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1 Basic Concepts and Notation

Linear algebra provides a way of compactly representing and operating on sets of linear
equations. For example, consider the following system of equations:

4[E1 - 51’2 = —13
—2$1 + 31’2 = 9.

This is two equations and two variables, so as you know from high school algebra, you
can find a unique solution for z; and x5 (unless the equations are somehow degenerate, for
example if the second equation is simply a multiple of the first, but in the case above there
is in fact a unique solution). In matrix notation, we can write the system more compactly

as:
Arx =0
) 4 -5 13
wnaz] 4 2] 0= 8]

As we will see shortly, there are many advantages (including the obvious space savings)
to analyzing linear equations in this form.

1.1 Basic Notation

We use the following notation:

e By A € R™" we denote a matrix with m rows and n columns, where the entries of A
are real numbers.

e By z € R", we denote a vector with n entries. Usually a vector x will denote a column
vector — i.e., a matrix with n rows and 1 column. If we want to explicitly represent
a row vector — a matrix with 1 row and n columns — we typically write 7 (here
2T denotes the transpose of z, which we will define shortly).



e The ith element of a vector x is denoted z;:

T
X2

Ty

e We use the notation a;; (or A;;, A; ;, etc) to denote the entry of A in the ith row and
7th column:

a1 Q2 - Qip

Q21 Q22 -+ Q2
A=

Am1 Am2 - Amn

e We denote the jth column of A by a; or A. ;:

e Note that these definitions are ambiguous (for example, the a; and a! in the previous
two definitions are not the same vector). Usually the meaning of the notation should
be obvious from its use.

2 Matrix Multiplication

The product of two matrices A € R™*™ and B € R™*? is the matrix
C=AB e R™?,
where

Cij — Z A’LkBk‘j
k=1

Note that in order for the matrix product to exist, the number of columns in A must equal
the number of rows in B. There are many ways of looking at matrix multiplication, and
we’ll start by examining a few special cases.



2.1 Vector-Vector Products

Given two vectors z,y € R", the quantity 27y, sometimes called the inner product or dot
product of the vectors, is a real number given by

:L‘Ty eR = Zn:mzyz

i=1

Note that it is always the case that 27y = y7x.

Given vectors z € R™, y € R™ (they no longer have to be the same size), zy’ is called
the outer product of the vectors. It is a matrix whose entries are given by (zy?);; = zy;,
ie.,

T1Yr  T1Y2 - T1Yn
oy € R™ = 932.y1 372.?42 e 932.yn
ITmlY1r Tm¥Y2 - TmYn

2.2 Matrix-Vector Products

Given a matrix A € R™*" and a vector x € R", their product is a vector y = Az € R™.

There are a couple ways of looking at matrix-vector multiplication, and we will look at them
both.
If we write A by rows, then we can express Ax as,

T T

— al — alx
T T
— a, — a,,T

In other words, the ith entry of y is equal to the inner product of the ith row of A and z,
v = alw.
Alternatively, lets write A in column form. In this case we see that,

g
| T
y=1a Gz --- Gy : = ap |1+ | ay | To+...+ | Ay | Ty -

n

In other words, y is a linear combination of the columns of A, where the coefficients of
the linear combination are given by the entries of x.

So far we have been multiplying on the right by a column vector, but it is also possible
to multiply on the left by a row vector. This is written, y* = 27 A for A € R™", x € R™,
and y € R™. As before, we can express y! in two obvious ways, depending on whether we



express A in terms on its rows or columns. In the first case we express A in terms of its
columns, which gives

Y =2 | ay as -+ a, :[xTal xlay --- xTan}

which demonstrates that the ith entry of y” is equal to the inner product of  and the ith
column of A.

Finally, expressing A in terms of rows we get the final representation of the vector-matrix
product,

y'o= (@ o o an ]

= xl[f alT 7]_,_932[7 ag —}+...—|—$n[— ag —}

so we see that y” is a linear combination of the rows of A, where the coefficients for the
linear combination are given by the entries of x.

2.3 Matrix-Matrix Products

Armed with this knowledge, we can now look at four different (but, of course, equivalent)
ways of viewing the matrix-matrix multiplication C' = AB as defined at the beginning of this
section. First we can view matrix-matrix multiplication as a set of vector-vector products.
The most obvious viewpoint, which follows immediately from the definition, is that the
1,7 entry of C' is equal to the inner product of the ¢th row of A and the jth row of B.
Symbolically, this looks like the following,

T T T T
— a5 — asby axby -+ adb
2 201 G302 2 9p
C=AB = ) by by -+ b, | = , ] ]
T | | Ty T T
— a, — a,,bp a, by --- a,b,

Remember that since A € R™*" and B € R"*?, q; € R" and b; € R", so these inner products
all make sense. This is the most “natural” representation when we represent A by rows and
B by columns. Alternatively, we can represent A by columns, and B by rows, which leads
to the interpretation of AB as a sum of outer products. Symbolically,

_ b1T _
| A R I
C=AB = ay Qas -+ Qp . :Zazb? .
| R =



Put another way, AB is equal to the sum, over all 7, of the outer product of the ith column
of A and the ith row of B. Since, in this case, a; € R™ and b; € RP, the dimension of the
outer product a;b! is m X p, which coincides with the dimension of C.

Second, we can also view matrix-matrix multiplication as a set of matrix-vector products.
Specifically, if we represent B by columns, we can view the columns of C' as matrix-vector
products between A and the columns of B. Symbolically,

| | I |
C=AB=A|b by -+ b, | =| Aby Aby --- Ab,

Here the ith column of C' is given by the matrix-vector product with the vector on the right,
¢; = Ab;. These matrix-vector products can in turn be interpreted using both viewpoints
given in the previous subsection. Finally, we have the analogous viewpoint, where we repre-
sent A by rows, and view the rows of C' as the matrix-vector product between the rows of A
and C'. Symbolically,

al — — af'B —
— a3 — — aiB —
— al — — alB —

Here the ¢th row of C is given by the matrix-vector product with the vector on the left,
' =al'B.

It may seem like overkill to dissect matrix multiplication to such a large degree, especially
when all these viewpoints follow immediately from the initial definition we gave (in about a
line of math) at the beginning of this section. However, virtually all of linear algebra deals
with matrix multiplications of some kind, and it is worthwhile to spend some time trying to
develop an intuitive understanding of the viewpoints presented here.

In addition to this, it is useful to know a few basic properties of matrix multiplication at

a higher level:
e Matrix multiplication is associative: (AB)C = A(BC).
e Matrix multiplication is distributive: A(B+ C) = AB + AC.

e Matrix multiplication is, in general, not commutative; that is, it can be the case that
AB # BA.

3 Operations and Properties

In this section we present several operations and properties of matrices and vectors. Hope-
fully a great deal of this will be review for you, so the notes can just serve as a reference for
these topics.



3.1 The Identity Matrix and Diagonal Matrices

The identity matrixz, denoted I € R™" is a square matrix with ones on the diagonal and
zeros everywhere else. That is,
1 1=y
I;; = o
‘ { 0 i#7

It has the property that for all A € R™*"™
Al =A=1A

where the size of I is determined by the dimensions of A so that matrix multiplication is
possible.

A diagonal matriz is a matrix where all non-diagonal elements are 0. This is typically
denoted D = diag(dy, ds,...,d,), with

C{doi=j
D”‘{o Y

Clearly, I = diag(1,1,...,1).

3.2 The Transpose

The transpose of a matrix results from “flipping” the rows and columns. Given a matrix
A € R™*" is transpose, written A7, is defined as

AT € Rnxm) (AT)ZJ - Aﬂ .

We have in fact already been using the transpose when describing row vectors, since the
transpose of a column vector is naturally a row vector.
The following properties of transposes are easily verified:

° (AT)T =A
o (AB)T = BTAT
o (A+B)T = AT + BT

3.3 Symmetric Matrices

A square matrix A € R™*" is symmetric if A = AT, It is anti-symmetric if A = —AT.
It is easy to show that for any matrix A € R™", the matrix A + AT is symmetric and the
matrix A — AT is anti-symmetric. From this it follows that any square matrix A € R™" can
be represented as a sum of a symmetric matrix and an anti-symmetric matrix, since

A= (AT AT) 4 (A A7)
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and the first matrix on the right is symmetric, while the second is anti-symmetric. It turns out
that symmetric matrices occur a great deal in practice, and they have many nice properties
which we will look at shortly. It is common to denote the set of all symmetric matrices of
size n as S", so that A € S” means that A is a symmetric n X n matrix;

3.4 The Trace

The trace of a square matrix A € R™*", denoted tr(A) (or just trA if the parentheses are
obviously implied), is the sum of diagonal elements in the matrix:

=1

As described in the CS229 lecture notes, the trace has the following properties (included
here for the sake of completeness):

o For A €¢ R™" trA = trA”.

e For A,Be R tr(A+ B) =trA+ trB.

o For Ac R™" t e R, tr(tA) =t trA.

For A, B such that AB is square, trAB = trBA.

For A, B, C such that ABC is square, trABC = trBCA = trC AB, and so on for the
product of more matrices.

3.5 Norms

A norm of a vector ||x|| is informally measure of the “length” of the vector. For example,
we have the commonly-used Euclidean or /5 norm,

Note that ||z||3 = 27 z.
More formally, a norm is any function f : R®™ — R that satisfies 4 properties:

1. For all x € R", f(x) > 0 (non-negativity).
2. f(x) =0 if and only if 2 = 0 (definiteness).
3. Forall z € R", t € R, f(tx) = |t|f(z) (homogeneity).

4. For all z,y € R", f(z +y) < f(z) + f(y) (triangle inequality).

7



Other examples of norms are the ¢; norm,

n

Izl =l

=1

and the /., norm,
|2]| o = max;|z;].

In fact, all three norms presented so far are examples of the family of ¢, norms, which are
parameterized by a real number p > 1, and defined as

n 1/p
x|y = (Z\l‘d”) :

i=1

Norms can also be defined for matrices, such as the Frobenius norm,

IAllF =

 _Jo(ATA).

Many other norms exist, but they are beyond the scope of this review.

3.6 Linear Independence and Rank

A set of vectors {x1,xs,...2,} is said to be (linearly) independent if no vector can be
represented as a linear combination of the remaining vectors. Conversely, a vector which
can be represented as a linear combination of the remaining vectors is said to be (linearly)
dependent. For example, if
n—1
Tn = Z QT4
i=1

for some {ay,...,a,_1} then z, is dependent on {z1,...,x,_1}; otherwise, it is independent
of {Jfl, Ce ,In_l}.

The column rank of a matrix A is the largest number of columns of A that constitute
linearly independent set. This is often referred to simply as the number of linearly indepen-
dent columns, but this terminology is a little sloppy, since it is possible that any vector in
some set {xy,...x,} can be expressed as a linear combination of the remaining vectors, even
though some subset of the vectors might be independent. In the same way, the row rank
is the largest number of rows of A that constitute a linearly independent set.

It is a basic fact of linear algebra, that for any matrix A, columnrank(A) = rowrank(A),
and so this quantity is simply refereed to as the rank of A, denoted as rank(A). The
following are some basic properties of the rank:

e For A € R™" rank(A) < min(m,n). If rank(A) = min(m,n), then A is said to be
full rank.



e For A € R™" rank(A) = rank(AT).
e For A € R™" B e R"P rank(AB) < min(rank(A), rank(B)).
e For A, B € R™*" rank(A + B) < rank(A) + rank(B).

3.7 The Inverse

The inverse of a square matrix A € R™ " is denoted A~!, and is the unique matrix such
that
ATA=T=AA""

It turns out that A~! may not exist for some matrices A; we say A is invertible or non-
singular if A™! exists and mon-invertible or singular otherwise. One condition for
invertibility we already know: it is possible to show that A~! exists if and only if A is full
rank. We will soon see that there are many alternative sufficient and necessary conditions, in
addition to full rank, for invertibility. The following are properties of the inverse; all assume
that A, B € R™*™ are non-singular:

o (A=A

e If Az = b, we can multiply by A~! on both sides to obtain z = A~'b. This demonstrates
the inverse with respect to the original system of linear equalities we began this review
with.

o (AB)' = B~1A-!

o (A7H)T = (AT)~!. For this reason this matrix is often denoted A~7.

3.8 Orthogonal Matrices

Two vectors z,y € R™ are orthogonal if 27y = 0. A vector x € R" is normalized if
|lz]]2 = 1. A square matrix U € R™" is orthogonal (note the different meanings when
talking about vectors versus matrices) if all its columns are orthogonal to each other and are
normalized (the columns are then referred to as being orthonormal).

It follows immediately from the definition of orthogonality and normality that

U'v =1=U0U".

In other words, the inverse of an orthogonal matrix is its transpose. Note that if U is not
square — i.e., U € R™" n < m — but its columns are still orthonormal, then UTU = I,
but UUT # I. We generally only use the term orthogonal to describe the previous case,
where U is square.

Another nice property of orthogonal matrices is that operating on a vector with an
orthogonal matrix will not change its Euclidean norm, i.e.,

[Uz([2 = ||z
for any x € R", U € R™ " orthogonal.



3.9 Range and Nullspace of a Matrix

The span of a set of vectors {xy, za,...x,} is the set of all vectors that can be expressed as
a linear combination of {z1,...,z,}. That is,

span({xy,...x,}) = {v CU = Zaﬂ’u o; € R} .

i=1
It can be shown that if {z1,...,2,} is a set of n linearly independent vectors, where each

x; € R™, then span({x1,...x,}) = R™. In other words, any vector v € R™ can be written as
a linear combination of x; through z,. The projection of a vector y € R™ onto the span

of {x1,...,2,} (here we assume z; € R™) is the vector v € span({z1,...x,}) , such that
v as close as possible to y, as measured by the Euclidean norm ||v — y||s. We denote the
projection as Proj(y; {z1,...,x,}) and can define it formally as,

PI‘Oj(y; {%1, s l’n}) = argminvespan({:cl,...,:rn}) ”y - UHQ'
The range (sometimes also called the columnspace) of a matrix A € R™*" denoted
R(A), is the the span of the columns of A. In other words,
R(A)={veR":v=Ax,z € R"}.

Making a few technical assumptions (namely that A is full rank and that n < m), the
projection of a vector y € R™ onto the range of A is given by,

Proj(y; A) = argmin, e 4)llv — ylla = A(ATA)"TATy .

This last equation should look extremely familiar, since it is almost the same formula we
derived in class (and which we will soon derive again) for the least squares estimation of
parameters. Looking at the definition for the projection, it should not be too hard to
convince yourself that this is in fact the same objective that we minimized in our least
squares problem (except for a squaring of the norm, which doesn’t affect the optimal point)
and so these problems are naturally very connected. When A contains only a single column,
a € R™, this gives the special case for a projection of a vector on to a line:
, aa®
Proj(y;a) = —7-y .

The nullspace of a matrix A € R™*", denoted N(A) is the set of all vectors that equal

0 when multiplied by A, i.e.,

N(A) ={z e R": Az = 0}.

Note that vectors in R(A) are of size m, while vectors in the N'(A) are of size n, so vectors
in R(AT) and N'(A) are both in R". In fact, we can say much more. It turns out that

{w:w=u+v,ueR(A"),veNA)} =R"and R(A")NN(A) =0 .

In other words, R(A”) and N (A) are disjoint subsets that together span the entire space of
R™. Sets of this type are called orthogonal complements, and we denote this R(AT) =

N (A

10



3.10 The Determinant

The determinant of a square matrix A € R™" is a function det : R™" — R, and is
denoted |A| or det A (like the trace operator, we usually omit parentheses). The full formula
for the determinant gives little intuition about its meaning, so we instead first give three
defining properties of the determinant, from which all the rest follow (including the general
formula):

1. The determinant of the identity is 1, |/| = 1.

2. Given a matrix A € R™" if we multiply a single row in A by a scalar ¢t € R, then the
determinant of the new matrix is t|A]|,

T
- as -

—t)A| .

- T
am

3. If we exchange any two rows a! and aJT of A, then the determinant of the new matrix
is —|AJ, for example

— 4] .

These properties, however, also give very little intuition about the nature of the deter-
minant, so we now list several properties that follow from the three properties above:

e For A e R |A| =|AT|.

e For A, B € R™", |AB| = |A||B].

e For A € R™" |A| =0 if and only if A is singular (i.e., non-invertible).
e For A € R™" and A non-singular, |A|™' = 1/|A].

Before given the general definition for the determinant, we define, for A € R™", Ay;\; €
RM=1x(=1) t5 be the matriz that results from deleting the ith row and jth column from A.
The general (recursive) formula for the determinant is

n

Al = > (=1)aylAyy|  (forany j€1,...,n)
=1

= Z(—l)i+jaij|A\i7\j| (foranyiel,...,n)

j=1

11



with the initial case that |A| = aj; for A € R If we were to expand this formula
completely for A € R™ ™, there would be a total of n! (n factorial) different terms. For this
reason, we hardly even explicitly write the complete equation of the determinant for matrices
bigger than 3 x 3. However, the equations for determinants of matrices up to size 3 x 3 are
fairly common, and it is good to know them:

llan]l = an
{an OJ12:| .
= (a11G22 — Q12021
Q21 A22

a1; Aaiz2 Qi3
Q21 Q22 A23 =
31 Aazz ass

11022033 + G12G23031 + A130210G32
—a11G023032 — A12021A33 — (13022031

The classical adjoint (often just called the adjoint) of a matrix A € R™*", is denoted
adj(A), and defined as

adj(4) e R™",  (adj(A))y; = (=1)""| Ayl
(note the switch in the indices A\;\;). It can be shown that for any nonsingular A € R™*",

1

AT = —
Al

adj(A) .

While this is a nice “explicit” formula for the inverse of matrix, we should note that, numer-
ically, there are in fact much more efficient ways of computing the inverse.

3.11 Quadratic Forms and Positive Semidefinite Matrices

Given a matrix square A € R™ " and a vector z € R, the scalar value 27 Az is called a
quadratic form. Written explicitly, we see that

JITAfL’ = Z Z Az‘jZEiZL‘j .
i=1 j=1
Note that,
1 1
vTAz = (27 Ax)T = 27 ATz = xT(ﬁA + §AT)x

i.e., only the symmetric part of A contributes to the quadratic form. For this reason, we
often implicitly assume that the matrices appearing in a quadratic form are symmetric.
We give the following definitions:

e A symmetric matrix A € S" is positive definite (PD) if for all non-zero vectors
r € R", T Az > 0. This is usually denoted A > 0 (or just A > 0), and often times the
set of all positive definite matrices is denoted S | .

12



e A symmetric matrix A € S" is position semidefinite (PSD) if for all vectors 27 Az >
0. This is written A > 0 (or just A > 0), and the set of all positive semidefinite matrices
is often denoted S .

e Likewise, a symmetric matrix A € S” is negative definite (ND), denoted A < 0 (or
just A < 0) if for all non-zero x € R", 27 Ax < 0.

e Similarly, a symmetric matrix A € S" is negative semidefinite (NSD), denoted
A =0 (or just A <0) if for all z € R, 2T Az < 0.

e Finally, a symmetric matrix A € S” is indefinite, if it is neither positive semidefinite
nor negative semidefinite — i.e., if there exists x1, 29 € R™ such that xlTAxl > 0 and
A
Ty Az < 0.

It should be obvious that if A is positive definite, then —A is negative definite and vice
versa. Likewise, if A is positive semidefinite then — A is negative semidefinite and vice versa.
If A is indefinite, then so is —A. It can also be shown that positive definite and negative
definite matrices are always invertible.

Finally, there is one type of positive definite matrix that comes up frequently, and so
deserves some special mention. Given any matrix A € R™*™ (not necessarily symmetric or
even square), the matrix G = AT A (sometimes called a Gram matriz) is always positive
semidefinite. Further, if m > n (and we assume for convenience that A is full rank), then
G = AT A is positive definite.

3.12 Eigenvalues and Eigenvectors

Given a square matrix A € R™", we say that A € C is an etgenvalue of A and x € C" is
the corresponding eigenvector® if

Ar =X x, x#0 .

Intuitively, this definition means that multiplying A by the vector x results in a new vector
that points in the same direction as z, but scaled by a factor A. Also note that for any
eigenvector x € C", and scalar t € C, A(cx) = cAx = c\x = A(cx), so cx is also an
eigenvector. For this reason when we talk about “the” eigenvector associated with A, we
usually assume that the eigenvector is normalized to have length 1 (this still creates some
ambiguity, since x and —z will both be eigenvectors, but we will have to live with this).

We can rewrite the equation above to state that (A, z) is an eigenvalue-eigenvector pair
of A if,

(M—-—A)x=0, z#0 .

!Note that A and the entries of = are actually in C, the set of complex numbers, not just the reals; we
will see shortly why this is necessary. Don’t worry about this technicality for now, you can think of complex
vectors in the same way as real vectors.

13



But (M — A)z = 0 has a non-zero solution to z if and only if (A — A) has a non-empty
nullspace, which is only the case if (\I — A) is singular, i.e.,

(M — A)[ =0 .

We can now use the previous definition of the determinant to expand this expression
into a (very large) polynomial in A, where A\ will have maximum degree n. We then find
the n (possibly complex) roots of this polynomial to find the n eigenvalues Ay, ..., \,. To
find the eigenvector corresponding to the eigenvalue \;, we simply solve the linear equation
(MI — A)x = 0. It should be noted that this is not the method which is actually used
in practice to numerically compute the eigenvalues and eigenvectors (remember that the
complete expansion of the determinant has n! terms); it is rather a mathematical argument.

The following are properties of eigenvalues and eigenvectors (in all cases assume A € R™*"
has eigenvalues \;, ..., \, and associated eigenvectors 1, ...z,):

e The trace of a A is equal to the sum of its eigenvalues,
i=1
The determinant of A is equal to the product of its eigenvalues,
Al =TT -
i=1

The rank of A is equal to the number of non-zero eigenvalues of A.

e If A is non-singular then 1/); is an eigenvalue of A~! with associated eigenvector w;,
i.e., A_lxi = (1/)\2)1’1

The eigenvalues of a diagonal matrix D = diag(d, ...d,) are just the diagonal entries
di,...d,.

We can write all the eigenvector equations simultaneously as
AX = XA

where the columns of X € R"*" are the eigenvectors of A and A is a diagonal matrix whose
entries are the eigenvalues of A, i.e.,

| |
XeR™ = | o x5 - z, |, A=diag\i,..., \n) .

If the eigenvectors of A are linearly independent, then the matrix X will be invertible, so
A= XAX"1 A matrix that can be written in this form is called diagonalizable.

14



3.13 Eigenvalues and Eigenvectors of Symmetric Matrices

Two remarkable properties come about when we look at the eigenvalues and eigenvectors
of a symmetric matrix A € S™. First, it can be shown that all the eigenvalues of A are
real. Secondly, the eigenvectors of A are orthonormal, i.e., the matrix X defined above is an
orthogonal matrix (for this reason, we denote the matrix of eigenvectors as U in this case).
We can therefore represent A as A = UAU?, remembering from above that the inverse of
an orthogonal matrix is just its transpose.

Using this, we can show that the definiteness of a matrix depends entirely on the sign of
its eigenvalues. Suppose A € S" = UAUT. Then

2l Ax = 2TUANU 2 = yTAy = Z )\iy?

=1

where y = U’ x (and since U is full rank, any vector y € R" can be represented in this form).
Because 3?2 is always positive, the sign of this expression depends entirely on the \;’s. If all
A; > 0, then the matrix is positive definite; if all A; > 0, it is positive semidefinite. Likewise,
if all A\; < 0 or \; < 0, then A is negative definite or negative semidefinite respectively.
Finally, if A has both positive and negative eigenvalues, it is indefinite.

An application where eigenvalues and eigenvectors come up frequently is in maximizing
some function of a matrix. In particular, for a matrix A € S", consider the following
maximization problem,

max,ecpn - Az subject to [[z]|2 =1

i.e., we want to find the vector (of norm 1) which maximizes the quadratic form. Assuming
the eigenvalues are ordered as \; > Ay > ... > \,, the optimal x for this optimization
problem is z, the eigenvector corresponding to A;. In this case the maximal value of the
quadratic form is A;. Similarly, the optimal solution to the minimization problem,

mingegn 27 Az subject to [[z||2 = 1

is x,,, the eigenvector corresponding to \,, and the minimal value is \,,. This can be proved by
appealing to the eigenvector-eigenvalue form of A and the properties of orthogonal matrices.
However, in the next section we will see a way of showing it directly using matrix calculus.

4 Matrix Calculus

While the topics in the previous sections are typically covered in a standard course on linear
algebra, one topic that does not seem to be covered very often (and which we will use
extensively) is the extension of calculus to the vector setting. Despite the fact that all the
actual calculus we use is relatively trivial, the notation can often make things look much
more difficult than they are. In this section we present some basic definitions of matrix
calculus and provide a few examples.
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4.1 The Gradient

Suppose that f: R™*" — R is a function that takes as input a matrix A of size m x n and
returns a real value. Then the gradient of f (with respect to A € R™*") is the matrix of
partial derivatives, defined as:

af(4) of(4) of(A)
8A11 8A12 6A1
of(A)  9f(A) . af(A)
vAf(A) E Rmxn — 8A21 81422 aAgn
f(A)  0s(A) o5 (A)
O0Am1  OAmo OAmn
i.e., an m X n matrix with
91(A)
\V4 A));i = )
( Af( )) J aAZ]

Note that the size of V4 f(A) is always the same as the size of A. So if, in particular, A is
just a vector x € R",
of (=)

o0z
of(x)

Va: f( x) _ 83:52
of()
OxTn

It is very important to remember that the gradient of a function is only defined if the function
is real-valued, that is, if it returns a scalar value. We can not, for example, take the gradient
of Az, A € R™" with respect to x, since this quantity is vector-valued.

It follows directly from the equivalent properties of partial derivatives that:

o Vo(f(2) +g(x)) = Vaf(x) + Vag(z).
o Fort e R, V. (t f(z)) =tV.,f(x).

It is a little bit trickier to determine what the proper expression is for V, f(Azx), A € R™*™,
but this is doable as well (if fact, you’ll have to work this out for a homework problem).

4.2 The Hessian

Suppose that f: R” — R is a function that takes a vector in R™ and returns a real number.
Then the Hessian matrix with respect to z, written V2 f(z) or simply as H is the n X n
matrix of partial derivatives,

9% f(x) 9% f(x) . 9% f(x)
Bw% Ox10x9 O0x10xn
Pfx)  f(x) .. f(=)
Vif(m) c Rnxn — 8x2.8x1 8:v% ' 8902'8:0,1
P i) 24 ()
02,0z, Oxndra Ox2

n



In other words, V2 f(x) € R™*", with

_ 0*f(x)

(Vaf(x))is
Note that the Hessian is always symmetric, since

*f(x) _ *f(x)
81’2'81']' N 893]01‘1

Similar to the gradient, the Hessian is defined only when f(z) is real-valued.

It is natural to think of the gradient as the analogue of the first derivative for functions
of vectors, and the Hessian as the analogue of the second derivative (and the symbols we
use also suggest this relation). This intuition is generally correct, but there a few caveats to
keep in mind.

First, for real-valued functions of one variable f : R — R, it is a basic definition that the
second derivative is the derivative of the first derivative, i.e.,

Pfx) 00
92~ owon! )

However, for functions of a vector, the gradient of the function is a vector, and we cannot
take the gradient of a vector — i.e.,

of(x)
o1
f(=

vazf(f) =V, 69.62

f(z
o1

3

Q
N

and this expression is not defined. Therefore, it is not the case that the Hessian is the
gradient of the gradient. However, this is almost true, in the following sense: If we look at
the ith entry of the gradient (V. f(x)); = 0f(z)/0x;, and take the gradient with respect to

T we get
9 f(x)
5
V af(x) — 0x;0x2
of (z)
0x; 0Ty

which is the ith column (or row) of the Hessian. Therefore,

If we don’t mind being a little bit sloppy we can say that (essentially) V2 f(x) = V.(V.f(z))T,
so long as we understand that this really means taking the gradient of each entry of (V. f(z))?,
not the gradient of the whole vector.
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Finally, note that while we can take the gradient with respect to a matrix A € R", for
the purposes of this class we will only consider taking the Hessian with respect to a vector
x € R™. This is simply a matter of convenience (and the fact that none of the calculations
we do require us to find the Hessian with respect to a matrix), since the Hessian with respect
to a matrix would have to represent all the partial derivatives 92 f(A)/(0A;;0A), and it is
rather cumbersome to represent this as a matrix.

4.3 Gradients and Hessians of Quadratic and Linear Functions

Now let’s try to determine the gradient and Hessian matrices for a few simple functions. It
should be noted that all the gradients given here are special cases of the gradients given in
the CS229 lecture notes.

For z € R", let f(x) = bTx for some known vector b € R™. Then

n
= E bix;
i=1

SO

af(
8xk al’k Z b = bk

From this we can easily see that V b"z = b. ThlS should be compared to the analogous
situation in single variable calculus, where 0/(0z) ax = a.
Now consider the quadratic function f(z) = 7 Az for A € S*. Remember that

= Z Z Aijxixj

i=1 j=1
SO (
af " n B n

where the last equality follows since A is symmetric (which we can safely assume, since it is
appearing in a quadratic form). Note that the kth entry of V, f(z) is just the inner product
of the kth row of A and z. Therefore, V27 Az = 2Ax. Again, this should remind you of
the analogous fact in single-variable calculus, that 9/(9x) ax? = 2ax.

Finally, lets look at the Hessian of the quadratic function f(z) = 2T Az (it should be
obvious that the Hessian of a linear function 7z is zero). This is even easier than determining
the gradient of the function, since

w2 A Ap+ Agr = 24
0rr0r,  0rpdTy 4 Z Z ij LTy = Ape + Agp = 2Apgp.

=1 j=1

Therefore, it should be clear that V2z? Az = 2A, which should be entirely expected (and
again analogous to the single-variable fact that 9%/(9x?) az? = 2a).
To recap,
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o V,blz =0
o V2T Ax = 2Ax (if A symmetric)

o VizTAx = 2A (if A symmetric)

4.4 Least Squares

Lets apply the equations we obtained in the last section to derive the least squares equations.
Suppose we are given matrices A € R™*™ (for simplicity we assume A is full rank) and a
vector b € R™ such that b ¢ R(A). In this situation we will not be able to find a vector
x € R", such that Ax = b, so instead we want to find a vector x such that Az is as close as
possible to b, as measured by the square of the Euclidean norm || Az — b||3.

Using the fact that ||z||3 = 2Tz, we have

|Az — b||§ = (Ax — b)T(Ax —b)
2T AT Ax — 207 Az + b"D

Taking the gradient with respect to x we have, and using the properties we derived in the
previous section

V(2T ATAx — 207 Az +b"b) = V2T AT Ar — V, 207 Az + V,b"b
= 24T Ax —2A"p

Setting this last expression equal to zero and solving for x gives the normal equations
r=(ATA) T ATD

which is the same as what we derived in class.

4.5 Gradients of the Determinant

Now lets consider a situation where we find the gradient of a function with respect to a matrix,
namely for A € R™*" we want to find V4|A|. Recall from our discussion of determinants
that

|A| = Z(—l)iJrinj’A\i,\j‘ (forany j€1,...,n)
i=1
SO
0 0

5 A= g D Al Al = (FDF A = (adi(A)ae
i=1

From this it immediately follows from the properties of the adjoint that

ValAl = (adj(A))" = [A]AT.
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Now lets consider the function f : S}, — R, f(A) = log|A|. Note that we have to
restrict the domain of f to be the positive definite matrices, since this ensures that |A| > 0,
so that the log of |A| is a real number. In this case we can use the chain rule (nothing fancy,
just the ordinary chain rule from single-variable calculus) to see that

dlog|A|  dlog|A|8l4] 1 9|A|

0A;  O|A] 0A;  |A]9Ay
From this is should be obvious that
1
Valog|A| = WVA\A’ =AY

where we can drop the transpose in the last expression because A is symmetric. Note the
similarity to the single-valued case, where 0/(0z) logx = 1/x.

4.6 Eigenvalues as Optimization

Finally, we use matrix calculus to solve an optimization problem in a way that leads directly
to eigenvalue/eigenvector analysis. Consider the following, equality constrained optimization
problem:

max,cpn o Az subject to ||z]|2 =1

for a symmetric matrix A € S". A standard way of solving optimization problems with
equality constraints is by forming the Lagrangian, an objective function that includes the
equality constraints.? The Lagrangian in this case can be given by

L(z,)\) =2 Az — \a"x

where A is called the Lagrange multiplier associated with the equality constraint. It can be
established that for £* to be a optimal point to the problem, the gradient of the Lagrangian
has to be zero at z* (this is not the only condition, but it is required). That is,

Vo L(z,\) = V(27 Ar — \aTx) = 2472 — 22 = 0.

Notice that this is just the linear equation Ax = Ax. This shows that the only points which
can possibly maximize (or minimize) 7 Az assuming 7z = 1 are the eigenvectors of A.

2Don’t worry if you haven’t seen Lagrangians before, as we will cover them in greater detail later in
CS229.
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