing somewhere?  

Instructor (Andrew Ng):Is there a one-half missing?  

Student:I was [inaudible].  

Instructor (Andrew Ng):Thanks. I do make lots of errors in that. Any questions about 
this?  

All right, so let me just wrap this property into an algorithm. So over there I derived the 
algorithm where you have just one training example, more generally for M training 
examples, gradient descent becomes the following. We're going to repeat until 
convergence the following step.  

Okay, theta I gets updated as theta I and I'm just writing out the appropriate equation for 
M examples rather than one example. Theta I gets updated. Theta I minus alpha times the 
sum from I equals one to M. Okay, and I won't bother to show it, but you can go home 
and sort of verify for yourself that this summation here, this is indeed the partial 
derivative with respect to theta I of J of theta, where if you use the original definition of J 
of theta for when you have M training examples.  

Okay, so I'm just going to show – switch back to the laptop display. I'm going to show 
you what this looks like when you run the algorithm. So it turns out that for the specific 
problem of linear regression, or ordinary release squares, which is what we're doing 
today, the function J of theta actually does not look like this nasty one that I'll show you 
just now with a multiple local optima.  

In particular, it turns out for ordinary release squares, the function J of theta is – it's just a 
quadratic function. And so we'll always have a nice bow shape, like what you see up 
here, and only have one global minimum with no other local optima.  

So when you run gradient descent, here are actually the contours of the function J. So the 
contours of a bow shaped function like that are going to be ellipses, and if you run 
gradient descent on this algorithm, here's what you might get. Let's see, so I initialize the 



parameters. So let's say randomly at the position of that cross over there, right, that cross 
on the upper right.  

And so after one iteration of gradient descent, as you change the space of parameters, so 
if that's the result of one step of gradient descent, two steps, three steps, four steps, five 
steps, and so on, and it, you know, converges easily, rapidly to the global minimum of 
this function J of theta.  

Okay, and this is a property of [inaudible] regression with a linear hypothesis cost. The 
function, J of theta has no local optima. Yes, question?  

Student:Is the alpha changing every time? Because the step is not [inaudible].  

Instructor (Andrew Ng):So it turns out that – yes, so it turns out – this was done with a 
– this is with a fake value of alpha, and one of the properties of gradient descent is that as 
you approach the local minimum, it actually takes smaller and smaller steps so they'll 
converge. And the reason is, the update is – you update theta by subtracting from alpha 
times the gradient. And so as you approach the local minimum, the gradient also goes to 
zero.  

As you approach the local minimum, at the local minimum the gradient is zero, and as 
you approach the local minimum, the gradient also gets smaller and smaller. And so 
gradient descent will automatically take smaller and smaller steps as you approach the 
local minimum. Make sense?  

And here's the same plot – here's actually a plot of the housing prices data. So here, lets 
you initialize the parameters to the vector of all zeros, and so this blue line at the bottom 
shows the hypothesis with the parameters of initialization. So initially theta zero and theta 
one are both zero, and so your hypothesis predicts that all prices are equal to zero.  

After one iteration of gradient descent, that's the blue line you get. After two iterations, 
three, four, five, and after a few more iterations, excuse me, it converges, and you've now 
found the least square fit for the data. Okay, let's switch back to the chalkboard. Are there 
questions about this? Yeah?  

Student:[Inaudible] iteration, do we mean that we run each sample – all the sample cases 
[inaudible] the new values?  

Instructor (Andrew Ng):Yes, right.  

Student:And converged means that the value will be the same [inaudible] roughly the 
same?  

Instructor (Andrew Ng):Yeah, so this is sort of a question of how do you test the 
convergence. And there's different ways of testing for convergence. One is you can look 



at two different iterations and see if theta has changed a lot, and if theta hasn't changed 
much within two iterations, you may say it's sort of more or less converged.  

Something that's done maybe slightly more often is look at the value of J of theta, and if J 
of theta – if the quantity you're trying to minimize is not changing much anymore, then 
you might be inclined to believe it's converged. So these are sort of standard heuristics, or 
standard rules of thumb that are often used to decide if gradient descent has converged.  

Yeah?  

Student:I may have missed something, but especially in [inaudible] descent. So one 
feature [inaudible] curve and can either go this way or that way. But the math at incline 
[inaudible] where that comes in. When do you choose whether you go left, whether 
you're going this way or that way?  

Instructor (Andrew Ng):I see. It just turns out that – so the question is, how is gradient 
descent looking 360 around you and choosing the direction of steepest descent. So it 
actually turns out – I'm not sure I'll answer the second part, but it turns out that if you 
stand on the hill and if you – it turns out that when you compute the gradient of the 
function, when you compute the derivative of the function, then it just turns out that that 
is indeed the direction of steepest descent.  

By the way, I just want to point out, you would never want to go in the opposite direction 
because the opposite direction would actually be the direction of steepest ascent, right. So 
as it turns out – maybe the TAs can talk a bit more about this at the section if there's 
interest. It turns out, when you take the derivative of a function, the derivative of a 
function sort of turns out to just give you the direction of steepest descent.  

And so you don't explicitly look all 360 degrees around you. You sort of just compute the 
derivative and that turns out to be the direction of steepest descent. Yeah, maybe the TAs 
can talk a bit more about this on Friday.  

Okay, let's see, so let me go ahead and give this algorithm a specific name. So this 
algorithm here is actually called batch gradient descent, and the term batch isn't a great 
term, but the term batch refers to the fact that on every step of gradient descent you're 
going to look at your entire training set. You're going to perform a sum over your M 
training examples.  

So [inaudible] descent often works very well. I use it very often, and it turns out that 
sometimes if you have a really, really large training set, imagine that instead of having 47 
houses from Portland, Oregon in our training set, if you had, say, the U.S. Census 
Database or something, with U.S. census size databases you often have hundreds of 
thousands or millions of training examples.  

So if M is a few million then if you're running batch rate and descent, this means that to 
perform every step of gradient descent you need to perform a sum from J equals one to a 



million. That's sort of a lot of training examples where your computer programs have to 
look at, before you can even take one step downhill on the function J of theta.  

So it turns out that when you have very large training sets, you should write down an 
alternative algorithm that is called [inaudible] gradient descent. Sometimes I'll also call it 
incremental gradient descent, but the algorithm is as follows. Again, it will repeat until 
convergence and will iterate for J equals one to M, and will perform one of these sort of 
gradient descent updates using just the J training example.  

Oh, and as usual, this is really – you update all the parameters data runs. You perform 
this update for all values of I. For I indexes and the parameter vectors, you just perform 
this update, all of your parameters simultaneously. And the advantage of this algorithm is 
that in order to start learning, in order to start modifying the parameters, you only need to 
look at your first training examples.  

You should look at your first training example and perform an update using the derivative 
of the error with respect to just your first training example, and then you look at your 
second training example and perform another update. And you sort of keep adapting your 
parameters much more quickly without needing to scan over your entire U.S. Census 
database before you can even start adapting parameters.  

So let's see, for launch data sets, so constantly gradient descent is often much faster, and 
what happens is that constant gradient descent is that it won't actually converge to the 
global minimum exactly, but if these are the contours of your function, then after you run 
the constant gradient descent, you sort of tend to wander around.  

And you may actually end up going uphill occasionally, but your parameters will sort of 
tender to wander to the region closest to the global minimum, but sort of keep wandering 
around a little bit near the region of the global [inaudible]. And often that's just fine to 
have a parameter that wanders around a little bit the global minimum. And in practice, 
this often works much faster than back gradient descent, especially if you have a large 
training set.  

Okay, I'm going to clean a couple of boards. While I do that, why don't you take a look at 
the equations, and after I'm done cleaning the boards, I'll ask what questions you have.  

Okay, so what questions do you have about all of this?  

Student:[Inaudible] is it true – are you just sort of rearranging the order that you do the 
computation? So do you just use the first training example and update all of the theta Is 
and then step, and then update with the second training example, and update all the theta 
Is, and then step? And is that why you get sort of this really – ?  

Instructor (Andrew Ng):Let's see, right. So I'm going to look at my first training 
example and then I'm going to take a step, and then I'm going to perform the second 



gradient descent updates using my new parameter vector that has already been modified 
using my first training example. And then I keep going.  

Make sense? Yeah?  

Student:So in each update of all the theta Is, you're only using –  

Instructor (Andrew Ng):One training example.  

Student:One training example.  

Student:[Inaudible]?  

Instructor (Andrew Ng):Let's see, it's definitely a [inaudible]. I believe this theory that 
sort of supports that as well. Yeah, the theory that supports that, the [inaudible] of 
theorem is, I don't remember.  

Okay, cool. So in what I've done so far, I've talked about an iterative algorithm for 
performing this minimization in terms of J of theta. And it turns out that there's another 
way for this specific problem of least squares regression, of ordinary least squares. It 
turns out there's another way to perform this minimization of J of theta that allows you to 
solve for the parameters theta in close form, without needing to run an iterative 
algorithm.  

And I know some of you may have seen some of what I'm about to do before, in like an 
undergraduate linear algebra course, and the way it's typically done requires [inaudible] 
projections, or taking lots of derivatives and writing lots of algebra. What I'd like to do is 
show you a way to derive the closed form solution of theta in just a few lines of algebra.  

But to do that, I'll need to introduce a new notation for matrix derivatives, and it turns out 
that, sort of, the notation I'm about to define here just in my own personal work has 
turned out to be one of the most useful things that I actually use all the time, to have a 
notation of how to take derivatives with respect to matrixes, so that you can solve for the 
minimum of J of theta with, like, a few lines of algebra rather than writing out pages and 
pages of matrices and derivatives.  

So then we're going to define this new notation first and then we'll go ahead and work out 
the minimization. Given a function J, since J is a function of a vector of parameters theta, 
right, I'm going to define the derivative of the gradient of J with respect to theta, as self of 
vector. Okay, and so this is going to be an N plus one dimensional vector. Theta is an n 
plus one dimensional vector with indices ranging from zero to N. And so I'm going to 
define this derivative to be equal to that.  

Okay, and so we can actually rewrite the gradient descent algorithm as follows. This is 
batch gradient descent, and we write gradient descent as updating the parameter vector 



theta – notice there's no subscript I now – updating the parameter vector theta as the 
previous parameter minus alpha times the gradient.  

Okay, and so in this equation all of these quantities, theta, and this gradient vector, all of 
these are n plus one dimensional vectors. I was using the boards out of order, wasn't I? So 
more generally, if you have a function F that maps from the space of matrices A, that 
maps from, say, the space of N by N matrices to the space of real numbers. So if you 
have a function, F of A, where A is an N by N matrix.  

So this function is matched from matrices to real numbers, the function that takes this 
input to matrix. Let me define the derivative with respect to F of the matrix A. Now, I'm 
just taking the gradient of F with respect to its input, which is the matrix. I'm going to 
define this itself to be a matrix.  

Okay, so the derivative of F with respect to A is itself a matrix, and the matrix contains 
all the partial derivatives of F with respect to the elements of A. One more definition is if 
A is a square matrix, so if A is an n by n matrix, number of rows equals number of 
columns, let me define the trace of A to be equal to the sum of A's diagonal elements. So 
this is just sum over I of A, I, I.  

For those of you that haven't seen this sort of operator notation before, you can think of 
trace of A as the trace operator applied to the square matrix A, but it's more commonly 
written without the parentheses. So I usually write trace of A like this, and this just means 
the sum of diagonal elements.  

So here are some facts about the trace operator and about derivatives, and I'm just going 
to write these without proof. You can also have the TAs prove some of them in the 
discussion section, or you can actually go home and verify the proofs of all of these.  

It turns out that given two matrices, A and B, the trace of the matrix A times B is equal to 
the trace of B, A. Okay, I'm not going to prove this, but you should be able to go home 
and prove this yourself without too much difficulty. And similarly, the trace of a product 
of three matrices, so if you can take the matrix at the end and cyclically permeate it to the 
front.  

So trace of A times B, times C, is equal to the trace of C, A, B. So take the matrix C at 
the back and move it to the front, and this is also equal to the trace of B, C. Take the 
matrix B and move it to the front.  

Okay, also, suppose you have a function F of A which is defined as a trace of A, B. Okay, 
so this is, right, the trace is a real number. So the trace of A, B is a function that takes this 
input of matrix A and output a real number. So then the derivative with respect to the 
matrix A of this function of trace A, B, is going to be B transposed. And this is just 
another fact that you can prove by yourself by going back and referring to the definitions 
of traces and matrix derivatives. I'm not going to prove it. You should work it out.  



Okay, and lastly a couple of easy ones. The trace of A is equal to the trace of A 
transposed because the trace is just the sum of diagonal elements. And so if you transpose 
the matrix, the diagonal, then there's no change. And if lower case A is a real number, 
then the trace of a real number is just itself. So think of a real number as a one by one 
matrix. So the trace of a one by one matrix is just whatever that real number is.  

And lastly, this is a somewhat tricky one. The derivative with respect to the matrix A of 
the trace of A, B, A, transpose C is equal to C, A, B plus C transposed A, B transposed. 
And I won't prove that either. This is sort of just algebra. Work it out yourself.  

Okay, and so the key facts I'm going to use again about traces and matrix derivatives, I'll 
use five. Ten minutes. Okay, so armed with these things I'm going to figure out – let's try 
to come up with a quick derivation for how to minimize J of theta as a function of theta in 
closed form, and without needing to use an iterative algorithm.  

So work this out. Let me define the matrix X. This is called the design matrix. To be a 
matrix containing all the inputs from my training set. So X 1 was the vector of inputs to 
the vector of features for my first training example. So I'm going to set X 1 to be the first 
row of this matrix X, set my second training example is in place to be the second 
variable, and so on.  

And I have M training examples, and so that's going to be my design matrix X. Okay, this 
is defined as matrix capital X as follows, and so now, let me take this matrix X and 
multiply it by my parameter vector theta. This derivation will just take two or three sets. 
So X times theta – remember how matrix vector multiplication goes. You take this vector 
and you multiply it by each of the rows of the matrix.  

So X times theta is just going to be X 1 transposed theta, dot, dot, dot, down to X M, 
transposed theta. And this is, of course, just the predictions of your hypothesis on each of 
your M training examples. Then we also defined the Y vector to be the vector of all the 
target values Y1 through YM in my training set. Okay, so Y vector is an M dimensional 
vector.  

So X theta minus Y contained the math from the previous board, this is going to be, right, 
and now, X theta minus Y, this is a vector. This is an M dimensional vector in M training 
examples, and so I'm actually going to take this vector and take this inner product with 
itself.  

Okay, so we call that if Z is a vector than Z transpose Z is just sum over I, ZI squared. 
Right, that's how you take the inner product of a vector with a sum. So you want to take 
this vector, X theta minus Y, and take the inner product of this vector with itself, and so 
that gives me sum from I equals one to M, H, F, X, I, minus Y squared. Okay, since it's 
just the sum of the squares of the elements of this vector.  

And put a half there for the emphasis. This is our previous definition of J of theta. Okay, 
yeah?  



Student:[Inaudible]?  

Instructor (Andrew Ng):Yeah, I threw a lot of notations at you today. So M is the 
number of training examples and the number of training examples runs from one through 
M, and then is the feature vector that runs from zero through N. Does that make sense?  

So this is the sum from one through M. It's sort of theta transpose X that's equal to sum 
from J equals zero through N of theta J, X, J. Does that make sense? It's the feature 
vectors that index from zero through N where X, zero is equal to one, whereas the 
training example is actually indexed from one through M.  

So let me clean a few more boards and take another look at this, make sure it all makes 
sense. Okay, yeah?  

Student:[Inaudible] the Y inside the parentheses, shouldn't that be [inaudible]?  

Instructor (Andrew Ng):Oh, yes, thank you. Oh is that what you meant? Yes, thank 
you. Great, I training example. Anything else? Cool. So we're actually nearly done with 
this derivation. We would like to minimize J of theta with respect to theta and we've 
written J of theta fairly compactly using this matrix vector notation.  

So in order to minimize J of theta with respect to theta, what we're going to do is take the 
derivative with respect to theta of J of theta, and set this to zero, and solve for theta. 
Okay, so we have derivative with respect to theta of that is equal to – I should mention 
there will be some steps here that I'm just going to do fairly quickly without proof.  

So is it really true that the derivative of half of that is half of the derivative, and I already 
exchanged the derivative and the one-half. In terms of the answers, yes, but later on you 
should go home and look through the lecture notes and make sure you understand and 
believe why every step is correct. I'm going to do things relatively quickly here and you 
can work through every step yourself more slowly by referring to the lecture notes.  

Okay, so that's equal to – I'm going to expand now this quadratic function. So this is 
going to be, okay, and this is just sort of taking a quadratic function and expanding it out 
by multiplying the [inaudible]. And again, work through the steps later yourself if you're 
not quite sure how I did that.  

So this thing, this vector, vector product, right, this quantity here, this is just J of theta 
and so it's just a real number, and the trace of a real number is just itself.  

Student:[Inaudible].  

Instructor (Andrew Ng):Oh, thanks, Dan. Cool, great. So this quantity in parentheses, 
this is J of theta and it's just a real number. And so the trace of a real number is just the 
same real number. And so you can sort of take a trace operator without changing 
anything. And this is equal to one-half derivative with respect to theta of the trace of – by 



the second permutation property of trace. You can take this theta at the end and move it 
to the front.  

So this is going to be trace of theta times theta transposed, X transpose X minus 
derivative with respect to theta of the trace of – I'm going to take that and bring it to the – 
oh, sorry. Actually, this thing here is also a real number and the transpose of a real 
number is just itself. Right, so take the transpose of a real number without changing 
anything.  

So let me go ahead and just take the transpose of this. A real number transposed itself is 
just the same real number. So this is minus the trace of, taking the transpose of that. 
Here's Y transpose X theta, then minus [inaudible] theta. Okay, and this last quantity, Y 
transpose Y. It doesn't actually depend on theta. So when I take the derivative of this last 
term with respect to theta, it's just zero. So just drop that term.  

And lastly, well, the derivative with respect to theta of the trace of theta, theta transposed, 
X transpose X. I'm going to use one of the facts I wrote down earlier without proof, and 
I'm going to let this be A. There's an identity matrix there, so this is A, B, A transpose C, 
and using a rule that I've written down previously that you'll find in lecture notes, because 
it's still on one of the boards that you had previously, this is just equal to X transpose X 
theta.  

So this is C, A, B, which is sort of just the identity matrix, which you can ignore, plus X 
transpose X theta where this is now C transpose C, again times the identity which we're 
going to ignore, times B transposed. And the matrix X transpose X is the metric, so C 
transpose is equal to C.  

Similarly, the derivative with respect to theta of the trace of Y transpose theta X, this is 
the derivative with respect to matrix A of the trace of B, A and this is just X transpose Y. 
This is just B transposed, again, by one of the rules that I wrote down earlier. And so if 
you plug this back in, we find, therefore, that the derivative – wow, this board's really 
bad.  

So if you plug this back into our formula for the derivative of J, you find that the 
derivative with respect to theta of J of theta is equal to one-half X transpose theta, plus X 
transpose X theta, minus X transpose Y, minus X transpose Y, which is just X transpose 
X theta minus X [inaudible].  

Okay, so we set this to zero and we get that, which is called a normal equation, and we 
can now solve this equation for theta in closed form. That's X transpose X theta, inverse 
times X transpose Y. And so this gives us a way for solving for the least square fit to the 
parameters in closed form, without needing to use an [inaudible] descent.  

Okay, and using this matrix vector notation, I think, I don't know, I think we did this 
whole thing in about ten minutes, which we couldn't have if I was writing out reams of 



algebra. Okay, some of you look a little bit dazed, but this is our first learning hour. 
Aren't you excited? Any quick questions about this before we close for today?  

Student:[Inaudible].  

Instructor (Andrew Ng):Say that again.  

Student:What you derived, wasn't that just [inaudible] of X?  

Instructor (Andrew Ng):What inverse? 

Student:Pseudo inverse.  

Instructor (Andrew Ng):Pseudo inverse?  

Student:Pseudo inverse.  

Instructor (Andrew Ng):Yeah, I turns out that in cases, if X transpose X is not 
invertible, than you use the pseudo inverse minimized to solve this. But it turns out X 
transpose X is not invertible. That usually means your features were dependent. It usually 
means you did something like repeat the same feature twice in your training set. So if this 
is not invertible, it turns out the minimum is obtained by the pseudo inverses of the 
inverse.  

If you don't know what I just said, don't worry about it. It usually won't be a problem. 
Anything else?  

Student:On the second board [inaudible]?  

Instructor (Andrew Ng):Let me take that off. We're running over. Let's close for today 
and if they're other questions, I'll take them after.  

[End of Audio]  

Duration: 79 minutes 


